o

IFAC

International Federation of Automatic Control

DISTRIBUTED COMPUTER
CONTROL SYSTEMS 1995

A Postprint volume from the IFAC Workshop
Toulouse-Blagnac, France, 27-29 September 1995

Edited by
A.E.K. SAHRAOUI and J.A. DE LA PUENTE

UK
USA
JAPAN

Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK
Elsevier Science Inc., 660 White Plains Road, Tarrytown, New York 10591-5153, USA

Elsevier Science Japan, Tsunashima Building Annex, 3-20-12 Yushima, Bunkyo-ku, Tokyo 113, Japan

Copyright © 1995 IFAC

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical,
photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1995

Library of Congress Cataloging in Publication Data

A catalogue record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0-08-042593 3

This volume was reproduced by means of the photo-offset process using the manuscripts supplied by the
authors of the different papers. The manuscripts have been typed using different typewriters and
typefaces. The lay-out, figures and tables of some papers did not agree completely with the standard
requirements: consequently the reproduction does not display complete uniformity. To ensure rapid
publication this discrepancy could not be changed: nor could the English be checked completely.
Therefore, the readers are asked to excuse any deficiencies of this publication which may be due to the
above mentioned reasons.

The Editors

Printed in Great Britain

WORKSHOP ON DISTRIBUTED COMPUTER CONTROL SYSTEMS 1995

Sponsored by:
IFAC - International Federation of Automatic Control
Technical Committee on Computers.

Organised by:
Association Frangaise des Sciences et Technologies de 1'Information et des Systemes

International Committe

>

De La Puente, Chairman (Spain)
Boullart (Belgium)
Burns (United Kingdom))
Crespo (Spain)

Cristian (USA)

De Paoli (Italy)

Fabre (France)

Inamoto (Japan)
Ivanyoe (Hungary)
Keijzer (Netherlands)
Kopetz (Austria)
Lauber (Germany)
McLeod (USA)

Mercier (France)

Mok (USA)

Narita (Japan)

Qin (USA)
Ramamrithan (USA)
Rodd (United Kingdom)
Suski (USA)

Thomesse (France)
Zhao (Singapore)

o T > 1

;,,D

QERQUporAE>IE
A :

—
Qi

National Organizing Committee

A.E.K. Sahraoui {Chairman)
E

. Bernauer
J.C. Deschamps
E. Dufour
M.T. Ippolito
M. Tuffery
D. Vielle

CONTENTS

ARCHITECTURE FOR DCCS

An Approach Designing Parallel Software for Distributed Control Systems
H. UNGER, B. DANE, W. FENGLER

Multiagent-Based Control Systems: An Hybrid Approach to Distributed Process Control
JR. VELASCO, J.C. GONZALEZ, C.A. IGLESIAS, L. MAGDALENA

On the Modelling of Distributed Real-time Control Applications
M. TORNGREN

TEMPORAL PROPERTIES IN DCCS

Temporal Validation of Distributed Computer Control Systems
W.A. HALANG, M. WANNEMACHER, J.J. SKUBICH.

Modelling and Verifying Timing Properties in Distributed Computer Control Systems
A.G. STOTHERT, 1.M. MACLEOD

On the Duality Between Event-Driven and Time-Driven Models
F. TISATO, F. DE PAOLI

METHODOLOGIES FOR DCCS DESIGN 1

Dynamic Task Mapping for Real-Time Controller of Distributed Cooperative Robot Systems

T. LUETH, T. LAENGLE, J. HEINZMAN

Programming Approaches for Distributed Control Systems
R. SCHOOP, A. STRELZOFF

Distributed Hard-Real-Time Systems: From Specification to Realization
L. CARCAGNO, D. DOURS, R. FACCA, B. SAUTET

SCHEDULING METHODS FOR DCCS

Heuristics for Scheduling Periodic Complex Real-Time Tasks in a Distributed System
J.-P. BEAUVAIS, A.-M. DEPLANCHE

Alpha Message Scheduling for Optimizing Communication Latency in Distributed Systems

L. CHERKASOVA, T. ROKICKI

Preemptive and Non-Preemptive Real-Time Scheduling Based on Neural Networks
C. CARDEIRA, Z. MAMMERI

13

19

25

31

37

43

49

55

61

67

METHODOLOGIES FOR DCCS I1

Co-Specifications for Co-Design in Avionics Systems Development
M. ROMDHANI, P. DE CHAZELLES, A. JEFFROY, A.EK. SAHRAOUI, A.A. JERRAYA

Transputer Control System with a GAs Motion Planner for the PUMAS560 Industrial Robotic Manipulator
Q. WANG, AM.S. ZALZALA

Automated Client Server Code Generation from Object Oriented Designs Using Hood4™
M. HEITZ

TEMPORAL PROPERTIES IN DCCS 11

Temporal Properties in Distributed Real-Time Applications Cooperation Models and Communication
Types

