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Preface

RALPH KOPPERMAN,* PRABUDH MISRA,’
JACK REICHMAN,S AND AARON R. TODD?

Department of Mathematics
The City College of New York—-CUNY
New York, New York 10031

bDepartment of Mathematics
College of Staten Island-CUNY
Staten Island, New York 10301

“The Equitable Life Assurance Society
New York, New York 10019

dDepartment of Mathematics
Bernard M. Baruch College-CUNY
New York, New York 10010

The papers in this volume are based largely on talks given at the Second and Third
Conferences on Limits at the City College of New York—CUNY on July 2-3, 1985,
and June 12-13, 1987. The 1985 conference was organized by the Seminar on General
Topology and Topological Algebra of the Department of Mathematics of the City
College of New York, whereas the 1987 conference was sponsored jointly by this
Seminar and the Section of Mathematics of the New York Academy of Sciences.
Eighteen of the twenty-five speakers at these two meetings have contributed papers to
this publication.

This volume is dedicated to the memory of Eric van Douwen (1946-1987), who
was an invited speaker at the July 1985 conference. His loss has been keenly felt by all
of us. We were pleased to learn, though, that Jerry Vaughan was willing to contribute a
paper based on results that Eric and he had obtained independently and had discussed
at the 1985 conference. The paper, “‘Some Subspaces of Ordinals with Normal
Products”, appears with both their names.

In contrast to the previous meetings, the June 1987 meeting included a short open
problems session. We know of work that grew out of that session and we felt that it
would be useful to include several open problems in this volume as well.

The conferences have continued: A fourth was held at Wesleyan University on
June 16-18, 1988, and a fifth is planned at The College of Staten Island—CUNY for
June 15-17, 1989.

Organizing the meetings and editing this volume has been an exhilarating
experience, but we could not have done it without a great deal of help and support from
many others. Particular thanks go to: the Division of Science of the City College of
New York-CUNY for support of the first three meetings; the New York Academy of
Sciences for the publication of this volume; and Efua Tonge for her help at these
meetings. In addition, we are grateful to the conference participants and contributors
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to this volume for the cooperative and productive atmosphere surrounding the meetings
and the editorial process. Last, but not least, special thanks are due to the referees for
their careful reviews of submitted articles. Although we are not naming them, their
constructive criticisms and willingness to review papers within our deadline constraints
have been very much appreciated by all of us on the editorial board.
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Orientation of Orbits in Flows

J. M. AARTS

Department of Mathematics
Ohio University
Athens, Ohio 45701
and
Faculty of Mathematics and Informatics
Delft University of Technology
Delft, the Netherlands

INTRODUCTION
The basic facts needed in the sequel are presented in this section. For the notions
and results not discussed here, the reader is referred to reference 6 (also see references
2,4,7,and 8). All spaces under consideration are Hausdorff.
IR denotes the space of the real numbers. A flow on a topological space X is a
continuous mapping m: X x IR — X such that the following statements hold for all
x & Xand foralls, t & IR:

(i) #(x,0) = x, and
(i) w(w(x, s),8) = w(x,s + 1).

For each x & X, the mapping 7,: IR — X'is defined by 7,(1) = #(x, 1). It is called the
motion through x. The motion m is continuous, of course, and its image {r (1) |t € IR}
is called the orbit of x. The orbit of x is denoted by I'(x).

A point x in a flow is said to be moving if, for some s and ¢ in IR, n(x, 5) # n(x, ¢),
that is, if it is not a rest point. If a moving point x is periodic, its orbit I'(x) is
homeomorphic to the circle 8'. It is important to observe in this case that the motion
#.. IR — S' is a so-called covering map. (See reference 3 or 5 for information
regarding covering maps.) If the moving point x is nonperiodic, its motion =, is a
continuous bijection. In this case, the orbit I'(x) may look quite complicated. For
example, consider the irrational flow on the torus T> = S x §!, which for an irrational
number « is defined by,

w(z, w, t) = (z exp 2wit, w exp 2miat),

where (z, w) € T?and ¢t € IR. For each point y = (z, w) & T?, the orbit I'(y) is a
dense subset of T2 The motion m, is neither a topological embedding nor a covering
map. .
The flows m: X x IR — X and p: ¥ x IR — Y are said to be topologically equivalent
if there is a homeomorphism h: X — Y that maps each orbit of = onto an orbit of the
flow p and that preserves the orientation of orbits. This definition is somewhat
superfluous. The point is that a homeomorphism h: X — ¥ that maps orbits of = onto

