Mathai Joseph,
V.R. Prasad and
N.Natarajan

A
Multiprocesso
Operating
System

C.A.R.HOARE SERIES EDITOR




A MULTIPROCESSOR
OPERATING SYSTEM

Mathai Joseph
V. R. Prasad and

N. Natarajan
NCSDCT, Tata Institute of Fundamental Research, India

5

Prentlce/HaH

A International

Englewood Cliffs, NJ London New Delhi Rio de Janeiro
Singapore Sydney Tokyo Toronto Wellington



Library of Congress Cataloging in Publication Data
Joseph, M.

A multiprocessor operating system.

Bibliography: p.

Includes index.

1. Operating systems (Computers) 2. Multiprocessors.

|. Prasad, V. R., 1950— . Il. Natarajan, N., 1950—
I1I. Title.

QA76.6.J68 1984 001.64 33 -11204
ISBN 0—13-605170-7

British Library Cataloguing in Publication Data
Joseph, M.

A multiprocessor operating system.

1. Multiprocessors

I. Title Il. Prasad, V. R. lll. Natarajan, N.
001.64 QA76.5
ISBN 0—13-605170-7

(© 1984 by Prentice-Hall International, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of Prentice-Hall International, Inc., London.

For permission within the United States contact Prentice-Hall Inc.,

Englewood Cliffs, NJ 07632.

0-13-k05170 7

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty, Ltd., Sydney
Prentice-Hall Canada, Inc., Toronto .
Prentice-Hall of India Private Ltd., New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of South-East Asia Pte., Ltd., Singapore
Prentice-Hall Inc., Englewood Cliffs, New Jersey
Prentice-Hall do Brasil Ltda., Rio de Janeiro
Whitehall Books Ltd., Wellington, New Zealand

Typeset in the UK by Alphabyte Ltd., Cheltenham
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1



FOREWORD

There are three reasons why I welcome the publication of this book in the
Prentice-Hall International Series in Computer Science.

Firstly, it makes an exemplary contribution to the objectives of the series: it
treats the design and implementation of major computing systems programs
as a topic of national and professional study, of which a complete under-
standing can be obtained by reading well-crafted and elegant code.

Secondly, it brings wider recognition to the valuable and practically oriented
research in Computer Science conducted at the Tata Institute of Fundamen-
tal Research in Bombay.

Thirdly, it appeals to my own long-standing personal interests, both in
operating systems and in the programming of multiple processor networks.
If all those engaged in systems programming were to study books like this,
we should avoid perpetuating the long series of technical failures which have
plagued us since the 1960s.

As I was personally responsible for one of the earliest of these failures,
publication of a book describing a successful solution gives me special
satisfaction.

C. A. R. Hoare

Xi



PREFACE

It is customary for a course on operating systems, as in many other fields,
to teach principles and techniques. Such courses often end with exercises
requiring students to construct parts of operating systems that illustrate the
use of these techniques. But practical reasons force most courses to stop
short of taking students through ‘real world’ operating systems and only a
few particularly energetic participants pursue their interests through the
inhospitable documentation of commercial operating systems. This rein-
forces the widespread belief that principles and theory are for courses, not
for practical use, and that there is a welter of problems that are neither
described in courses nor solvable by the techniques that are taught.

The purpose of this book is to present the design of what we hope will be
seen as a ‘real’ operating system, in a manner that makes it possible to
understand the problems that must be solved in the practice of constructing
operating systems. The designs of major components of the operating
system are described by developing programs and, finally, these programs
are integrated to form the whole system. Thus, much of the book consists
of program text written in an extended form of Pascal and, with some
additional system-dependent code, these programs can actually be put
together to form a working operating system. The material is presented in
this form to illustrate the importance of studying well-structured programs
in learning how to construct new programs in this area (and similar ones).