L. VEGA SAENZ, J.-P. THOMESSE

Conception and Analysis of an ATM Based Communication Transfer Protocol for Distributed Real-Time
Systems

R. BELSCHNER, M. LEHMANN

Self Configuration Protocol for a Hard Real Time Network
L. RUIZ, P. RAJA, N. FISCHER, 1.D. DECOTIGNIE

DEPENDABILITY ISSUES IN DCCS

Guaranteeing Synchronous Message Sets in FDDI Networks
S. ZHANG, A. BURNS

Heterogeneous Prototyping for Distributed Real-Time Systems
A. ALONSQ, 1.C. DUENAS, G. LEON, M. DE MIGUEL, A. RENDON

Dependable Distributed Computer Control Systems: Analysis of the Design Step Activities
F. SIMONOT-LION, J.P. THOMESSE, M. BAYART, M. STAROSWIECKI

SYSTEM ANALYSIS

Deadlock Prevention in a Distributed Real-Time System
O.H. ROUX, P. MARTINEAU

Analysis of the IEEE 802.4 Token Passing Bus Network with Finite Buffers and Single Priority
W.Y. JUNG, D.W. KIM, W.H. KWON

How to Schedule Periodic and Sporadic Tasks with Resource Constraints in a Real-Time Computer

System
M. SILLY

REAL-TIME COMMUNICATION

LAN Medium Access Control Simulation Study Under a Real-Time DCCS: An Automated Guided
Vehicles System
J.A. SIRGO, H. LOPEZ, J.C. ALVAREZ, JM. ALVAREZ

Integration of Wireless Mobile Nodes in MAP/MMS
P. MOREL, J.-D. DECOTIGNIE

vi

73

77

83

89

95

101

105

111

117

123

129

135

141

147

Definition of Real Time Services for Heterogeneous Profiles
J. LECUIVRE, J.-P. THOMESSE

APPLICATIONS

A Distributed Real-Time Transaction Processing Environment for the CIM Applications
Y. DAKROURY, J.P. ELLOY

Control Design for Autolab Using the Reactive Paradigm
S. BAJAJ, A. SOWMYA, S. RAMESH, N. AHMED

A Highly Distributed Control System for a Large Scale Experiment
C. GASPAR, J.J. SCHWARZ

Author Index

vii

151

157

165

171

177

Copyright © IFAC Distributed Computer Control Systems,
Toulouse-Blagnac, France, 1995

AN APPROACH DESIGNING PARALLEL SOFTWARE
FOR DISTRIBUTED CONTROL SYSTEMS

H. Unger*, B. Déane*™ and W. Fengler **

*University of Rostock, Department of Informatics, D-18051 Rostock; Germany.
hunger@informatik.uni-rostock.de

E-mail:

**Technical University of Ilmenau, Department of Informatics and Automation, D-98684 Ilmenau;
Germany. E-mail: bdaenelufengler@theoinf.tu-ilmenau.de

Abstract. Petri Nets have been proved to be an effecient tool to represent complicated systems.
Nevertheless, in general it is not easy to implement a technical system given as a Petri Net on a
multiprocessor system. This contribution presents a new approach for this procedure. The main
difference compared to other methods is the effective use of message passing communication during

the implementation.

Key Words. Petri-nets; Distributed computer control systems; Parallel programs

1. INTRODUCTION

Progress in hardware design makes it possible to
use multiprocessor architectures even insmall au-
tomation systems. Parallel programming requires
effective methods to find out parallel executable
parts in a given algorithm (Boillat, et al., 1991).
Therefore it is necessary to solve a lot of problems
in a transparent way for a wide group of users.
That is why Petri Nets, a graphical language of
description, became more and more important for
modelling parallel software solutions (Reisig, et
al., 1987).

But there are only a few approaches for implemen-
ting Petri Net models on different multiprocessor
architectures (Thomas, 1991; Unger, 1994). An
overview is given in figure 1.

[implementing Petri Nets)
DIRECT Jy__.L__2 INDIRECT

state machine
covering

one process||less
per transition| | processes

p-invariants

“foken classes of

. token fl
players' conflicts
ete. g;glrgge place constructs

Fig. 1. An overview about existing implementation ap-
proaches

From the authors point of view all known methods
fall into two basic types. The first one - the so cal-
led direct type - implements processes according

to the transitions of the net. The second, indirect
one is to decompose or to cover a given Petri Net
by state machines, and then to implement one pro-
cess for every state machine. Especially if a Petri
Net has many transitions, the first method yields
in each case a solution with plenty superfluous of
processes and a large communication overhead. In
general, the second group of methods generates a
more efficient code, but, in contrast to the first
one, it does not apply to all Petri Nets.

The main disadvantage of known approaches is
the transformation of a subset of places into glo-
bal data objects in a shared memory. These data
objects normally contain integer values correspon-
ding to the number of tokens in the places. Ac-
cessing the data objects by more than one process
causes a lot of management problems and aggra-
vates real parallel work of these processes. In the
end a lot of technical systems like transputer sy-
stems or PVM implementations ! require a client
server relation instead of a shared memory for sol-
ving this problem and so the number of parallel
working processes is increased. ’

The present paper shows a new approach for an
implementation avoiding the disadvantage descri-
bed above.

