LNCS 3667

W. James MacLean (Ed.)

Spatial Coherence
for Visual
Motion Analysis

First International Workshop, SCVMA 2004
Prague, Czech Republic, May 2004
Revised Papers

@_ Springer




"7 W. James MacLean (Ed.)

Spatial Coherence
for Visual
Motion Analysis

First International Workshop, SCVMA 2004
Prague, Czech Republic, May 15, 2004
Revised Papers

LM

2 Springer "£200603441



Volume Editor

W. James MacLean

University of Toronto

Department of Electrical and Computer Engineering

10 King’s College Road, Toronto, Ontario, MS5S 3G4 , Canada
E-mail: maclean@eecg.toronto.edu

Library of Congress Control Number: 2006922617

CR Subject Classification (1998): 1.2.10,1.4.8, 1.5, 1.3.5, F.2.2

LNCS Sublibrary: SL 6 — Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-540-32533-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32533-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11676959 06/3142 543210



Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bembhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3667



Preface

Motion analysis is a central problem in computer vision, and the past two decades
have seen important advances in this field. However, visual motion is still often
considered on a pixel-by-pixel basis, even though this ignores the fact that image
regions corresponding to a single object usually undergo motion that is highly
correlated. Further, it is often of interest to accurately measure the boundaries
of moving regions. In the case of articulated motion, especially human motion,
discovering motion boundaries is non-trivial but an important task nonetheless.
Another related problem is identifying and grouping multiple disconnected re-
gions moving with similar motions, such as a flock of geese. Early approaches
focused on measuring motion of either the boundaries or the interior, but sel-
dom both in unison. For several years now, attempts have been made to include
spatial coherence terms into algorithms for 2- and 3-D motion recovery, as well
as motion boundary estimation.

This volume is a record of papers presented at the First International Work-
shop on Spatial Coherence for Visual Motion Analysis, held May 15th, 2004
in Prague, in conjunction with the European Conference on Computer Vision
(LNCS 3021-4). The workshop examined techniques for integrating spatial co-
herence constraints during motion analysis of image sequences. The papers were
revised after the workshop to allow for incorporation of feedback from the
workshop.

I would like to thank the program committee for their time and effort in re-
viewing the submissions received for the workshop. Further thanks go to Radim
Sara of the ECCV 2004 organizing committee for handling the local arrange-
ments for the workshop. Finally, I would also like to gratefully acknowledge the
financial support of MD Robotics, Brampton, Canada.

W. James MacLean
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2D Motion Description and Contextual Motion Analysis:
Issues and New Models

P. Bouthemy

IRISA / INRIA,
Campus universitaire de Beaulieu,
35042 Rennes cedex, France

Abstract. In this paper, several important issues related to visual motion analy-
sis are addressed with a focus on the type of motion information to be estimated
and the way contextual information is expressed and exploited. Assumptions (i.e.,
data models) must be formulated to relate the observed image intensities with mo-
tion, and other constraints (i.e., motion models) must be added to solve problems
like motion segmentation, optical flow computation, or motion recognition. The
motion models are supposed to capture known, expected or learned properties
of the motion field, and this implies to somehow introduce spatial coherence or
more generally contextual information. The latter can be formalized in a proba-
bilistic way with local conditional densities as in Markov models. It can also rely
on predefined spatial supports (e.g., blocks or pre-segmented regions). The clas-
sic mathematical expressions associated with the visual motion information are
of two types. Some are continuous variables to represent velocity vectors or para-
metric motion models. The other are discrete variables or symbolic labels to code
motion detection output (binary labels) or motion segmentation output (numbers
of the motion regions or layers). We introduce new models, called mixed-state
auto-models, whose variables belong to a domain formed by the union of dis-
crete and continuous values, and which include local spatial contextual informa-
tion. We describe how such models can be specified and exploited in the motion
recognition problem. Finally, we present a new way of investigating the motion
detection problem with spatial coherence being associated to a perceptual group-
ing principle.

