Miroslaw Malek
Manfred Reitenspief3
Jorg Kaiser (Eds.)

LNCS 3335

Service Availability

First International Service Availability Symposium, ISAS 2004
Munich, Germany, May 2004
Revised Selected Papers

Q Springer

Miroslaw Malek Manfred ReitenspieB
Jorg Kaiser (Eds.)

Service Availability

First International Service Availability Symposium, ISAS 2004
Munich, Germany, May 13-14, 2004
Revised Selected Papers

@ Springer

Volume Editors

Miroslaw Malek

Humboldt-Universitdt Berlin

Institut fiir Informatik Rechnerorganisation und Kommunikation
Unter den Linden 6, 10099 Berlin, Germany

E-mail: malek @informatik.hu-berlin.de

Manfred Reitenspief

Fujitsu Siemens Computers

Munich, Germany

E-mail: manfred.reitenspiess @fujitsusimens.com

Jorg Kaiser

University of Ulm

Department of Computer Structures, Faculty of Computer Science
James-Franck-Ring, 89069 Ulm, Germany

E-mail: kaiser@informatik.uni-ulm.de

Library of Congress Control Number: 2004117793

CR Subject Classification (1998): C.2, H4, H.3,1.2.11,D.2, H.5, K.4.4, K.6

ISSN 0302-9743
ISBN 3-540-24420-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11378730 06/3142 543210

Program Chair’s Message

The 1st International Service Availability Symposium (ISAS 2004) was the first
event of its kind where a forum was provided for academic and industrial re-
searchers and engineers who focus on next-generation solutions where services
will dominate and their dependability will be expected and demanded in virtu-
ally all applications.

As with the birth of a new baby so it was with the first symposium: It was
somewhat an unpredictable event and we did not really know how many paper
submissions to expect. We were nicely surprised with 28 (including three invited
ones), considering the rather specialized topic and short lead time to organize
this meeting. We will broaden the scope of the Symposium next year by making
it clear that anything that concerns computer services might be worthwhile
presenting at ISAS to a good mix of academic and industrial audiences.

A significantly increased interest in dependable services should not be a sur-
prise as we are expecting a paradigm shift where “everything” may become a
service. Computer evolution began with data types and formats. Then the con-
cept of objects was discovered and transformed later into components. A set of
components (including a set of one as well) forms a service and this concept will
dominate computing, ranging from sensor networks to grid computing, for the
foreseeable future. In order to make services a viable replacement and/or exten-
sion to existing forms of computing they have to be highly available, reliable and
secure. The main computer and communication companies, service providers,
and academics are searching for innovative ways of increasing the dependabil-
ity of services that are growing in complexity and will use mainly distributed
resources. This trend will continue as computer services are bound to pervade
all aspects of our lives and lifestyles. No matter whether we call the computing
services of the future “autonomic,” “trustworthy” or simply “reliable/available”
the fact of the matter is that they will have to be there seven days a week, 24
hours a day, independent of the environment, location and the mode of use or
the education level of the user. This is an ambitious challenge which will have to
be met. Service availability cannot be compromised; it will have to be delivered.
The economic impact of unreliable, incorrect services is simply unpredictable.

All submissions were subject to a rigorous review process. Hence only 15 pa-
pers were accepted. Unfortunately, many good, worthwhile manuscripts did not
make it into the program due to the high quality threshold set up by the Program
Committee. Each paper was reviewed by three Program Committee members.
I would like to thank wholeheartedly our PC members whose hard work was
exemplary. Those who spent time at the virtual PC meeting deserve an addi-
tional recognition. Qur paper selection went extremely smoothly thanks to the
tremendous effort of the reviewers and solid support from my secretary Sabine
Becker and my Ph.D. student Nikola Milanovic of Humboldt University Berlin.
Also, Prof. Joerg Kaiser from the University of Ulm deserves a special credit

VIII Organization

for editing the symposium’s proceedings and preparing the Springer volume of
Lecture Notes in Computer Science. I thank all of them very much. And last
but not least I would like to express my gratitude to Manfred Reitenspie3 whose
involvement and support were very helpful throughout the program preparation
process.

The attendees enjoyed the final program as well as the lively presentations,
got involved in many heated discussions, struck up new frienships, and, hopefully,
got inspired to contribute to next year’s symposium to be held in Berlin on April
25-26, 2005.