1 Parallel Virtual Machine for UNIX clusters from the
Oak Ridge National Laboratory (Sunderam, 1990)

2. BASIC CONCEPTS

Usually a Petri Net ® is a 5-tupel (P, T, F,V, mq)
such that

(i) P,T are disjoint finite nonempty sets,
the sets of places and transitions,
respectively

(ii) FCPxTUT x P, the set of arcs

(i) V :F — N, the multiplicity function

(iv) mg: P — Ny, the initial marking
(N and N denote the sets of positive and
nonnegative integers, respectively.)

A transition ¢ € T is able to fire at a marking m
if for every p € P, (p,t) € F

m(p) > V((p,1))

Firing ¢ € T at m means to substitute m by mycw
where

m(p) —V((p,1)) : () EF
Mnew(p) =4 m(p)+V((tp) : (Lp)EF
m(p) : else
for any p€ P.

Additionally is defined: pF = {t|(p,t) € F},
Fp = {t|(t,p) € F}, tF = {p|(t,p) € F} and
Ft = {pl(p,t) € F}.

For modelling automation systems it is necessa-
ry to add some components to the standard Petri
Net definition in order to describe the input and
the output of data (Fengler and Philippow, 1991):

(1) WwWx,
a set of boolean expressions associated
to the transitions.
Ift € T, wy(t) is considered to be an
additional condition to fire ¢.
a set of boolean output variables associated
to the places of the Petri Net.
wy(p) Ewy is TRUE,if pis
labeled.

(3) Wa,
a set of procedures associated to
the places of P.
Procedures are started when a new token
reaches the place.

Implementing a given Petri Net means to trans-
form it into a program by interpreting sets of ele-
ments as structures of a parallel program. When
doing so, the state of the program or a class of its
states can be derived from an actual marking and
vice versa.

3. TRANSFORMATION

In the following, a Petri Net transformation is
shown resulting in a net with particular proper-
ties. It is based on separating conflict structures
followed by a transformation of the remaining net.
Afterwards, the net can be implemented in a mes-
sage based manner.

3.1. Conflict situations

Conflicts directly influence the transformation of
a Petri Net. Places with more than one posttran-
sition are the reason for conflicts in a Petri Net.
Such constructs are called static conflict situati-
ons. For the present contribution it is necessary
to consider several static conflicts in a given Petri
Net & in a more detailed way (see figure 2). All
the structures consist of a set of transitions A and
a set of preplaces S of the transitions of A4 in such
a way that there is at least one transition to each
other one which has a common preplace.

All non-free-choice conflict structures result in
problems during the (basic) transformation and
have to cut out in a first step described below.

O

V(i) v Y
V()

Vi) vih
Vil

a) freechoice b) standard c¢)unsolved d) connected

Fig. 2. Static Conflict Structures in a Petri Net

Let Il and © be set systems for all conflict struc-
tures of a given Petri Net with

I ={5,3S,,..,S|h € N}

and

0= {Al,Ag, ---;Ahlh (S N}

The function K(II,©) is defined as follows:

(H’,@’):Hz’,j:A,-nA,- #0

' = (I\ ;

\S;j) u{S; U S;}

O =(0\ A\ 4;)U{A: U4}
(0,0):Vi,j: AinA; =0

K(,e)=

Obviously, there is a k € N such that K*(II,0) =
K*+1(11,0). In this case K*(Il, Oy) is called a

maximal conflict set.
For Q = {qlq € P, |pF(g)| > 1}, (Ilo, ©o) with

O = {M;|M; = {¢:},i=1(1)IQ[}

and

Qo = {N:|N; = {t|(¢:,t) € F},

i=1(1)Qf}

is the set of places and their posttransitions which
could be the source of a conflict. Furthermore,
the connection between some of such sources via
their transitions (figure (2d)) is represented in the
maximal conflict set K*(II, ©).

In order to get a set with all preplaces of t € © in
(I, ©) = K*(Ilp, Q) the set system II is modified
by ' = {p|Tt € © : (p,t) € F}.

For further transformation such structures (see fi-
gure 3) have to be cut out from a given Petri Net
®. The main idea consists in a functional separa-
tion of the pre- and the postarea of a transition.
The fireability of such a transition can completely
be tested in the first subnet. The postarea of the
transition located in the second subnet only sets
tokens on places, when this transition has got a
message from the prearea.

4 Message

Fig. 3. Separation of Conflict Structures

A later discussion shows that only the more dif-
ficult conflict situation in figure (2c) must be cut
out.