The first three chapters are purely introductory. Chapter 1 has a general
introduction, Chapter 2 describes the CCNPascal language which is used
for all the programs in the book, and Chapter 3 gives a summary of

Xifi



Xiv AMULTIPROCESSOR OPERATING SYSTEM

multiprocessor architectures. The design of the operating system starts in
Chapter 4, where we take some simple requirements and develop the
outlines for the components that must be constructed. The first such
component is a basic memory allocator, whose design is described in
Chapter 5, and this is then used for building a main memory allocator
(Chapter 6) and a disk space allocator (Chapter 7). The next two chapters
describe a complete file system; a relatively simple ‘user’ view of the file
system appears in Chapter 8 and the details of the file system structure are
presented in Chapter 9. The handling of input and output using physical
devices (as opposed to virtual file ‘devices’) is described in Chapter 10.
These components are brought together in Chapter 11, where they are
used for the management of jobs; this chapter deals with scheduling and
memory management and completes the design of the visible part of the
operating system. Chapter 12 describes the kernel which underlies the
operating system and provides abstract views of the physical hardware, in
addition to supporting the implementation of CCNPascal programs.
Chapter 13 reviews the techniques used in the book and the design of the
operating system.

The book has not been designed for a particular teaching course, though
we have envisaged its use in many different kinds of courses. Understand-
ing the material in the book does require some background: familiarity
with simple operating systems, and with the use of programming
abstractions such as the monitor, the class and the process. With this in
hand, the book could be used in several ways:

1. As adjunct material to a course, where parts of the book are used
as case-studies,

2. As the basis of a one-semester second course on operating
systems, using Chapters 1-8, Chapter 10 and the first part of
Chapter 11, or

3. As a two-semester course on operating systems.

There are several sets of exercises, some to modify programs given in a
chapter and others to write programs to meet different constraints. A few
of the exercises are designated as group exercises, as they could profitably
be attempted by small groups of students working together.

But the material in the book is not delimited by what can easily be taught.
Chapter 9, on the structure of the file system, the second part of Chapter
11, which deals with fairly complex job management, and much of the
description of the kernel in Chapter 12, are all undoubtedly difficult.
Rather than simplify the design to eliminate this material, we have chosen
to present it because of its use to another reader we have in mind: the
professional programmer in industry. Moreover, having seen the tenacity



PREFACE b 4%

and endurance with which some students plough through documentation
on commercial operating systems, we feel that these parts of the book may
even be of use to students.

Despite its size, there is much that is not described in the book.
Consistency and crash-recovery in the file system, swapping policies and
swapper programs, operator control of the system parameters, the use of
virtual memory, and several other aspects that have bearing on the
performance and usability of an operating system have only been outlined
in text. Such areas are important in their own right, but a line must
inevitably be drawn to separate what is presented from what is not. We
have chosen to omit descriptions that would add considerably to the size of
the book, and those where detail would appear to outweigh structure. This
book will have served its purpose well if it encourages readers to write
elegantly structured programs for these aspects of operating systems.

Historical Background

The operating system described in this book is based on a very similar one
that was actually built for a multiprocessor system (a list of publications on
this project is given in the References section). Since its development had
some interesting aspects, a short account of the background is given here.

In the first few weeks of 1975, we had the opportunity of participating in a
workshop organized at the National Centre for Software Development and
Computing Techniques (NCSDCT) with the assistance of the United
Nations Development Programme. Among other things at this workshop,
two important new developments were described: P. Brinch Hansen gave a
series of lectures on his language, Concurrent Pascal, and W. A. Wulf
discussed the design of C.mmp, the multiprocessor then under construc-
tion at Carnegie-Mellon University, and Hydra, its operating system. At
that time, some of us had already been talking of the possibility of building
a multiprocessor system using Indian-made TDC 316 computers and the
workshop served as a stimulus in crystallizing these ideas into the more
definite proposal that was submitted a few months later to the Electronics
Commission of the Government of India. This proposal was approved and,
by the end of the year, the first TDC 316 machine had been delivered. In
the meantime, we had been examining how Concurrent Pascal could be
altered to meet the requirements we had in mind, and working on simple
schemes for interconnecting several TDC 316 computers to form what we
called the Close-Coupled Network (CCN).