Munich, May 13, 2004 ISAS 2004 Program Chair
Miroslaw Malek

Humboldt—Universitat Berlin

Institut fir Informatik

malek@informatik.hu-berlin.de

Open Specifications for Service Availability™

Manfred Reitenspief!, ISAS 2005 General Chair

The continuous availability of services has always been a metric for the success of
telecommunications applications: the phone system must always be operational.
Today, IP data network providers and enterprise IT departments face the same
requirements. Service availability architectures and feature sets have tradition-
ally been highly proprietary and customized to individual telecom equipment
provider and application requirements. Each application and hardware platform
had to be designed to fit with the specific service availability environment.

Today’s market dynamics require companies to be able to raise the bar and
meet new and aggressive time-to-market goals. By standardizing the interfaces
for high-availability functions and management, the Service Availability Forum
aims to create an open, off-the-shelf infrastructure for implementers and opera-
tors of highly available services.

The Service Availability Forum is unifying functionality to deliver a con-
sistent set of interfaces, thus enabling consistency for applications developers
and network architects alike. This means significantly greater reuse and a much
quicker turnaround for the introduction of new products.

As the telecom and IT market recovery accelerates, meeting both functional
and time-to-market goals will be essential for success. The Service Availability
Forum offers a way forward for maximizing time-to-market advantage through
the adoption of a consistent and standardized interface set. The set of open
standard software building blocks includes functions for managing the hardware
platform components (Hardware Platform Interface), high-availability service
functions used by applications (Application Interface Specification), and func-
tions for their associated management (System Management Services).

The International Service Availability Symposium 2004 brought together sci-
entists, technical experts and strategists to discuss availability under a number
of aspects:

Availability in the Internet and databases

High availability based on Service Availability Forum specifications
Measurements, management and methodologies

Networks of dependable systems

Standards and solutions for high availability

The Service Availability Forum is a consortium of industry-leading commu-
nications and computing companies working together to develop and publish
high availability and management software interface specifications. The Service
Availability Forum then promotes and facilitates specification adoption by the
industry.

O e o0 BT

! president Service Availability Forum, Fujitsu Siemens Computers, Munich, Ger-
many; manfred.reitenspiess@fujitsu-siemens.com

Table of Contents

ISAS 2004

Architecture of Highly Available Databases
Sam Drake, Wei Hu, Dale M. Mclnnis, Martin Skéld,
Alok Srivastava, Lars Thalmann, Matti Tikkanen,
Dystein Torbjornsen, Antont Wolski

Data Persistence in Telecom Switches
ST AT, vms virmmims 6 ii6is §i0sMS 6 50E FBERBEEE SWNG EHT SHAND §EE 8

Distributed Redundancy or Cluster Solution? An Experimental
Evaluation of Two Approaches for Dependable Mobile Internet Services
Thibault Renier, Hans—Peter Schwefel, Marjan Bozinovski,
Kim Larsen, Ramjee Prasad, Robert Seidl.........................

OpenHPI: An Open Source Reference Implementation of the SA Forum
Hardware Platform Interface
Sean DAGUE . ..ottt

Quality of Service Control by Middleware
Heinz Reisinger e e o EE HE A SR IE SR LR NTImE S BE e

Benefit Evaluation of High—Availability Middleware
JUrgen NEISEs . coivvanssnmnsosinmsns smssmensessss smecnonsannsnan

A Measurement Study of the Interplay Between Application Level
Restart and Transport Protocol
Philipp Reinecke, Aad van Moorsel, Katinka Wolter

Service-Level Management of Adaptive Distributed Network
Applications
K. Ravindran, Xiliang Liuooiiiiiiiiiinie i ..

A Methodology on MPLS VPN Service Management with Resilience

Constraints
Jong-Tae Park, Min—-Hee Kwonccooviiiiiiiieoo..

Higly—Available Location-Based Services in Mobile Environments
Peter Ibach, Matthias Horbankcccooiiiiiiaaiiiionnn,

X Table of Contents

On Enhancing the Robustness of Commercial Operating Systems

Andréas Johansson, Adina Sdrbu, Arshad Jhumka, Neeraj Suri

A Modular Approach for Model-Based Dependability Evaluation of a
Class of Systems
Stefano Porcarelli, Felicita Di Giandomenico, Paolo Lollini,

Andrea Bondavalli 0 i,

Rolling Upgrades for Continuous Services

Antoni Wolski, Kyosti Lathoc.c.oouuiieeeennnnnnn..