“Dedicated to Yukihiro Kodama on his sixtieth birthday.
1
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orbits of the flow p automatically either preserves or reverses the orientation of each
orbit. We will prove this result according to the following outline. First, we consider the
case where the point x is moving, but nonperiodic. We consider the map f = pyigoho
.. [R — IR. As h(x) also is nonperiodic, the mapping f is well defined. It can easily be
seen to be bijective. However, a quite intricate argument is needed to show that fis a
homeomorphism. Following this, we discuss the case where x is a periodic and moving
point. Here, the orbit I'(x) is homeomorphic to S' and, as we have seen, the motion
x: IR — T'(x) is a covering map. As h(x) also is periodic and moving, the map
Pty IR — T'(h(x)) is a covering map too. From the general theory of covering maps, it
follows that the map h|I'(x): I'(x) — T'(h{x)) has a lift f: IR — IR, which is a
homeomorphism. The homeomorphism h is said to be orientation preserving if the
homeomorphism f, defined above, is increasing for each moving point.

As previously stated, the proof that f is a homeomorphism is quite complicated in
the nonperiodic case. In references 1 and 6, use of Sierpinski’s theorem—stating that a
continuum cannot be partitioned nontrivially into countably many closed sets—is
made. In reference 9, the iocal product structure of a flow at its moving points is
invoked. The proof of THEOREM 1 (to be presented later) is, in contrast with these
proofs, a quite straightforward application of the Baire category theorem. Thus, the
methods of proof developed here can be used to obtain new proofs of some results in
reference 9. This is illustrated in THEOREM 2.

ORIENTATION

We first define the parametrization of orbits of moving points. We distinguish
between periodic and nonperiodic motions.

DEFINITION 1. Suppose m: X x IR — X is a flow. Let x be 2 moving point. If the
point x is periodic, then any covering map IR — T'(x) is called a parametrization of
T'(x). If the point x is nonperiodic, then any continuous bijective map IR — T'(x) is
called a parametrization of I'(x).

EXAMPLE . Let x be a moving point in a flow =. The motion =, as well as the
mappings ¢ ~ r,(2t) and ¢ » 7, (—!) are parametrizations of I'(x).

Parametrizations are locally bijective. The most important property of parametri-
zations—the so-called covering path property—is expressed by THEOREM 1.

TaEOREM 1. Suppose x is a moving point in a flow. Let p: IR — T'(x) be any
parametrization uf ['(x). Suppose j: [0, 1] — I'(x) is a continuous map. Then, for each
y € IR such that p(y) = j(0), there exists a unique continuous mapj: [0, 1] — IR such
that j(0) = pand pej =j.

The map ] is called a lifting or a covering path of j.

In the nonperiodic case, p~'(j(0)) consists of one point only and the conclusion of
THEOREM 1 can be strengthened as follows: there exists a unique map j: [0, 1] — IR
such that p o j = j. In passing, also note that the dumbbell and the figure eight are
curves that lack the arc lifting property. Thus, for this result, we need the hypothesis
that T'(x) comes from a flow.

The proof o THEOREM 1 will be presented in the next section.

Now, using [HEOREM 1, we shall show that the parametrizations of an orbit fall
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into two classes. This will enable us to define orientations. The following is a
preparatory lemma.

LeMMA 1. Suppose that x is a moving point in a flow. Suppose that both p, and p,
are parametrizations of I'(x). Then, for each a, and a, such that p,(a,) = p,(a,), there
is a unique homeomorphism h: IR — IR such that p, = p, e hand h(a,) - a;.