By the end of 1976, we had an experimental compiler, modelled on the
Pascal compiler and written in Pascal on the DEC System 10, for our



Xvi AMULTIPROCESSOR OPERATING SYSTEM

version of Concurrent Pascal; by then, the changes we had made in the
original language made it prudent to seek a new name and ‘CCNPascal’
suggested itself as a suitable alternative. Also, three TDC 316 computers
had been linked together in equally experir\nental fashion. Having the
well-known properties of experimental designs, neither the compiler nor
the system worked with adequate reliability for sustained use and much of
1977 was spent in bringing them to a state where other kinds of
experimentation, such as implementation of parts of the operating system,
could begin. Various ambitious designs for the operating system were tried
out and it was two years later that a final, and altogether simpler, operating
system was completed and the first ‘user’ programs were executed.

In retrospect, it was risky to have attempted to use a new and relatively
untested computer for a system of this nature, especially as the small
project team (about 4-5 members at any time) was also involved in the
design of the new features of the CCNPascal language, in the development
of its first compiler, and in the use of this language for programming the
operating system and its kernel, each of which went through several
versions. Nevertheless, though we never quite solved the problems of
hardware unreliability with our prototype system, much of the program
development work went on without unmanageable difficulties. The lesson,
that use of a good programming language and systematic design techniques
are of irreplaceable value, is not one we are likely to forget.

Acknowledgements

The CCN project was financed by the Electronics Commission of the
Government of India and we owe a great deal for this support. The
National Centre for Software Development and Computing Techniques, to
which all the authors are affiliated, provided support right through the
project and, subsequently, during the writing of this book: our thanks go to
its director, R. Narasimhan, and to many of our colleagues (past and
present) who helped in the project. The Electronics Corporation of India
Ltd. (ECIL) went far beyond the call of commercial duty to construct the
special hardware needed to interconnect their TDC 316 computers and to
help us to maintain the hardware.

At various times, and in various measures, several people at NCSDCT
worked on the design and implementation of the CCN software: R.
Viswanathan and K.V.S. Prasad were involved with the early designs for
the Kernel, Satish Thatte designed the first version of the file system,
Sandhya Desai wrote the system loader which linked together the modules
of the operating system, and K. T. Narayana did a great deal of work on the
first version of the CCNPascal compiler. The final form of the Kernel and



PREFACE XVii

the operating system, and their implementations, owe much to the work of
Mukul Sinha, who also contributed to the system design of the hardware,
and of 1.V. Ramakrishnan. At ECIL, A. K. Kaul and P.V.S. Nayak
worked on the design of the special hardware. During the course of the
development, M.V. Wilkes was an annual visitor who commented on the
design; another annual visitor, W.A. Wulf, spent considerable time and
effort in studying our design and in providing details on the progress of the
C.mmp project.

The suggestion that we write a book about the operating system came from
C.A.R. Hoare, who is not only the editor of this series of books and the
originator of many of the techniques we have used, but a long standing
campaigner for the publication of programs; the fact that we accepted the
offer is largely due to his persuasion that the effort was worth making. To
him, to H. Hirschberg and R. Decent of Prentice-Hall International, and
to R.M. McKeag and R. Gimson, who patiently and painstakingly
reviewed the manuscript, considerable thanks are due.

Several other readers have helped us with comments on the manuscript:
H.N. Mahabala, V.K. Joglekar, R. Chandrasekhar, and K. Lodaya, to
name a few. To the others, and to the many people upon whose work this
book has depended, we offer our special thanks.

Text for this book was typed, edited and formatted on the NCSDCT
DECSystem10 using standard text editors and the NCSDCT text composi-
tion system DIP.

Mathai Joseph
NCSDCT V.R. Prasad
November, 1982 N.Natarajan



CONTENTS

Foreword xi
Preface xiii

1 INTRODUCTION 1

Writing an operating system 2
Design problems 4
Thelanguage 6

The architecture 8

The operating system 9

The implementation 10
Summary 10

2 THE CCNPASCAL LANGUAGE 12

Sequential Programming 12
Generictypes 14
Subprograms 15
Repetitive statements 16
Errorreturns 18

Data abstraction: the class 20
Multiview records 25
Concurrent Programming 30
Process 30

Monitor 31



vi CONTENTS

Queues 33
Resource scheduling 35
Pureclass 37
Signals and queues
Standard subprograms 43
Discussion 44
Compilation of programs 44
Summary 44
Exercises 45