First Experience of Conformance Testing an Application Interface
Specification Implementation

Francis Tam, Kari Ahvanainen ST T 50 S s o 1 i 0 w0 2

On the Use of the SA Forum Checkpoint and AMF Services

Stéphane Brossier, Frédéric Herrmann, Eltefaat Shokri

Author Index ...,

Architecture of Highly Available Databases

Sam Drake!, Wei Hu?, Dale M. McInnis?, Martin Skold*, Alok Srivastava?,
Lars Thalmann®, Matti Tikkanen, @ystein TorbjgrnsenS, and Antoni Wolski’

1 TimesTen, Inc, 800 W. El Camino Real, Mountain View, CA 94040, USA
. drake@timesten.com
2 Oracle Corporation, 400 Oracle Parkway, Redwood Shores, CA 94065, USA
{wei.hu, alok.srivastava}@oracle.com
3 IBM Canada Ltd., 8200 Warden Ave. C4/487, Markham ON, Canada L6G 1C7
dmcinnis@ca.ibm.com
4 MySQL AB, Bangérdsgatan 8, S-753 20 Uppsala, Sweden
{mskold, lars}@mysqgl.com
5 Nokia Corporation, P.O.Box 407, FIN-00045 Nokia Group, Finland
matti.j.tikkanen@nokia.com
6 Sun Microsystems, Haakon VII gt 7B, 7485 Trondheim, Norway
oystein. torbjornsen@sun.com

7 Solid Information Technology, Merimiehenkatu 36D, FIN-00150 Helsinki, Finland
antoni.wolski@solidtech.com

Abstract. This paper describes the architectures that can be used to build highly
available database management systems. We describe these architectures along
two dimensions — process redundancy and data redundancy. Process redun-
dancy refers to the management of redundant processes that can take over in
case of a process or node failure. Data redundancy refers to the maintenance of
multiple copies of the underlying data. We believe that the process and data re-
dundancy models can be used to characterize most, if not all, highly available
database management systems.

1 Introduction

Over the last twenty years databases have proliferated in the world of general data
processing because of benefits due to reduced application developments costs, pro-
longed system life time and preserving of data resources, all of which translate to
cost-saving in system development and maintenance. What makes databases perva-
sive is a database management system (DBMS) offering a high-level data access
interface that hides intricacies of access methods, concurrency control, query optimi-
zation and recovery, from application developers. During the last ten years general-
ized database systems have also been making inroads into industrial and embedded
systems, including telecommunications systems, because of the significant cost-sav-
ings that can be realized.

As databases are deployed in these newer environments, their availability has to
meet the levels attained by other components of a system. For example, if a total
system has to meet the 'five nines' availability requirements (99.999%), any single
component has to meet still more demanding requirements. It is not unusual to require
that the database system alone can meet the 'six nines' (99.9999%) availability

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 1-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 S. Drake et al.

requirement. This level of availability leaves only 32 seconds of allowed downtime
over a span of a year. It is easy to understand that under such stringent requirements,
all failure-masking activities (switchover, restart etc.) have to last at most single
seconds rather than minutes. Such databases are called Highly Available (HA)
Databases and the systems to facilitate them are called highly available database
management systems (HA-DBMS).

An HA-DBMS operates in a way similar to HA applications: high availability is
achieved by process redundancy—several process instances are running at the same
time, typically, in a hardware environment of a multi-node cluster. In addition to one
or more active processes (Actives) running a service, there are standby processes, or
redundant active processes, running at other computer nodes, ready to take over
operation (and continue the service), should the active process or other encompassing
part fail (Standbys). Database processes involve data whose state and availability is
crucial to successful service continuation. Therefore we talk about data redundancy,
too, having the goal of making data available in the presence of failures of compo-
nents holding the data. Models of process and data redundancy applied in highly
available databases are discussed in this paper.

Product and company names that are used in this paper may be registered trade-
marks of the respective owners.