3.2. Transformation of the remaining Petri Net

The transformation of the modified Petri Net
® = (P,T,F,V,mg) (a net without static con-
flict structures) described in this section is car-
ried out in three steps. At first, an unmarked

place construct (P'(p), T'(p), F'(p), V'(p)) is de-
fined for each p € P of a given Petri Net .
After doing so, these constructs will be joined
by arcs, and a corresponding marking m’ is de-
fined. Thus, one gets a corresponding Petri Net
® = (P, T, F',V',m') with P = |JP'(p), T' =
UT'(p) and F' 5 U F'(p).

(1.)

Let p € P, tou: € T the only transition with
(p,tout) € F and Voy: the multiplicity of (p, tou:).
Then 1s defined

U = Voyur + maz(V;|i = 1(1)|Fp|) - 1.

Now each p € P will be transformed into a place
construct with a set of places P'(p) defined by

Pl(p) = {p;): --’p:’:zl; oy 33}
with ¢ = 0(1)u and e = 1(1)|tou: F).

For the definition of the sets of transitions and

arcs Ci(p), C2(p) and C3(p) are defined by:

Cl(p) = {(a’ b, c)|a = O(I)Vout - 1,
b=1(1)|Fpl,ce=a+V:
a+ Vs < Vour}

Cao(p) = A{(a,b,c)la = Vour(1)u,b =0,
c=a~Vour: 0> Vour}

Cs(p) = {(a’b:c)la = o(l)mut - 1,

b=1(1)|Fp|:c=a+‘/b_Vvout:
a+VbZ Vout}

With these definitions let

3
C(p) = U Ci(p)-

Corresponding to the elements of C(p), the fol-
lowing transitions and arcs are added for each
(a,b,¢) € C(p) to the sets T"(p) and F'(p), re-
spectively:

ta,b,c(P) € Tl(p):
(piz;ta,b,c) € Fl(p) with V((P;,ta,b,c)) =1

and

(tapc,P.) € F'(p) with V((tap,e,pe)) =1.

Finally, for each (a, b, ¢) € C2UC3 arcs have to be
added with

(tap,e: %) € F'(p) with ((tap,e, i) =1

for all i = 1(1)|toueF).

In a last step places without pretransitions and
their postarcs and posttransitions will be removed
from the place constructs. An example of such a
place construct is given in figure 4.

Vi=3
Vom=1
ltogt Fl=1

Fig. 4. Example of an Easy Place Construct

(2.)

Let ¢ = 1(1)[tousF|. Then one z. € P'(p)
exists corresponding to each of the postplaces
U1, U2, .., Ve Of tous. Furthermore ¢4 (ve) € T"(ve)
are the transitions of the corresponding place con-
structs. Now for all (a, b, ¢) € C1(v.) U Cs(v.) add
an arc to F’ with

(Zestap,e(ve)) € F' with V((ze,tap,e(ve))) = 1.

(3.)
A marking m’ of &' is said to be corresponding to
m of @ if for all place constructs

0) Tpeppm(e)=1
(i) Vi, j:m'(z:i(p)) = m'(z;(p))
(i) Vi,j:if m'(p}) =1,p} € P'(p)

i+ m'(2;(p)) * Vour = m(p)
The result of the transformation is a transformed
Petri Net &' which simulates the behaviour of &.
An important property of &' is that the multipli-
city function is equal 1 for all arcs of the net.

4. IMPLEMENTATION

Implementing ' means to find out interpretati-
ons for special elements of the given Petri Net.
This work falls into two parts: implementing the
conflict structures and implementing the transfor-
med remaining Petri Net ¢'.

The main problem with implementing conflict
structures results from the shared use of a data ob-
Ject representing places with more than one post-
transition. The new approach avoids these pro-
blems, because all elements of the conflict struc-
ture (K (II, ®)) will be cut out and implemented

as a single process, containing all elements for the
complete solution of the conflict in a loop. The
connection of the conflict structures with the re-
maining net can be represented by messages, as
described above.

Now consider the remaining Petri Net . One ad-
vantage of the described transformation is that the
place constructs without the places z; are state
machines. These state machines are connected via
z; and their incident arcs, thus forming so-called
systems of concurrent state machines (SCS).

In a first approach these SCS can be implemented
by creating a single process of a parallel program
for each state machine (Unger, 1992). Following
this idea, the z;-elements of ®' are interpreted as
communication structures between these proces-
ses.

Places connecting state machines are usually im-
plemented as data objects in a shared memory or
a server process. But resulting from the transfor-
mation described above, each z; has prearcs only
relating to transitions in exactly one state machi-
ne, and has postarcs only relating to transitions in
exactly one other state machine. Therefore, infor-
mation about the state of any z; will be managed
by only one process and so this communication
can be implemented by the use of send and rece:-
ve procedures and the belonging message buffers.

A second approach implementing the transformed
Petri Net is based on special structure effects in
the transformed Petri Net. Consider &' without
the places p; of P’ and without their transitions
ta,5,c derived from the elements of Ca(p). It can be
shown that such nets consist of six basic elements
with an interpretation shown in figure 5. Because
the multiplicity of all arcs is equal 1, each token in
one of the z;-places corresponds to a set of parallel
processes corresponding to the given interpretati-
on of elements. For more than one token one gets
a superposition of such process groups.