3 MULTIPROCESSOR ARCHITECTURE 48

Concurrency in the operating system 48
System Architectures 49
Multiprocessors 50
Processor—-memory interconnection 51
Input/output structure 56
Interprocessor communication 58
Programming Issues 58

Mutual exclusion 58

Resource allocation 59

A Model Architecture 60
Discussion 61

Exercises 63

4 OVERVIEW OF THE OPERATING SYSTEM 64

Introduction 64

Requirements 65
Job Management 66

The userview 66

The internal view 68
File Management 72

The userview 72

The internal view 76
Input/Output On Devices 80

The userview 80

The internal view 82
Memory Management 83

The userview 83

The internal view 84
The Kernel 86
Discussion 89
Exercises 89



CONTENTS

5 ABASIC MEMORY ALLOCATOR 91

Introduction 91
Representing memory in an operating system
Outline of a memory allocator 94
Allocating segments from a large chunk 96
Returning memory—fragmentation problems
Choosing from a set of segments 98
Compaction of segments 101
Merging segments with MainChunk 101
Operation of the whole allocator 102
Making the allocator generic 106
Discussion 107
Summary 110
Exercises 110
The Basic Memory Allocator Program 112

6 THE MAIN MEMORY ALLOCATOR 118

Introduction 118
Outline of the main memory allocator 119
Delaying requests 121

Discussion 124

Exercises 125

The Main Memory Allocator Program 126

7 THE DISK SPACE ALLOCATOR 129

Introduction 129
Allocationinagroup 131
Outline of the disk allocator 133
Choosing groups for allocation 135
Reporting errors 139
Storing allocation data on the disk 140
Mounting and initializing a disk pack 143
Crashrecovery 146

Discussion 147

Exercises 149

The Disk Space Allocator Program 150

8 THEFILE SYSTEM—PART! 161

Introduction 161

Files 162

Random files 164

Internal structure of a file 165

vii
]



viii CONTENTS

Implementation Of File Operations 166
Sequential files 166
Random files 173
Directories 174
Sharing objects 175
Creating links 176
Managing objects and names 177
Internal Structure Of Directories 180
The structure of a directory 183
Implementation of the Indirectory 183
Active Files 185
Concurrency control of file transactions 188
Discussion 192
Summary 193
Exercises 194

9 THEFILE SYSTEM—PARTIl 196

Jobs And Directories 196
Associating directories with jobs 196
Setting the current directory 199
Checking space quota limits 201
The Master File Directory 202

Maintaining Directories 202
Error reporting 203
Directory lookup 205
Creating a new capability 207
Updating an existing capability 208
Renaming a capability 209
Handling links 210
Deletion of capabilities 212
Setting the current directory 213

Managing File Operations 216
Managing file descriptors 217
Maintaining file attributes 220
Implementing file operations 221

Implementing File System Procedures 227
Setting directories 227
Creating a subdirectory 228
Name management 229
Deletion of objects and links 230
Sharing 231

File System Administration 234
Registering a new user 234
Authentication 236
Pack and MFD creation 237



CONTENTS

10

11

Discussion 238
The file system structure 238
Representation of files and directories 240
Crashrecovery 241

Exercises 242

The Complete File System Program 243

INPUT/OUTPUT HANDLING 299

Introduction 299

Device Handling in the Kernel 300
Disk input/output 302
Assigned devices 304
Device independence 306
Device allocation 308
Discussion 309

Device spooling 309

Input spooling 310
Summary 310

Exercises 311

The Input/Output Program 313

JOB MANAGEMENT 324

Introduction 324
User job execution 324
Job representation 326
Levels of scheduling 328

Management Of Jobs And Programs 332
The jobtable 332
The program table 335
The CPU queues 340
The processor scheduler 343
Scheduling processes 344
The procedures Enter and Depart 348
Program table—detailed structure 351
Choosing segments to be swapped 361
Swapper processes 363
The Job Manager’s cycle 364
Handling errors detected by the Kernel 366

Discussion 367
The operator process 367
Determination of Jobmix and processor slice
Call mechanisms and protection 369
User program structure 370
Operating system process structure 372
User level concurrency 373

