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FOREWORD

There are three reasons why I welcome the publication of this book in the
Prentice-Hall International Series in Computer Science.

Firstly, it makes an exemplary contribution to the objectives of the series: it
treats the design and implementation of major computing systems programs
as a topic of national and professional study, of which a complete under-
standing can be obtained by reading well-crafted and elegant code.

Secondly, it brings wider recognition to the valuable and practically oriented
research in Computer Science conducted at the Tata Institute of Fundamen-
tal Research in Bombay.

Thirdly, it appeals to my own long-standing personal interests, both in
operating systems and in the programming of multiple processor networks.
If all those engaged in systems programming were to study books like this,
we should avoid perpetuating the long series of technical failures which have
plagued us since the 1960s.

As I was personally responsible for one of the earliest of these failures,
publication of a book describing a successful solution gives me special
satisfaction.

C. A. R. Hoare
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PREFACE

It is customary for a course on operating systems, as in many other fields,
to teach principles and techniques. Such courses often end with exercises
requiring students to construct parts of operating systems that illustrate the
use of these techniques. But practical reasons force most courses to stop
short of taking students through ‘real world’ operating systems and only a
few particularly energetic participants pursue their interests through the
inhospitable documentation of commercial operating systems. This rein-
forces the widespread belief that principles and theory are for courses, not
for practical use, and that there is a welter of problems that are neither
described in courses nor solvable by the techniques that are taught.

The purpose of this book is to present the design of what we hope will be
seen as a ‘real’ operating system, in a manner that makes it possible to
understand the problems that must be solved in the practice of constructing
operating systems. The designs of major components of the operating
system are described by developing programs and, finally, these programs
are integrated to form the whole system. Thus, much of the book consists
of program text written in an extended form of Pascal and, with some
additional system-dependent code, these programs can actually be put
together to form a working operating system. The material is presented in
this form to illustrate the importance of studying well-structured programs
in learning how to construct new programs in this area (and similar ones).

The first three chapters are purely introductory. Chapter 1 has a general
introduction, Chapter 2 describes the CCNPascal language which is used
for all the programs in the book, and Chapter 3 gives a summary of
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Xiv AMULTIPROCESSOR OPERATING SYSTEM

multiprocessor architectures. The design of the operating system starts in
Chapter 4, where we take some simple requirements and develop the
outlines for the components that must be constructed. The first such
component is a basic memory allocator, whose design is described in
Chapter 5, and this is then used for building a main memory allocator
(Chapter 6) and a disk space allocator (Chapter 7). The next two chapters
describe a complete file system; a relatively simple ‘user’ view of the file
system appears in Chapter 8 and the details of the file system structure are
presented in Chapter 9. The handling of input and output using physical
devices (as opposed to virtual file ‘devices’) is described in Chapter 10.
These components are brought together in Chapter 11, where they are
used for the management of jobs; this chapter deals with scheduling and
memory management and completes the design of the visible part of the
operating system. Chapter 12 describes the kernel which underlies the
operating system and provides abstract views of the physical hardware, in
addition to supporting the implementation of CCNPascal programs.
Chapter 13 reviews the techniques used in the book and the design of the
operating system.

The book has not been designed for a particular teaching course, though
we have envisaged its use in many different kinds of courses. Understand-
ing the material in the book does require some background: familiarity
with simple operating systems, and with the use of programming
abstractions such as the monitor, the class and the process. With this in
hand, the book could be used in several ways:

1. As adjunct material to a course, where parts of the book are used
as case-studies,

2. As the basis of a one-semester second course on operating
systems, using Chapters 1-8, Chapter 10 and the first part of
Chapter 11, or

3. As a two-semester course on operating systems.

There are several sets of exercises, some to modify programs given in a
chapter and others to write programs to meet different constraints. A few
of the exercises are designated as group exercises, as they could profitably
be attempted by small groups of students working together.

But the material in the book is not delimited by what can easily be taught.
Chapter 9, on the structure of the file system, the second part of Chapter
11, which deals with fairly complex job management, and much of the
description of the kernel in Chapter 12, are all undoubtedly difficult.
Rather than simplify the design to eliminate this material, we have chosen
to present it because of its use to another reader we have in mind: the
professional programmer in industry. Moreover, having seen the tenacity
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and endurance with which some students plough through documentation
on commercial operating systems, we feel that these parts of the book may
even be of use to students.

Despite its size, there is much that is not described in the book.
Consistency and crash-recovery in the file system, swapping policies and
swapper programs, operator control of the system parameters, the use of
virtual memory, and several other aspects that have bearing on the
performance and usability of an operating system have only been outlined
in text. Such areas are important in their own right, but a line must
inevitably be drawn to separate what is presented from what is not. We
have chosen to omit descriptions that would add considerably to the size of
the book, and those where detail would appear to outweigh structure. This
book will have served its purpose well if it encourages readers to write
elegantly structured programs for these aspects of operating systems.

Historical Background

The operating system described in this book is based on a very similar one
that was actually built for a multiprocessor system (a list of publications on
this project is given in the References section). Since its development had
some interesting aspects, a short account of the background is given here.