Proof: Let t € IR. By THEOREM 1, the map p,| [a,, £], which is the mapping p,
restricted to {a,, ], has a unique lifting f, such that p, = p, o f, and f,(a;) = a,. Now,
h(?) is defined by h(¢) = f,(¢). It is casily seen that h is well defined and thatp, = p, o h.
As p, and p, are locally bijective, h is bijective. As h maps intervals onto intervals, it is a
homeomorphism.

DEFINITION 2. Let x be a moving point in a flow. Two parametrizations p, and p, of
I'(x) are called equivalent if there is an increasing homeomorphism: IR — IR such that
p.=pieh

It is not hard to see that the relation, defined in DEFINITION 2, is an equivalence
relation.

EXAMPLE 2. Let x be a moving point in a flow. The motion =, and the
parametrization p,, defined by p,(r) = 7,(2t), are equivalent. With h(¢) ~ 2t, we have
p: = 7, o h. However, the motion r, and the parametrization p,, defined by p,(¢) =
x(—1), are not equivalent. This can be seen as follows: if h is a homeomorphism such
that p, = 7, o h, then w,(~1) = m,(h(#)) for all ¢+ & IR. In the case where x is
nonperiodic, , is bijective and it follows that h(¢) = —¢ for all t &€ IR. In the case
where x is periodic {rom the covering property of x,, it follows that h(#) ~ —¢ + C for
some C & IR. In both cases, h is decreasing.

The following proposition is now clear.

PROPOSITION 1. Suppose x is 2 moving point in a flow. There are then two
equivalence classes of parametrizations.

DEFINITION 3. Let x be a moving point in a flow. An equivalence class of
parametrizations is called an orientation. A parametrization that is equivalent to the
motion =, is called a forward parametrization of I'(x). The equivalence class of
forward parametrizations of I'(x) is called the positive orientation of I'(x).

The proof of the following lemma’is obvious.

LEMMA 2. Suppose that #: X x IR —— X and p: ¥ x IR — Y are flows. Suppose
h: X — Y is a homeomorphism that maps orbits of = onto orbits of p. Suppose x is a
moving point of X, For all parametrizations p, and p, of x, the maps hep, and hop,are
parametrizations of h(x). Moreover, p, and p, are equivalent if and only if h o p; and
h o p, are equivalent.

From LEMMA 2, it follows that h induces a mapping between the crientations of x
and h(x). In this way, we can give the following equivalent definition of orientation-
preserving homeomorphism.

DEFINITION 4. Suppose that m; X x IR — X and p: ¥ x IR — Y are flows. Suppose
h: X — Y is a homeomorphism that maps orbits onto orbits. Then, h is said to be
orientation preserving if the positive oricntation of I'(x) for each moving point x is
mapped to the positive orientation of I'(h(x)). A topological equivalence of = to p is a
homeomorphism h: X — Y that maps orbits onto orbits and preserves orientation.
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To conclude this section, we give an alternative proof of a result of Ura (cf
reference 9). We formulate the result as follows.

THEOREM 2. Suppose h is a topological equivalence of the flow = on X to the flow p
on Y. Suppose x & X is a moving point. Then, there exists-a unique homeomorphism
7,: IR — IR such that

hom, =Py ° T,
The homeomorphism r_ is increasing and r,(0) = 0.
Proof: We consider the following diagram:
» R
: l

R ‘{:» I, (x) = T, (h(x))

Both 7, and py,, are forward parametrizations. As h preserves the orientation, how, 1s
a forward parametrization as well. Because b o 7,(0) = h(x) = py,(0), then (according
to LEMMA 1) there is a unique homeomorphism r,: IR — IR such that he x, = py,y0 7,
and 7,(0) = 0. As p,,, and h o =, are equivalent, r, is increasing.

PROOF OF THEOREM 1

In proving THEOREM 1, we need to distinguish between periodic and nonperiodic
motions. There are three parts: the periodic case, the case of p = ,, and the genéral
nonperiodic case.

The Periodic Case

In this case, THEOREM | expresses the covering path property of covering maps (see
reference 3 or 5). However, before embarking upon the nonperiodic case, we first have
to prove a lemma.