O+OO~IO<|"

. Sequence End of process Alternative

o ol o

W, f End of with
a.mng or géwgfa synco process

Fig. 5. Flements in the Reduced Transformed Petri
Net

In all cases there is the restriction that in a gi-
ven moment only one transition of each place con-

struct can be fired. This will be achieved by a spe-
cial interpretation of the p;-elements of the trans-
formed Petri Net. The marking of these places
can be considered as special values of a marking
of p in the original net. Thus the values can se-
lect the fireable tramsitions and in this way sol-
ve the conflicts in the processes. In the parallel
program the value of a counter will be implemen-
ted by messages circulating between the proces-
ses. Only one process can receive the message,
and therefore only one process can do the next
step corresponding to the firing process of exact-
ly one transition. Leaving the sector of the given
place construct the process sends a message with
the new counter information and any process that
needs this information can receive it.

At last, consider the interpretation of the transiti-
ons %, 3, derived from the elements of C2(p). Fi-
ring one of these transitions entails creating tokens
on z; and processes, respectively. The firing pro-
cess of these transitions directly depends on firing
tap.c, if ta 3, derives from C3 and ¢ > Voy:. This
algorithm is implemented by creating a new pro-
cess which receives as its argument the data from
the circulating message. The mentioned process
creates other new processes, changes the informa-
tion of the message (—V,u: for each new-process
up to the moment when the data are less Viy¢)
and sends the updated message to any process re-
quiring it. The choice of the implementation me-
thod depends on the properties of the given net.
If the number of places is not too high, the first
approach is more effective, a lower number of to-
kens favours the second method but a mixed use
of both methods is possible too.

Results from a experimental implementation of a
control program achieved by several methods are
shown in figure 6.

transitions; 18
rank of parallelism: 4
processes: 6, 6, 18 (respectively)

35
s] "short way"
¢ 2 "long way"
304 4 3 one process
per transition
25+
204
15 ! 1

1234567809

Fig. 6. Time Behaviour of a Parallel Program

5. CONCLUSION

A new method for the automatic generation of
parallel software from Petri Nets has been shown
and some transformation and implementation de-
tails have been discussed. The method enables the
generation of more efficient parallel code by pre-
venting some communication overhead resulting
from conflict situations in the net. A first expe-
rimental implementation has shown the expected
results.

6. REFERENCES

Boillat, J. E. et al. (1991). Parallel Computing in
the 1990°s. Institut fir Informatik, Universitat
Basel.

Fengler, W. and 1. Philippow (1991). Entwurf in-
dustrieller Mikrocomputersysteme. Carl Hanser
Verlag, Miinchen-Wien.

Reisig, W., W. Brauer and G. Rozenberg (1987).
Petri nets: Applications and Relationships to
Other Models of Concurrency. In: LNCS 255.
Springer Verlag, Berlin-Heidelberg-New York.

Sunderam, V.S. (1990). Parallel Virtual Machi-
ne. In: Concurrency: Praktice and Ezperience,
No. 12, 315-339.

Thomas, G.S. (1991). Parallel Simulation of Petr:
Nets. Technical report, University of Washing-
ton.

Unger, H. (1992). A Petri Net Based Method to
the Design of Parallel Programs for a Multipro-
cessor System. In: LNCS 634. Springer Verlag,
Berlin-Heidelberg-New York.

Unger, H. (1994). Untersuchungen zur Implemen-
tierung von Petri-Netz-Modellen auf Mehrpro-
zessorsystemen. Dissertation, TU Ilmenau.

Copyright © IFAC Distributed Computer Control Systems,
Toulouse-Blagnac, France, 1995

MULTIAGENT-BASED CONTROL SYSTEMS:
AN HYBRID APPROACH TO DISTRIBUTED PROCESS CONTROL'

Juan R. Velasco, José C. Gonzilez, Carlos A. Iglesias and Luis Magdalena

ETSI Telecomunicacién, Universidad Politécnica de Madrid
Ciudad Universitaria s/n., E-28040 Madrid, Spain.
email: jvelasco | jeg | cif@dit.upm.es -- llayos@mat.upm.es

Abstract: In this paper a general architecture and a platform developed to implement distributed
applications, as a set of cooperating intelligent agents, is presented. Second, it will be shown how
this architecture has been used to implement a distributed control system for a complex process:
the economic control ¢“a fossil power plant.

Agents in this application encapsulate different distributed hardware/software entities: neural and
fuzzy controllers, data acquisition system, presentation manager, etc. These agents are defined in
ADL, a high level specification language, and interchange data/knowledge through service
requests using a common knowledge representation language.

Keywords: Agents, Distributed control, Fuzzy expert systems, Machine learning, Power

generation
1. INTRODUCTION cooperation with other agents. Multiagent systems offer
a decentralized model of control, use the mechanisms of
This paper presents a way to undertake the distributed message-passing for communication purposes and are
control problem from a multiagent systems point of view. usually implemented from an object-oriented perspective.