1 Introduction

Motion is seamlessly perceived by human beings when directly observing a day-life
scene, but also when watching films, videos or TV programs, or even various domain-
specific image sequences such as meteorological or heart ultrasound ones. However,
motion information is hidden in the image sequences supplied by image sensors. It has
to be recovered from the observations formed by the image intensities in the successive
frames of the sequence.

Assumptions (i.e., data models) must be formulated to relate the observed image in-
tensities with motion. When dealing with video, the commonly used data model is the
brightness constancy constraint which states that the intensity does not change along
the trajectory of the moving point in the image plane (at least, to a short time extent).
The motion constraint equation can then be expressed in a differential form that relates

W.J. MacLean (Ed.): SCVMA 2004, LNCS 3667, pp. 1-15, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 P. Bouthemy

the 2D velocity vector, the spatial image gradient and the temporal intensity derivative
at any point p in the image. Nevertheless, this enables to locally retrieve one compo-
nent of the velocity vector only, the so-called normal flow, which corresponds to the
aperture problem. Then, other constraints (i.e., motion models) must be added. They
are supposed to formalize known, expected or learned properties of the motion field,
and this implies to somehow introduce spatial coherence or more generally contextual
information.

In this paper, several important issues related to visual motion analysis are addressed
with a focus on the type of motion information to be estimated and the way contex-
tual information is formulated and exploited. Visual motion information can involve
different kinds of mathematical variables. First, we can deal with continuous variables
to represent the motion field : velocity vectors w(p) with w(p) € R2, or parametric
motion models with parameters § € R? with d denoting the number of parameters.
Let us note that the latter can be equivalently represented by the model flow vectors
{wo(p)} with wy(p) € R2. Second, we can consider discrete values or symbolic labels
to code motion detection output: binary values {0, 1}, or motion segmentation output:
number n of the motion region or layer with n € {1, ..., N'}. Furthermore, we will
introduce new models, called mixed-state auto-models, whose variables belong to a do-
main formed by the union of discrete and continuous values, and which include local
spatial contextual information too. We will describe how such models can be specified
and exploited in the motion recognition problem.

Spatial coherence can be formalized by conditional densities defined on local neigh-
borhoods as in Markov Random Field (MRF) models, or equivalently by potentials on
cliques as in Gibbs distributions. Another way is to first segment each image into spa-
tial regions according to a given criterion (grey level, colour, texture) and to analyse
the motion information over these regions. Perceptual grouping schemes can also be
envisaged.

The remainder of the paper is organized as follows. In Section 2, the motion mea-
surements that can be locally computed are briefly recalled and the subsequent needs
for complementary constraints or motion models are outlined. Section 3 reviews briefly
several MRF-based approaches we developed in the past to deal with the motion seg-
mentation issue stated as a contextual labeling problem involving discrete variables.
Section 4 is concerned with the main aspects of optical flow computation using MRF
models or more generally relying on energy minimization methods. In that case, con-
tinuous motion variables are considered. Motion recognition or classification, and more
specifically event detection in video, is addressed in Section 5, requiring the introduc-
tion of new contextual models with mixed states. Section 6 describes a new way to
address motion detection based on a perceptual grouping principle.

2 Local Motion Measurements

The brightness constancy assumption along the trajectory of a moving point p(t) in the
image plane, with p(t) = (x(t),y(t)), can be expressed as dI(z(t),y(t),t)/dt = 0,
with I denoting the image intensity function. By applying the chain rule, we get the
well-known motion constraint equation [22, 32]:
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r(p,t) = w(p,t).VI(p,t) + I,(p,t) =0 , (D

where VI denotes the spatial gradient of the intensity, with VI = (I, I), and I; its
partial temporal derivative. The above equation can be straightforwardly extended to
the case where a parametric motion model is considered, and we can write:

re(p,t) = wy(p,t).VI(p,t) + I(p,t) = 0 , (2)

where ¢ denotes the vector of motion model parameters. It can be easily derived from
equation (1) that the motion information which can be locally recovered at a pixel p is
contained in the normal flow given by:

_ "‘[t(p) t)

= NIl &

v(p,t)

It can also be written in a vectorial form: v(p,t) = ”;vlj‘((%’t%lwv](p, t), where wy;
denotes the unit vector parallel to the intensity spatial gradient. However, it should be
clear that the orientation of the normal flow vector does not convey any information
on the motion direction, but implicitly on the object texture (for inner points) or on the
object shape (for points on the object border). Besides, the normal flow can be computed
at the right scale to enforce reliability as explained in [15].