2 HA-DBMS for Building Highly Available Applications

In addition to the database service itself, a highly available database brings another
advantage to the HA framework environment. Just as a traditional database system
frees developers from mundane programming of data storage and access, an HA-
DBMS frees the developers of HA applications from some low level HA program-
ming. To illustrate this, let us have a look at two situations. In Fig. 1, an application is
running in an HA framework such as the SA Forum’s Availability Management
Framework (AMF) [1].

application
checkpoint

AlS-compliant _
interface

Node A (active) Node B (standby)

Fig. 1. An application running within AMF

Architecture of Highly Available Databases 3

Assume that the application is run in an active and a standby component (process).
The application components are SA-aware meaning that they are connected to AMF
in a way following the SA Forum Application Interface Specification (AIS) [1].

One demanding aspect of HA programming is to make sure that the application
state is maintained over failovers. To guarantee this, application checkpointing has to
be programmed into the application. The SA Forum AIS, for example, offers a check-
point service for this purpose. Decisions have to be made about what to checkpoint
and when. Also the code for reading checkpoints and recovering the application states
after a failover has to be produced.

Another situation is shown in Fig. 2. In this case, the application uses the local
database to store the application state, by using regular database interfaces.

Database
interface

AlS-compliant -+
interface

Node A (active) Node B (standby)

Fig. 2. A database application running within AMF

Because we deal with an HA-DBMS here, the latest consistent database state is
always available after the failover at the surviving node. It is the database that does all
the application checkpointing in this case. All this happens in real time and transpar-
ently. Additionally, as database systems operate in a transactional way preserving
atomicity and consistency of elementary units of work (transactions), the database
preserves transactional consistency over failovers, too. This way, an HA application
programmer is freed from complex checkpoint and recovery programming. By
bringing another level of abstraction into high-availability systems, HA-DBMS makes
it easier to build highly available applications.

It should be noted, however, that the situation pictured in Fig. 2 is not always
attainable. The application may have hard real-time (absolute deadlines) or soft real-
time latency requirements that cannot be met by the database. Failover time of the
database may be a limiting factor, too, if failover times below 100 ms are required.
Finally, the program state to be preserved may not yield to database storage model.
Nevertheless, the more application data is stored in a database, the more redundancy
transparency is achieved.

4 S. Drake et al.

3 HA Database Redundancy Models

Highly available database systems employ a number of redundancy concepts. All HA-
DBMS:s rely on having redundant database processes. When a database process dies
(e.g., due to node failure), another database process can take over service. To provide
correctness, each redundant process must see the same set of updates to the database.
There are basically two means of ensuring this: one technique, replication, relies on
the database processes to explicitly transfer updates among each other. Depending on
the implementation, each replica can store its copy of the data either in main-memory
or on disk. Replication is not exclusively done between individual databases. In dis-
tributed databases, one database is managed by several database processes on differ-
ent nodes, with possible intra-database replication between them.

An alternate means for ensuring that all the redundant database processes see the
same set of updates to the database is to rely on a shared disk system in which all the
processes can access the same set of disks. Since all the processes can access the same
set of disks, the database processes do not need to explicitly replicate updates.
Instead, all the processes always have a single, coherent view of the data. Note that a
shared disk system also has redundancy. However, it is built-in at lower levels — e. g.,
via RAID or by network-based remote mirroring.

The two approaches introduced above may be mapped to two known general
DBMS architectures: shared-nothing and shared-disk (8], respectively. In this paper
we take a more focused point of view on DBMS architectures: we concentrate exclu-
sively on means to achieve high availability.

Several redundancy models are possible in an HA-DBMS and these are defined
below. We distinguish between process redundancy which defines availability of the
database processes and data redundancy which specifies, for replication-based solu-
tions, the number of copies of the data that are explicitly maintained. Both process
redundancy and data redundancy are necessary to provide a HA Database Service.

3.1 Process Redundancy

Process redundancy in an HA-DBMS allows the DBMS to continue operation in the
presence of process failures. As we’ll see later, most process redundancy models can
be implemented by both shared-disk and replication-based technologies.

A process which is in the active state is currently providing (or is capable of pro-
viding) database service. A process which is in the standby state is not currently pro-
viding service but prepared to take over the active state in a rapid manner, if the cur-
rent active service unit becomes faulty. This is called a failover. In some cases, a new
type of process, a spare process (or, Spare) may be used. A spare process may be
implemented as either a running component which has not been assigned any work-
load or as a component which has been defined but which has not been instantiated.
A spare may be elevated to Active or Standby after proper initialization.