To summarize, agents are autonomous entities capable of
carrying out specific tasks by themselves or through

*This research is funded in part by the Commission of the European Communities under the ESPRIT Basic Research Project MIX:
Modular Integration of Connectionist and Symbolic Processing in Knowledge Based Systems, ESPRIT-9119, and by CDTI, Spanish
Agency for Research and Development CORAGE: Control mediante Razonamiento Aproximado y Algoritmos Genéticos,
PASO-PC095. : ,

The MIX consortium is formed by the following institutions and companies: Institute National de Recherche en Informatique et en
Automatique (INRIA--Lorraine/CRIN--CNRS, France), Centre Universitaire d'Informatique (Université de Genéve, Switzerland),
Institute d'Informatique et de Mathématiques Appliquées de Grenoble (France), Kratzer Automatisierung (Germany), Fakultit fiir
Informatik (Technische Universitit Miinchen, Germany) and Dept. Ingenieria de Sistemas Telematicos (Universidad Politécnica de
Madrid, Spain).

The CORAGE Consortium is formed by UITESA, Dept. Ingenierfa de Sistemas Teleméticos (Universidad Politécnica de Madnd),
IBERDROLA and Grupo APEX. .

The multiagent architecture that has been developed can
be used to implement any kind of distributed application,
not only distributed control system. In this general
framework, several software elements (the agents)
cooperate to reach their own goals. System designer has
to *decide the set of agents that will be involved in the
task, specifying their particular capabilities. At a high
level, this part of the design work is carried out by
describing the agents in ADL (Agent Description
Language) (see below and Gonzilez, J.C et al. (1.995)).
The problem of how to intercommunicate data between
agents is solved by using a common knowledge
representation language.

As an example of how to apply this architecture for
distributed control, a real system is going to be shown: a
fossil power plant. In particular, the goal is to achieve
strategic (not tactic) control: the system has to reduce the
_ heat rate (the ratio combustible/generated power),
suggesting appropriate set - points for automatic
controllers or human operators.

At this moment, two versions (distributed and
non-distributed) of a control system for a real power
plant sited in Palencia (Spain) (Garcia, J.A. et al , 1.993)
are being implemented. This paper is focussed mainly on
the distributed one.

2. AGENTS DESCRIPTION

The proposed architecture has been designed according
to the following lines:

-« Use of mechanisms of encapsulation, isolation and
local control: each agent is an autonomous,
independent entity.

* No assumptions are made regarding agents”
knowledge or their problem-solving methods.

* Flexible and dynamic organization is allowed.

AGENT OBJECT

CONTROL

{ Mailbox Destination
~—_Policy Policy

~"Service ™ Network
~FPolicy - Usten

COMMUNICATION

Network
Model

DATABASE
/—.—\ P
Environment
hogsl)\ SeMedel)

|
|
|
1
{
1 e State Private

i

Fig. 1. Agent model

Every agent is composed of a control block, a database
(including an agent model, an environment model, the

agent state, some private objects and global data), and a
communications block (the network communications
model and a mailbox).

Any agent may include some agent goals (processes
which start when the agent is born), offered services (the
agent offers to the rest of agents a set of services, and
these services may be executed in concurrent --as an
independent process--, or non-concurrent mode), offered
primitives (a set of internal services which may modify
some of the agent's private objects) and required services
(a list with the names of the services that this agent
requires).)

One of the mayor features of these agents is that their
services (if concurrent) are executed as separated
processes, so the agent control loop can continue its job.
In this way, the same (concurrent) service can be
executed several times, each one called from a different
agent.

3. MIX MULTIAGENT PLATFORM

At the network level, coordination among agents is
carried out through specialized agents (called "yellow
pages” or YP). Whenever an agent is launched, it
registers first to YP, informing about its net address, its
offered services and the services it will request from
other agents. In the same way, agents can subscribe to
"groups”. Groups refer to dynamic sets of agents, and can
be used as aliases in service petitions. So, service
petitions can be addressed to particular agents, to every
agent in a group or to all the agents offering a service.
YP agents update continuously the information needed by
their registered agents. Therefore, these are able to
establish direct links among them, so avoiding collapse
due to YP saturation or (some) network failures.

Regarding agent communication, several primitives are
offered, including different synchronization mechanisms
(synchronous, asynchronous or deferred) and higher level
protocols, as Contract Net.

At this moment, the MIX platform (Gonzilez, J.C. et al.,
1.995) is made up of four elements:

» MSM (Multiagent System Model) C++ library, with
the low level functionality of the platform. It is a
modified version of the work carried out by
Dominguez (1.992). '

» ADL translator. ADL (Agent Description Language)
is the language designed to specify agents. ADL files
gather agents descriptions, and the translator
generates C++ files and the appropriate makefile to
obtain executables.