In case of a moving camera and assuming that the dominant image motion is due to
the camera motion and can be correctly described by a 2D parametric motion model,
we can exhibit the residual normal flow given by:

—DFDé(p, t)

, 4
NI, 0)] ®

Vres(p7 t) =
where DF'Dy(p,t) = I(p + wy,t + 1) — I(p,t) is the displaced frame difference
corresponding to the compensation of the dominant motion described by the estimated
motion model parameters 6.

Since the computation of intensity derivatives is usually affected by noise and can be
unreliable in nearly uniform areas, it may be preferable to consider the local mean of

the absolute magnitude of normal residual flows weighted by the square of the norm of
the spatial intensity gradient (as proposed in [23, 36)):

Zeere 1V1(@.8)1DFD; (q)]
max (1%, e () 910, 2)

Dres(pvt) == %)

where F(p) is a local spatial window centered in pixel p (typically a 3 x 3 window),
and 7 is a predetermined constant related to the noise level. An interesting property
of the local motion quantity .. (p) is that the reliability of the conveyed motion infor-
mation can be locally evaluated. Given the lowest motion magnitude ¢ to be detected,
we can derive two bounds, ls(p) and Ls(p), verifying the following properties [36]. If
res(p) < ls(p), the magnitude of the (unknown) true velocity vector w(p) is necessar-
ily lower than 6. Conversely, if 7..5(p) > Ls(p), ||w(p)]| is necessarily greater than 6.
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The two bounds l5 and L can be directly computed from the spatial derivatives of the
intensity function within the window F (p).

By defining the motion quantity Zr.s(p), we already advocate the interest of consid-
ering spatial coherence to compute motion information. Here, it simply amounts to a
weighted averaging over a small spatial support and it only concerns the data model. In
the same vein, more information can be locally extracted by considering small spatio-
temporal supports, either through spatio-temporal (frequency-based) velocity-tuned fil-
ters as in [16] or using 3D orientation tensors [4,33]. On the other hand, more benefit
can be gained by introducing contextual information through the motion models.

3 Discrete Motion Labels and Motion Segmentation

One important step ahead in solving the motion segmentation problem was to formu-
late the motion segmentation problem as a statistical contextual labeling problem or
in other words as a discrete Bayesian inference problem [7,31]. Segmenting the mov-
ing objects is then equivalent to assigning the proper (symbolic) label (i.e., the region
number) to each pixel in the image. The advantages are mainly two-fold. Determin-
ing the support of each region is then implicit and easy to handle: it merely results
from extracting the connected components of pixels with the same label. Introducing
spatial coherence can be straightforwardly (and locally) expressed by exploiting MRF
models.

Here, by motion segmentation, we mean the competitive partitioning of the image
into motion-based homogeneous regions. Motion detection can be viewed as a simpli-
fied case where two labels only are considered: static background versus moving object,
either with a static camera [1, 30, 39], or a mobile one [36]. The latter assumes that the
camera motion (or more specifically, the dominant global motion) can be computed and
somehow canceled, usually requiring to resort to robust estimation as we proposed in
[35] (joint work with Jean-Marc Odobez). This formulation can also encompass the
determination of motion layers by assuming that the regions of same label are not nec-
essarily connected [41].