LEMMA 3. Suppose x is a moving point in a flow . Let p be any parametrization of
T'(x). If C is a nonempty and compact subset of I'(x), then there exists a nonempty and
relatively open subset U of C such that p~'(U) is bounded.

Proof: This is a straightforward application of Baire’s category theorem. Write
H, = p([—nmn)) N C,wheren = 1,2,.... As UI{H,ln = 1,2,...} = C, there is a
nonempty and relatively open subset U of C such that U C H, for some n.

As a corollary, we have the following well-known theorem.

THEOREM 3. Let x be a point in a flow «. If the orbit I'(x) is compact, then x is
periodic.
Proof: We assume that x is moving, but not periodic, and derive a contradiction.

By LEMMA 3, there is a nonempty open subset U of T'(x) such that V = z;'(U) is
bounded. For any 1 & IR, we have #'(U) = 7'(x,(V)) = 7, (V + 1); hence, we can see :
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that {'(U) |t & IR} is a cover of I'(x). By compactness, there is a finite subcover. As 7,
is bijective, it follows that IR is covered by finitely many sets of the form V + +,1 € IR,
However, if this is so, then V cannot be bounded.

The Nonperiodic Case of p = w,

As 7.: IR — I'(x) is bijective, ] necessarily is of the form J: ;' o j. This proves the
unicity of j. However, the problem here is to prove that j is continuous. This amounts to
showing that j([0, 1]) is a bounded set because =, restricted to clg j([0,1]) is a
topological embedding in that case. Let ¥ denote the collection of all open subsets V of
[0, 1] such that J(V) is a bounded subset of IR. The fact that ¥ is nonempty may be
seen as follows. By LEMMA 3, there is a nonempty and relatively open subset U of
j([0, 1]) such that =7 '(U) is bounded. By continuity of j, there is a nonempty and open
V in [0, 1] that by j is mapped into U. It follows that (V) is bounded and that V is
nonempty. We write W = (U Vand D = [0, ]\W. Because j|V is continuous for each
V € Vand W = UV, the map j| W is continuous.

Now, we will show that if C is any interval open in W, then C € V. As j|W is
continuous, E(C) is an interval in IR. We shall show that J(C) is bounded. Assume that
J(C) is not bounded from above. Then, «,(j(C)) C j([0, 1]). Because j([0, 1]) is
compact, the set ©(x) of positive limit points is nonempty and Q(x) C j([0,1]) C
I'(x). As Q(x) is invariant, we have I'(x) C 2(x). Hence, I'(x) = j([0, 1]) and so I'(x)
is compact. By THEOREM 3, x is periodic, which is a contradiction.

We also take a close look at the set D. From the definition of ¥ and LEMMA 3, it
follows that D is nowhere dense. Furthermore, no point of D is isolated. This can be
proved as follows. We assume that z & D is isolated and that there are adjacent
intervals C, and C, that are_ contained in W. Then, for i = 1, 2, we have j(z) ©
el C) C el j(C) = a =Gy - m(cl J(C)). The last equality holds because
¢l j(C,) is compact (i = 1, 2). It follows that j(z) € ¢lj(C,), i = 1, 2, and that C, U {z}
U C, & V. Thus, z & D, which is a contradiction. Then, to complete the second part
of the theorem, we show that D = @&. Assuming that this is not true, we can apply
LEMMA 3 once more to find an open interval C, in [0, 1] such that C, O D # @ and
f(C; (M D) is bounded. Let F be the smallest closed interval containing j(C; (N D) and
let E be the smallest closed interval in [0, 1] such that C; M D C E. As D has no
isolated points, E is nondegenerate. Now, each component C, of E\D is an interval
contained in W. It follows that 5(C4) is bounded. As both endpoints of C, are in D,
J(Co) C F. Thus J(E) C F and int E € V. However, int E (\ D # @, which is a
contradiction. :

The General Nonperiodic Case

Let p be any parametrization. We consider the diagram

[0,1] — R «—w---R
~ -
\\\\T,‘ [ ’,,r”
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The map h is of the form x;' o p. We shall show that h is a homeomorphism. As h is
bijective, it is sufficient to show that h maps intervals to intervals. Let [a, b] be any
interval in IR. From the second part of the proof, it follows that p]|[a, b) has a lift that
necessarily equals h][a, 5]. It follows that h~! o ] is a lift for j.