Process redundancy brings the question of how (or if) redundancy transparency is
maintained in the HA-DBMS. Of all running processes, some may be active (i.e.
providing full service) and some not. In the case of failovers active processes may
change. The task of finding relevant active processes may either be the responsibility of
applications, or a dedicated software layer may take care of redundancy transparency.

Architecture of Highly Available Databases 5

3.2 Data Redundancy

Data redundancy is also required for high availability. Otherwise, the loss of a single
copy of the data would render the database unavailable. Data redundancy can be
provided at either the physical or the logical level.

3.3 Physical Data Redundancy

Physical data redundancy refers to relying on software and/or hardware below the
database to maintain multiple physical copies of the data. From the perspective of the
database, there appears to be a single copy of the data. Some examples of physical
data redundancy include: disk mirroring, RAID, remote disk mirroring, and replicated
file systems.

All these technologies share the common attribute that they maintain a separate
physical copy of the data at a possibly different geography. When the primary copy of
the data is lost, the database processes use another copy of the data. These technolo-
gies can differ in terms of the failure transparency that is supported. Disk mirroring
and RAID, for example, make physical disk failures completely transparent to the
database.

Physical data redundancy is frequently combined with process redundancy by
using a storage area network. This allows multiple nodes to access the same physical
database. If one database server fails (due to a software fault or a hardware fault), the
database is still accessible from the other nodes. These other nodes can then continue
service.

3.4 Logical Data Redundancy Using Replication

Logical data redundancy refers to the situation where the database explicitly main-
tains multiple copies of the data. Transactions applied to a primary database D are
replicated to a secondary database D’ which is more or less up-to-date depending on
the synchrony of the replication protocol in the HA Database. In addition to inter-
database replication, intra-database replication is used in distributed database systems
to achieve high availability using just one database. Note that we speak about replica-
tion in general terms since the replication scheme is vendor specific (based on the
assumption that both database servers are from the same vendor). The replication can
be synchronous or asynchronous, be based on forwarding logs or direct replication as
part of the transaction, transactions can be batched and possibly combined with group
commits. The method chosen depends on the database product and the required level
of safeness [2). With a I-safe replication (“asynchronous replication”) transactions are
replicated after they have been committed on the primary. With a 2-safe replication
(“synchronous replication™) the transactions are replicated to the secondary, but not
yet committed, before acknowledging commit on the primary. With a 2-safe commit-
ted replication transactions are replicated and committed to the secondary before
acknowledging commit on the primary. In the very safe replication all operations but
reads are disabled if either the primary or the secondary becomes unavailable. An
overview 1-safe and 2-safe methods is given in [14]. Various optimizations are pro-
posed in [5],[4], [10] and [21]. Although most of the work on safeness-providing
methods has been done in the context of remote backup, the results are applicable to
in-cluster operation too.

6 S. Drake et al.

4 Data Redundancy Models

For the rest of this paper, data redundancy refers to logical data redundancy. It repre-
sents the number of distinct copies of data that are maintained by the database proc-
esses themselves via replication. It does not count the copies that may be maintained
by any underlying physical data redundancy models. For example, two copies of the
data that is maintained by a disk array or by a host-based volume manager would be
counted as one copy for the sake of this discussion, while two copies of the data
maintained by the database would count as two. Note that in both cases, the loss of
one copy of the data can be handled transparently without loss of availability.

We discuss data redundancy models in detail first because this is an area that is
fairly unique to HA-DBMSes.

4.1 Database Fragments, Partitioning, and Replication of Fragments

To define the data redundancy models we need to define what we are actually repli-
cating, i.e. database fragments'. Database fragmentation is a decomposition of a
database D into fragments P;...P, that must fulfill the following requirements:

1. Completeness. Any data existing in the database must be found in some
fragment.

2. Reconstruction. It should be possible to reconstruct the complete database from
the fragments.

3. Disjointness. Any data found in one fragment must not exist in any other
fragment’.

The granularity of a fragment is typically expressed in terms of the data model
used. In relational databases, fragments may be associated with complete SQL
schemas (called also catalogs) or sets of tables thereof. The lowest granularity
achieved is usually called horizontal or vertical fragmentation where “horizontal”
refers to dividing tables by rows and “vertical’—by columns. Note that this definition
of fragmentation does not exclude viewing the database as one entity if this is a
required logical view of the database.