Formally, we have to determine the hidden discrete motion variables (i.e., region
numbers) (i) where i denotes a site (usually, a pixel of the image grid; it could be also
an elementary block [7, 13]). Let ] = {I(%),¢ € S}. Each label [(3) takes its value in the
set A = {1, .., Nyeg} Where Ny is also unknown. Moreover, the motion of each region
is represented by a motion model (usually, a 2D affine motion model of parameters 6
which have to be conjointly estimated; we have also explored a non-parametric motion
modeling in [13], joint work with Ronan Fablet). Let © = {0,k = 1,.., Nyeg}. The
data model of relation (2) is used. The a priori on the motion label field (i.e., spatial
coherence) is expressed by specifying a MRF model (the simplest choice is to favour
the configuration of the same two labels on the two-site cliques so as to yield compact
regions with regular boundaries). Adopting the Bayesian MAP criterion is then equiva-
lent to minimizing an energy function E whose expression can be written in the general
following form:

E(1,8,Nreg) = 3 prlro, ()] + D p2ll(8), 1(3)] (6)

i€S i~vj
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where ¢ ~ j designates a two-site clique. In [7] (joint work with Edouard Frangois), we
considered the quadratic function p;(x) = 22 for the data-driven term in (6). The min-
imization of the energy function E was carried out on [ and © in an iterative alternate
way, and the number of regions V,.., was determined by introducing an extraneous la-
bel and using an appropriate statistical test. In [37] (joint work with Jean-Marc Odobez),
we instead chose a robust estimator for p;. This allowed us to avoid the alternate mini-
mization procedure and to determine or update the number of regions through an outlier
process in every region.

Specifying (simple) MRF models at a pixel level (i.e., sites are pixels and a 4- or
8-neighbour system is considered) is efficient, but remains limited to express more so-
phisticated properties on region geometry (e.g., more global shape information [10]) or
to handle extended spatial interaction. Multigrid MRF models [21] (as used in [36,37])
is a means to address somewhat the second concern (and also to speed up the minimiza-
tion process while usually supplying better results). An alternative is to first segment
the image into spatial regions (based on grey level, colour or texture) and to spec-
ify a MRF model on the resulting graph of adjacent regions as we did in [17] (joint
work with Marc Gelgon). The motion region labels are then assigned to the nodes
of the graph (which are the sites considered in that case). This allowed us to exploit
more elaborated and less local a priori information on the geometry of the regions
and their motion [17]. However, the spatial segmentation stage is often time consum-
ing, and getting an effective improvement on the final motion segmentation accuracy
remains questionable. Using the level-set framework is another way to precisely lo-
cate region boundaries while dealing with topology changes [38,39], but handling a
competitive motion partioning of the image (with the number of regions a priori un-
known) remains an open issue in that context even if recent attempts have been rep-
orted [11,26].

Finally, let us mention other recent work on Bayesian motion segmentation, explor-
ing the use of edge motion [42], offering extension to spatio-temporal models [11],
or introducing (two-step) hidden Markov measure field (HMMF) models [27]. Tensor
voting could also be considered as an implicit way to enforce spatial coherence [34].

4 Continuous Motion Information and Optical Flow Computation

By definition, the velocity field formed by continuous vector variables is a complete rep-
resentation of the motion information. Computing optical flow based on the data model
of equation (1) requires to add a motion model enforcing the expected spatial proper-
ties of the motion field, that is, to resort to a regularization method. Such properties of
spatial coherence (more specifically, piecewise continuity of the motion field) can be ex-
pressed on local spatial neighborhoods. First methods to estimate discontinuous optical
flow fields were based on MRF models associated with Bayesian inference [20,30,43]
(i.e., minimization of a discretized energy function). Then, continuous-domain models
were designed based on PDE formalism [2, 8, 25, 46]. Spatial coherence can also be
explicitly formulated by first segmenting the image in spatial regions forming the de-
limited domains where motion models, either dense or parametric ones, can be defined
and estimated [6, 17].
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A general formulation of the global (discretized) energy function to be minimized to
estimate the velocity field w can be given by:

E(w,0) =Y plr®)] +Y_ palllw(®) = w(@)[, () + > p3(Ca) , (D)

peS p~q Aex

where S designates the set of pixel sites, 7(p) is defined in (1), S’ = {p'} the set of
discontinuity sites located midway between the pixel sites and x is the set of cliques
associated with the neighborhood system chosen on S’. In [20] (joint work with Fab-
rice Heitz), quadratic functions were used and the motion discontinuities were handled
by introducing a binary line process ¢. Then, robust estimators were popularized [5, 28]
leading to the introduction of so-called auxiliary variables ¢ now taking their values
in [0, 1]. Depending on the followed approach, the third term of the energy E(w, ()
can be optional. Multigrid MRF are moreover involved in the scheme developed by
Mémin and Pérez in [28]. Besides, multiresolution incremental schemes are required to
compute optical flow in case of large displacements. Dense optical flow and parametric
motion models can also be jointly considered and estimated, which enables to supply a
segmented velocity field as designed by Mémin and Pérez [29].

Recent advances have dealt with the computation of fluid motion fields involving
the definition of a new data model (derived from the continuity equation of the fluid
mechanics) and of a motion model preserving the underlying physics of the visual-
ized fluid flows (2"% order div-curl constraint) as defined by Corpetti, Mémin and
Pérez in [9]. A comprehensive investigation of physics-based data models is described
in [19].

S Motion Recognition and Mixed-State Auto-models
5.1 Event Detection in Video and Mixed-State Probabilistic Models

A big challenge in computer vision consists in approaching the “semantic” content of
video documents while dealing with physical image signals and numerical measure-
ments. Here, we consider the detection of relevant events (dynamic content). Therefore,
we focuse on motion information and we propose new probabilistic image motion mod-
els. The motion information is captured through low-level motion measurements so that
it can be efficiently and reliabily computed in any video whatever its genre and its con-
tent. Our approach (joint work with Gwénaélle Piriou and Jian-Feng Yao [40]) consists
in modeling separately the camera motion (i.e., the dominant image motion) and the
scene motion (i.e., the residual image motion) in a sequence, since these two sources of
motion bring important and complementary information. The dominant image motion
is represented by a deterministic 2D affine motion model (which is a usual choice):

wo(p) = (a1 + aox + asy, as + asz + aey)” | 8)

where 6 = (a;,i = 1,...,6) is the model parameter vector and p = (z,y) is an
image point. This simple motion model can handle different camera motions such as
panning, zooming, tracking, (including of course static shots). To estimate the motion
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parameters 6, we employ the robust real-time multi-resolution algorithm' described in
[35]. The motion model parameters are directly computed from the spatio-temporal
derivatives of the intensity function. Consequently, the model motion vector wg, (p)
is available at any pixel p and time ¢. The two components of wy, (p) are finely quan-
tized, and we build the empirical 2D histogram of their distribution over the considered
video segment. Finally, this histogram is represented by a mixture of 2D Gaussian dis-
tributions denoted y°*™. The number of components of the mixture is determined with
the Integrated Completed Likelihood criterion (ICL) and their parameters are estimated
using the Expectation-Maximization (EM) algorithm [40].

The residual motion measurements are given by the U,s(p, t)’s as defined in (5). The
probabilistic model of scene motion is derived from global statistics on these measure-
ments. The 1D histograms of 7..5(p, t) which have been computed over different video
segments, present usually a prominent peak at zero and a continuous component part.
The latter can be modeled either by an exponential distribution or a zero-mean Gaussian
distribution, both restricted to |0, oo (since by definition 7.5 (p, t) > 0). Therefore, we
consider a specific mixture model to represent the distribution of the local residual mo-
tion measurements within a video segment with density [40]:

f(z) = 060(2) + (1 - 0)¢x(2) , ©)

where z holds for Dr.s(p,t), o is the mixture weight, §y denotes the Dirac function
at 0, and ¢, designates either the (restricted) Gaussian density function with variance
1/2k or the exponential density function with mean 1/x, both with support ]0, ool
Consequently, the proposed model has explicitly two degrees of freedom: g handles the
peak at zero and k accounts for the continuous component of the distribution. g and
K are estimated using the ML criterion. In order to capture not only the instantaneous
motion information but also its temporal evolution over the video segment, the tem-
poral contrasts A7, of the local residual motion measurements are also considered:
AUpes(pyt) = Tres(pyt + 1) — Ures(p, t). They are modeled, in a similar manner as
in (9), by a mixture model g(z’) of a Dirac function at 0 and a zero-mean Gaussian
distribution, where 2’ holds for AZ,¢5(p, t). The mixture weight and the variance of the
Gaussian distribution are again evaluated using the ML criterion. The full probabilis-
tic residual motion model is then simply defined as the product of these two models:
hres(z,2') = f(2)-9(2').