« CKRL ToolBox. A restricted version of CKRL
(Common Knowledge Representation Language),
developed by the ML T ESPRIT consortium (Cause,
K et al, 1.993), has been implemented to
interchange information between agents'. This
toolbox includes static and dynamic translators from
CKRL descriptions to C++ classes and objects and
vice-versa.

e Standard ADL agent definitions and CKRL
ontologies.

4. AN APPLICATION: ECONOMIC CONTROL OF
A FOSSIL POWER PLANT

A fossil power plant is a very complex process with a
large number of variables upon which operators can
actuate. The objective of this control system is to reduce
the combustible consumption while generated power is
kept constant. The first problem is that there not exists a
reliable model of the process; so the system needs to
learn how the power plant works. The second problem is
that the quality of combustible used —a mix of anthracite
and soft coal in the particular case of the power plant
where the control system is going to be installed—
changes every 5 minutes (there is a small homogenization
of the last hour combustible, so coal quality changes with
a smooth curve). This coal quality is part of the heat rate
calculation, that is the optimization variable.

" | PLANT

Acquisition
System

R Optimization
— System

T\

System

Fig: 2. Application diagram.

This last problem implies that the control system can
have access only to an indirect estimation of the real heat
rate. To solve it, a new performance criterion has to be

'The platform let us to use any other language for
intercommunication between processes. In this way, KIF
(Knowledge Interchange Format) (M. Genesereth, 1.992),
another widely used language, is being considered as the second
native language of the platform.

determined. At design time, two variables are being
analyzed to substitute the heat rate:

1.- Principal air flow to the boiler: This air flow carries
the coal powder from mills to the boiler. So if this
variable decreases, the combustible consumption
decreases whichever the coal quality is.

2.- Boiler output gas temperature: A common sense
analysis says that a lower temperature at the output of
the boiler is better than a high one. In other case, heat
is being wasted, so the plant is burning too much
coal.

In both cases, the real optimization variable will be the
ratio selected-variable/generated power, to obtain a
relative consumption. After some performance tests in
the power plant, one of both variables will be selected as
objective.

In order to obtain good quality values for the control
variables, a data acquisition system will filter the signals
that reach the control system from sensors. The
acquisition module gets 200 variables, and gives 23 to

the optimization module. This 23 variables are known as

the context vector. The optimization module will give 11
suggestions (over 11 operation variables) to controllers
or operators —the so called operation vector-. The
acquisition/filtering module is a very important part of
the whole system: reliable inputs are even more needed
that in the case of conventional control systems.

The control system (for some variables, a suggestion
system) uses fuzzy logic to obtain the operation vector
every 10 minutes. In order to make this fuzzy controller

. more accurate, the space of known states is divided in

several big areas (called macrostates). These macrostates
can be defined by experts (Velasco, J.R. et al., 1992), or
computed using fuzzy clustering techniques (Velasco J.R.
and Ventero, F.E., 1994) or a neural network. In this
case, the second approach has been used..

To create the fuzzy knowledge bases, a modified version
of the C4.5 algorithm (Quinlan, J.R., 1993) is used. This
modification creates fuzzy rules from sample data files:
to make the C4.5 function learn, the system must provide
it a set of input vectors (context vectors) and the
appropriate class for each vector. The system compares
two consecutive vectors to determine when a cost
reduction has been obtained and so, to classify the actions
in the operation vector as bad, regular or good ones.
After this classification, the algorithm creates fuzzy
control rules.

The control system has as many rule bases as
macrostates. When a new data vector is obtained, the
control system asks the fuzzy clustering function about
the appropriate macrostate. Since a given state may
belong with different degrees to several macrostates, this

function - selects the knowledge bases (KB in the
following) to be used, along with their respective validity

degree.

If the performance of the power plant is bad after several
input vectors and several suggestions, the control system
will ask the rule base generator for a new KB. This new
KB will replace the old bad one.

Finally, suggestions made by the control system are used
as set points by conventional controllers or human
operators.

5. ADL AND CKRL SPECIFICATION

For the design of this application with the MIX platform,
this distributed control system has to be seen as a set of
agents with their respective goals and services,
communicating them through exchanging messages.
Figure 3 shows a graphical description of this system
-where each main action or group of actions may be seen
as an agent with several goals/services.

PROCESS

\

Y g
e c«:mmu«)\ i \
\ daca form |
._/' -cuej sensors
| P (Acquiston)
' Cortroler v s

A “"/ ta £12
| —" Jant o el L
'\ / / 7 e gpd data u,h
. '\ / ml‘.:.
\

/m oy

) 'x,‘ / Controler
\\\‘ AN ¢ _/_/

wﬁég::77// P

’ Q_’/'/n{ ——

N\
Interface

Fig. 3. Agents description

The Acquisition agent gets data from process sensors and
gives context vectors to the optimizer upon demand. The
Optimizer will ask the Class_state agent for the
apropriate macrostate, and will use the correct(s)
Knowledge Base(s) to obtain the operation vector. The
values of the variables of this vector will be sent to
specific Controllers as set point or will be shown to
operators for a manual adjust. The optimizer agent will
ask for a new KB to the Learning system if it sees that
the cost value (the indirect heat rate) is growing up.