A non-replicated, partitioned database contains fragments that are allocated to
database processes, normally on different cluster nodes, with only one copy of any
fragment on the cluster. Such a scheme does not have strong HA capabilities. To
achieve high availability of data, replication of database fragments is used to allow
storage and access of data in more than one node. In a fully replicated database the
database exists in its entirety in each database process. In a partially replicated database
the database fragments are distributed to database processes in such a way that copies of
a fragment, hereafter called replicas, may reside in multiple database processes.

In data replication, fragments can be classified as being primary replicas (Prima-
ries) or secondary replicas (Secondaries). The primary replicas represent the actual

' Fragment is a generalization of the common definition of table fragmentation in relational
databases.

2 This normally applies to horizontal fragmentation, but it does not exclude vertical
fragmentation if we consider the replicated primary key to be an identifier of data instead of
data itself.

Architecture of Highly Available Databases 7

data fragment3 and can be read as well as updated. The secondary replicas are at most
read-only and are more or less up to date with the primary replica. Secondary replicas
can be promoted to primary replicas during a failover (see section 0).

4.2 Cardinality Relationships Among Primaries and Secondaries

1*Primary/1*Secondary

Here every fragment has exactly one primary replica which is replicated to exactly
one secondary replica. This is a very common redundancy model since two replicas
has been found adequate for achieving high-availability in most cases.

1*Primary/Y *Secondary

Here every fragment has exactly one primary replica and is replicated to a number of
secondary replicas. This model provides higher availability than 1*Primary/
1*Secondary and allow for higher read accessibility if secondary replicas are allowed
to be read.

1*Primary

Here every fragment exists in exactly one primary replica. This model does not pro-
vide any redundancy at the database level. Redundancy is provided below the data-
base by the underlying storage. It is used in shared disk systems and also in central-
ized or partitioned databases.

X*Primary

Here every fragment has a number of primary replicas and is used in N*Active proc-
ess redundancy models (sometimes called multi-master). This model allow for higher
read and update accessibility than 1*Primary if the same fragment is not attempted to
be updated in parallel (since this would lead to update conflicts).

4.3 Relationships Between Databases and Fragments

Non-partitioned Replicated Database

The most common case is when the database and the fragment are the same. Conse-
quently, the whole database is replicated to the Secondary location (Fig. 3). NOTE:
all cases in this subsection are illustrated assuming the 1*Primary/1 *Secondary
cardinality.

Single-fragment
(fully replicated)
Non-partitioned

Replication

o
L

Fig. 3. Non-partitioned database

Partitioned Replicated Database
In this model, there are fragments having the purpose of being allocated to different
nodes or of being replicated to different nodes (Fig. 4).

3 If a primary replica is not available then the fragment is not available, thus the database is
not available.

8 S. Drake et al.

Replication

. ndari
Primaries Secondaries

Fig. 4. Partitioned database

Mixed Replicated Fragments

A special case of a partitioned database is a database with mixed partitions whereby a
database may host both Primaries and Secondaries. A special case is two databases
with symmetric fragments (Fig. 5).

Replication

Fig. 5. Two databases with symmetric fragments

5 Process Redundancy Models
5.1 Active/Standby (2N)

Active/Standby (sometimes referred to as 2N) is a process redundancy model for HA-
DBMS that is supported by both replication and shared-disk systems. Each active
database process is backed up by a sta}ldby database process on another node.
In Fig. 6, a replication-based example is shown while Fig. 7 provides a shared-disk
based example. All updates must occur on the active database process; they will be
propagated via replication, or via a shared disk, to the standby database process.

DB Service
Replication

Database Transactions

Fig. 6. Active/Standby Redundancy Model using Replication

Architecture of Highly Available Databases 9

DB Service

Database Transactions

Fig. 7. Active/Standby Redundancy Model using Shared Disk

In the case of a failure of the active database process (for any reason such as
software fault in the database server or hardware fault in the hosting node) the
standby database process will take over and become the new active database process
(Fig. 8). If the failed database process recovers it will now become the new standby
database process and the database processes have completely switched roles (Fig. 9).
If the HA Database has a preferred active database process it can later switch back to
the original configuration.

DB Service

Failure!

Database Transactions
Fig. 8. Failure of Active Primary, Switchover

The standby database process can be defined as more or less ready to take over
depending on the chosen safeness level and the HA requirements of the applications.
To classify the non-active database processes we separate between hot standby and
warm standby.