Let us stress the peculiar nature of the probabilistic model introduced in relation (9).
The value 0 plays a particular role since it accounts for no motion which is a clear
semantic information. We can consider that it corresponds to a symbolic state defined
by the discrete value z = 0 and that the other state is defined by z > 0. Therefore, the
variable z takes its value in the set {0}U]0, co[. We call such a set a mixed-state space.

The event detection proceeds in two steps. The first step permits to eliminate the seg-
ments that are not likely to contain the searched relevant events. Typically, if we con-
sider sports videos, we try to first distinguish between “play” and “no play” segments.
This stepis based on the residual motion only. The second step consists in retrieving
several specific events among the candidate segments {s0,.-.,5 ~ }. Here, the two kinds

' The corresponding software called MOTION-2D can be downloaded at http://www.irisa.fr/
vista/Motion2D.
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of motion information (residual and camera motion) are required since the combination
allows us to characterize more finely a specific event. A residual motion model with
density h7°® and a camera motion model with density v{*™ have to be previously esti-
mated from a training set of video samples, for each type j of event to detect. The label
l; of each segment s; is determined using the ML criterion:

l; = arg _max H h;es(z(p,t),zzp,t)) H ¥4 (wg, (py 1)) - (10)

J=Tmums
(p,t)€s: (p.t)Esi

More details and results on sports videos can be found in [40].

5.2 Mixed-State Auto-models and Motion Classification

Here, we describe joint work with Jian-Feng Yao and Gwénaélle Piriou and report pre-
liminary results. The scene motion model (to be learnt from image data) defined above
only accounts for global (occurrence) statistics accumulated over both the image plane
and time (i.e., over all the frames of the video segment). Obviously, it does not capture
how the motion information is spatially (or temporally) organized. In [14, 15] (joint
work with Ronan Fablet and Patrick Pérez), we have proposed the design of causal
Gibbs models from scale and temporal co-occurrences of quantized motion values .
Here, we will extend the model (9) to take into account spatial interaction between
neighbours, and define mixed-state auto-models (to follow the terminology introduced
in [3]). We will consider the Gaussian case only, but mixed-state auto-models can be
defined as well for any distribution from the exponential distribution family [18].

Let us first rewrite the mixed-state probabilistic model (9) in the following exponen-
tial family form:

fo(z) = exp [(6, B(2)) — (0)] , (I

T
with 0 = (61,0:)7 = (log (—IL?M—O),K) . B(2) = (6%(2),—2%)T,
where 6*(z) = 1 —6o(z). Let us note that we can easily recover the original parameters
o and k from the “natural” ones #; and 8.

To build our mixed-sate auto-models for the field (z;, 7 € S), we start by considering,
as in [3], the family of conditional densities j1;(2;|-) := pi(z:|z;,7 # ©), that is the
conditional distribution of z; at a site ¢ given its outside configuration (-) = (z;,j #
i). Because of the mixed-state nature of the observations at hand, namely the residual
motion measurements, we require that all these conditional distributions are of type
defined in (9), or equivalently (11). Let us note that, for each i, the parameters 0;(-) =
(03,1(:), 65,2(-)) of the conditional density yu;(2;|-) (here, we use the representation (11))
depend on the spatial context (-) := (z;,j # ). It can be shown [18] that there are
Cej dij) , such that:

vectors a; = (a;, b;) € R? and 2x2 matrices Bij = (d* .
ij ©ij

HL() = q; + ZﬂuB(zj) )
J#i