The MIX architecture uses ADL (Agent Description
Language) as a specification/design language. From the
ADL file, the MIX platform creates C++ agent files.
After compiling and linking these files with the libraries,
each agent will be an independent executable program
which can run in a different computer. The complete
ADL file for this application is shown in an appendix at
the end of the paper. In this section just the agent

10

definition process is going to be presented and it is going
to be focused on the optimizer agent.

The Optimizer agent has as its proper goal the
optimization of the heat rate. The pseudocode for this
goal is as follows:

Repeat for ever
Get context vector
If heat rate is bad for n times
Ask for new Knowledge Bases
Ask for macrostate(s)
Generate operation vector
Set operation points to the controllers
Tell operators manual actions
Wait delay-time

In the code, bold face lines show service petitions that
will be asked to different specialized agents: The
Acquisition agent will give the context vetctor, the
Learning agent will create new KBs, the Class_states
agent will classify the context vector and each Controller
will try to adjust the different set points.

However, at design level, the agent description only
needs to know the name of required services (it does not
have to know which agents will be available to perform
them), the name of the functions that implement the
services and goal, and the C++ file where this functions
are described. The ADL description of the Optimizer
agent is:

AGENT Optimizer -> BaseAgent

RESOURCES
REQ_LIBRARIES: "optimizer.C"
REQ_SERVICES Give_Llast_Data;
Give_RB;
Classif_State;
Set_Point;
Send_Vector
GOALS

Optimize: CONCURRENT optimize
END Optimizer

When a service is specified, input and output types must
be specified too. For instance:

AGENT Learning -> BaseAgent

RESOURCES
REQ_LIBRARIES: "learning.C"
REQ_SERVICES: Give_Histo_Classified
SERVICES

Give_RB: CONCURRENT give_rb
REQ_MSG_STRUCT powplant::Class
ANS_ MSG_STRUCT powplant::Rules
END Learning

In this case, Class and Rules are CKRL structures defined

in the CKRL file. The MIX platform provides translation
mechanisms to convert CKRL objects into C++ variables
and vice-versa. The complete CKRL file is shown in the
appendix.

6. CONCLUSIONS

Multiagent systems are proposed as an adequate
approach for the design and implementation of
distributed control systems. In particular, the multiagent
platform developed for the MIX ESPRIT-9119 project is
being used for the economic control of a fossil power
plant. Although full evaluation of the system has not been
yet finished, we can advance some preliminary
conclusions. In comparison with the conventional
(centralized) architecture previously used, the distributed
solution shows evident advantages:

» Interfaces are more simple, so speeding up the
development phase of the system life cycle.

* Control is more versatile, in the sense that this
approach facilitates the simultaneous use of several
controllers based on different techniques (with their
own errors depending on the problem state).

* If error estimation is available as part of the output of
the controilers, this information can be used to
improve system accuracy.

+ If areal time problem is faced, as the controllers have
in general different response times, the system may
decide upon the solutions at hand in any instant.

* Systems are more reliable in terms of fault tolerance
and protection against noise. 7

7. REFERENCES

Causse, K, M. Csernel and J.U. Kietz (1.993). Final
Discussion of the Common Knowledge
Representation Language (CKRL). MLT
Consortium, ESPRIT project 2154, Deliverable
D2.3.

Dominguez, T. (1.992). Definicion de un modelo
concurrente orientado a objetos para sistemas
mitltiagente. Ph.D. Thesis. ETS.L
Telecomunicacién, Universidad Politécnica de
Madrid (in spanish).

Garcia, J.A., J.R. Velasco, J.A. Castineira and J. Martin
(1.993). CORAGE: Control por Razonamiento
Aproximado y Algoritmos Genéticos. Propuesta de
Proyecto. Project proposal for PASO-PC095
CORAGE Project (in Spanish)

Genesereth, M., R. Fikes and others (1.992). Knowledge
Interchange Format, version 3.0. Reference manual.
Computer Science Department, Stanford University.

Gonzélez, J.C., JR. Velasco, C.A. Iglesias, J. Alvarez
and A. Escobero (1.995). A Multiagent Architecture
for Symbolic-Connectionist Integration. MIX
Consortium, ESPRIT project 9119, Deliverable Dt

11

Quinlan, J.R (1.993), C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, CA, USA.

Velasco, J.R., G. Ferndndez and L. Magdalena (1.992).
Inductive Learning Applied to Fossil Power Plants
Control Optimization, in Symposium on Control on
Power Plants and Power Systems", IFAC, Munich,
Germany

Velasco, JLR. and FE. Ventero (1.994). Some
Applications of Fuzzy Clustering to Fuzzy Control
Systems in 3rd Int. Conf. on Fuzzy Theory and
Technology, (P. P. Wang (ed.)), 363-366 Durham,
NC, USA.