LOCAL FLOWS

In this section, we indicate how the results of the preceding sections can be adapted
for local dynamical systems or local flows (see reference 9). A local flow (called a
partial flow in reference 6) is a continuous mapping =: D — X, where D is an open
subset of X x IR of the form D = U{{x} x J(x)|x € X} with, for every x € X, J(x)
being an open interval in IR containing 0. The mapping r satisfies conditions (i) and
(ii) stated in the INTRODUCTION plus a maximality condition.

Now, suppose m: D — X is a local flow. Let x & X. In case J(x) = IR, the
definitions of the parametrization and the orientation of I'(x) are as listed in the second
section. It is to be observed that orbits of periodic points are included in this case.

DEFINITION. Suppose =: D — X is a local flow. Suppose x is a nonperiodic point.
Any continuous bijective map J(x) — I'(x) is called a parametrization of I'(x).

There is the following supplement of THEOREM 1.

THEOREM 4. Suppose x is 2 nonperiodic point in a local flow. Let p: J(x) — I'(x) be
any parametrization of I'(x). Suppose j: [0, ] — I'(x) is a continuous map. Then,
there exists a unique and continuous map j: [0, 1] — J(x) such that po] = j.

Therefore, only minor adaptations are required in the second section. In LEMMA 1,
DEFINITION 2, and THEOREM 2, IR must be replaced by J(x) throughout. In LEMMA 2
and DEFINITION 4, X x IR must be replaced by D and ¥ x IR must be replaced by E. In
the proof of THEOREM 2, IR must be replaced by J(x) and J(h(x)).

In the previous section, the following adaptations also have to be made. The last
line of the conclusion of LEMMA 3 must be replaced by the line, “such that p~'(U) has
compact closure in J(x)” (instead of “p~'(U) is bounded”). At the beginning of the
proof of THEOREM 3, the following observation must be inserted: ““As I'(x) is compact,
the positive and negative limit sets are nonempty and J(x) = [R.” ‘

Finally, in the second and third part of the proof of THEOREM 1 (the case of p = =,
and the general nonperiodic case), IR must be replaced by J(x) throughout and
“bounded” must be interpreted as having a compact closure in J(x).
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On the Inequality L(X) < 2°%
and Related Topics

GEORGE BALOGLOU*?

Department of Mathematics
University of Kansas
Lawrence, Kansas 66045

A discrete subspace of a topological space X is a subset D of X such that all points of D
are isolated in its relative (subspace) topology. In other words, for each z & D, there
exists an open set U, C X such that U, (N D ~ {z}. For example, the set of the integers
forms a discrete subspace of the real line R in its usual (interval) topology.

It is a reasonable guess that any large topological space with a “fair number” of
open sets must have relatively large discrete subspaces. Questions of this nature are
best formulated and answered in the context of (topological) cardinal functions. In the
present case, the following cardinal function is required.

DErFINITION 1. The spread s(X) of a topological space X is defined as the supremum
of cardinalities of discrete subspaces of X:

s(X) =sup {{D{: D C X, D is discrete}.

The given definition generates a question: must there exist a discrete subspace D,
of X such that | Dg| = s(X)? This natural question has turned out to have a deep answer
(cf. references 25 and 35).

For the real line R, we have |R| = 2° and s(R) = w; hence, |R| = 2*®), In order to
see that s(R) = w, let us assume that D = {x;: i/ & I} is an uncountable discrete
subspace of R. For each x; & D, there then exists a positive integer n, such that D M

I; = {x,}, with
I =|x; ——,x; +—|.
n n

Because there exist only countably many integers and [ is uncountable, there must
exist an uncountable subset J of I and an integer m such that n; = m for all j € J. It
follows that the intervals

1 1
’j=(xj"ﬁij+ﬁ)

must be pairwise disjoint; hence, there exist uncountably many rational numbers,
which is a contradiction. (This proof is an application of the so-called “pigeonhole
principle”.) ’
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