In the first few weeks of 1975, we had the opportunity of participating in a
workshop organized at the National Centre for Software Development and
Computing Techniques (NCSDCT) with the assistance of the United
Nations Development Programme. Among other things at this workshop,
two important new developments were described: P. Brinch Hansen gave a
series of lectures on his language, Concurrent Pascal, and W. A. Wulf
discussed the design of C.mmp, the multiprocessor then under construc-
tion at Carnegie-Mellon University, and Hydra, its operating system. At
that time, some of us had already been talking of the possibility of building
a multiprocessor system using Indian-made TDC 316 computers and the
workshop served as a stimulus in crystallizing these ideas into the more
definite proposal that was submitted a few months later to the Electronics
Commission of the Government of India. This proposal was approved and,
by the end of the year, the first TDC 316 machine had been delivered. In
the meantime, we had been examining how Concurrent Pascal could be
altered to meet the requirements we had in mind, and working on simple
schemes for interconnecting several TDC 316 computers to form what we
called the Close-Coupled Network (CCN).

By the end of 1976, we had an experimental compiler, modelled on the
Pascal compiler and written in Pascal on the DEC System 10, for our
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version of Concurrent Pascal; by then, the changes we had made in the
original language made it prudent to seek a new name and ‘CCNPascal’
suggested itself as a suitable alternative. Also, three TDC 316 computers
had been linked together in equally experir\nental fashion. Having the
well-known properties of experimental designs, neither the compiler nor
the system worked with adequate reliability for sustained use and much of
1977 was spent in bringing them to a state where other kinds of
experimentation, such as implementation of parts of the operating system,
could begin. Various ambitious designs for the operating system were tried
out and it was two years later that a final, and altogether simpler, operating
system was completed and the first ‘user’ programs were executed.

In retrospect, it was risky to have attempted to use a new and relatively
untested computer for a system of this nature, especially as the small
project team (about 4-5 members at any time) was also involved in the
design of the new features of the CCNPascal language, in the development
of its first compiler, and in the use of this language for programming the
operating system and its kernel, each of which went through several
versions. Nevertheless, though we never quite solved the problems of
hardware unreliability with our prototype system, much of the program
development work went on without unmanageable difficulties. The lesson,
that use of a good programming language and systematic design techniques
are of irreplaceable value, is not one we are likely to forget.
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1 INTRODUCTION

When good fortune, or a benevolent funding agency, presents us with a
new computer system, one of the first tasks is to get hold of a manual for
the operating system. A quick study of this manual leads us to a
time-sharing terminal, to ‘try things out’. A little later, those of us who
have not retreated from the complexities of command formats, job control
languages and inexplicable error messages, can be found going through the
manual again to get a more complete idea of how the system can be used.
And this goes on until each user has acquired the information needed to
use the system for her or his problems. When a new problem arises, we
return to the manual (or to a local wizard) to see if there is a simple
solution; or, remembering that ‘there’s something about it in the manual’,
we look for the section that tells us how it can be done.

After some familiarity with the system, we begin to wonder how the
operating system performs its functions. (The last course on operating
systems taught us many useful principles but it did not prepare us for the
way this operating system seems to work!). Discussions with the wizard
prove to be tantalizingly incomplete, and there is no alternative but to see
what documentation the ‘system people’ can produce. And there our
problems begin. There are shelves full of manuals of internal documenta-
tion and each manual seems to expect us to know information present in
other manuals. There are detailed flow charts, diagrams showing how bits
are packed into table entries and, to confuse things further, amendment
sheets that purport to alter what is in the manuals. Having been through
the manufacturer’s training course, the system programmers seem to
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navigate successfully through all this documentation. But, like other
experts, they answer every request for general information with the
question ‘What exactly do you want to know?’

And that would be a reasonable question, were it not for the fact that
before we know exactly what to look for in the detailed documentation, we
need to know the general structure of the system!

This story is familiar to many of us, and it has different endings. There are
those who, not surprisingly, decide that the gap between theory and
practice in operating systems is too large for the field to be of any interest
to them. Then there are those who are convinced that the theory is
perfectly adequate, as theory, but that practical operating systems have so
much more excitement to offer (at the other extreme, there are those who
gratefully return to the theory to wait until the practice becomes more
respectable). And, finally, there are the resolute few who find structure in
the mass of documentation, and go on to examine this in the light of the
available theory.

There is no particular moral to this story, or to its endings. But this book
has been written to show that it is possible to understand both the structure
and the detail of a reasonably large operating system. To do this, we shall
go through the exercise of constructing such an operating system for a
multiprocessor system. The program components for this operating system
will be systematically developed and, towards the end, these components
will be brought together to form the operating system.

Writing an Operating System

Like other large programs, the design of an operating system presents
problems of specification and correctness, of testing and performance
evaluation, and of documentation. This book will be concerned with many
such issues because they must be resolved if a correct, efficient and useable
program is to be constructed. But since we shall be looking particularly at
the question of designing an operating system, we are also confronted with
issues of concurrency—i.e., many actions taking place simultaneously—
and we cannot take recourse to having some other program control the
computer system and its peripherals, or handle the errors that arise in
execution. These two factors play a large role in determining the kinds of
design we can consider for an operating system.

Designing a new operating system, like studying or modifying an existing
one, is an exciting exercise for many reasons. The simplest reason, though
perhaps the most misleading one, is that an operating system is a program