367

Paging, segmentation and virtual memory 374

ix



12

Exercises 375
Program Components For Job Management

THE KERNEL 399

Modes of operation 399
Entry to the Kernel 400
Operating system calls from a user 402
Kernel calls from the operating system 403
Execution Of Processes And Programs 404
Process representation 405
Executing processes 409
Program calls 411
Pre-emption of program execution 412
Context switching 414
Miscellaneous 415
Process Synchronization 416
High-level monitors 417
Queues 419
Low-level monitors 420

377

Routing calls to synchronization operations 423

Disk device 425

Input/Output Programming 424
Cardreader 428
Line printer 428
Terminals 429
Routing calls to input/output operations 434
Miscellaneous 435

Discussion 435

Exercises 436

The Kernel Program 437

13 REVIEW AND CONCLUSIONS 456

Review of the operating system 456

The programming language 457

Operating system structure 460

Building and testing the operating system 460
Practical results 461

Summary 462

BIBLIOGRAPHY 465

Index

Bibliography on the CCN project 467

469

Program Component Index 477

CONTENTS



1 INTRODUCTION

When good fortune, or a benevolent funding agency, presents us with a
new computer system, one of the first tasks is to get hold of a manual for
the operating system. A quick study of this manual leads us to a
time-sharing terminal, to ‘try things out’. A little later, those of us who
have not retreated from the complexities of command formats, job control
languages and inexplicable error messages, can be found going through the
manual again to get a more complete idea of how the system can be used.
And this goes on until each user has acquired the information needed to
use the system for her or his problems. When a new problem arises, we
return to the manual (or to a local wizard) to see if there is a simple
solution; or, remembering that ‘there’s something about it in the manual’,
we look for the section that tells us how it can be done.

After some familiarity with the system, we begin to wonder how the
operating system performs its functions. (The last course on operating
systems taught us many useful principles but it did not prepare us for the
way this operating system seems to work!). Discussions with the wizard
prove to be tantalizingly incomplete, and there is no alternative but to see
what documentation the ‘system people’ can produce. And there our
problems begin. There are shelves full of manuals of internal documenta-
tion and each manual seems to expect us to know information present in
other manuals. There are detailed flow charts, diagrams showing how bits
are packed into table entries and, to confuse things further, amendment
sheets that purport to alter what is in the manuals. Having been through
the manufacturer’s training course, the system programmers seem to



2 AMULTIPROCESSOR OPERATING SYSTEM

navigate successfully through all this documentation. But, like other
experts, they answer every request for general information with the
question ‘What exactly do you want to know?’

And that would be a reasonable question, were it not for the fact that
before we know exactly what to look for in the detailed documentation, we
need to know the general structure of the system!

This story is familiar to many of us, and it has different endings. There are
those who, not surprisingly, decide that the gap between theory and
practice in operating systems is too large for the field to be of any interest
to them. Then there are those who are convinced that the theory is
perfectly adequate, as theory, but that practical operating systems have so
much more excitement to offer (at the other extreme, there are those who
gratefully return to the theory to wait until the practice becomes more
respectable). And, finally, there are the resolute few who find structure in
the mass of documentation, and go on to examine this in the light of the
available theory.

There is no particular moral to this story, or to its endings. But this book
has been written to show that it is possible to understand both the structure
and the detail of a reasonably large operating system. To do this, we shall
go through the exercise of constructing such an operating system for a
multiprocessor system. The program components for this operating system
will be systematically developed and, towards the end, these components
will be brought together to form the operating system.

Writing an Operating System

Like other large programs, the design of an operating system presents
problems of specification and correctness, of testing and performance
evaluation, and of documentation. This book will be concerned with many
such issues because they must be resolved if a correct, efficient and useable
program is to be constructed. But since we shall be looking particularly at
the question of designing an operating system, we are also confronted with
issues of concurrency—i.e., many actions taking place simultaneously—
and we cannot take recourse to having some other program control the
computer system and its peripherals, or handle the errors that arise in
execution. These two factors play a large role in determining the kinds of
design we can consider for an operating system.

Designing a new operating system, like studying or modifying an existing
one, is an exciting exercise for many reasons. The simplest reason, though
perhaps the most misleading one, is that an operating system is a program



