.Digxter Kozen (Ed.)

Mathematlcs of
Program Construction

LNCS 3125

7th International Conference, MPC 2004
Stirling, Scotland, UK, July 2004
Proceedings

@ Springer




Dexter Kozen (Ed.)

Mathematics of
Program Construction

7th International Conference, MPC 2004
Stirling, Scotland, UK, July 12-14, 2004
Proceedings

@ Springer



Volume Editor

Dexter Kozen

Cornell University

Department of Computer Science
Ithaca, NY 14853-7501, USA
E-mail: kozen@cs.cornell.edu

Library of Congress Control Number: 2004108032

CR Subject Classification (1998): E3, F4, D.2, E1, D.3

ISSN 0302-9743
ISBN 3-540-22380-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11019305 06/3142 543210



Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3125



Preface

This volume contains the proceedings of MPC 2004, the Seventh International
Conference on the Mathematics of Program Construction. This series of con-
ferences aims to promote the development of mathematical principles and tech-
niques that are demonstrably useful in the process of constructing computer pro-
grams, whether implemented in hardware or software. The focus is on techniques
that combine precision with conciseness, enabling programs to be constructed
by formal calculation. Within this theme, the scope of the series is very diverse,
including programming methodology, program specification and transformation,
programming paradigms, programming calculi, and programming language se-
mantics.

The quality of the papers submitted to the conference was in general very
high, and the number of submissions was comparable to that for the previous
conference. Each paper was refereed by at least four, and often more, committee
members.

This volume contains 19 papers selected for presentation by the program
committee from 37 submissions, as well as the abstract of one invited talk: Fz-
tended Static Checking for Java by Greg Nelson, Imaging Systems Department,
HP Labs, Palo Alto, California.

The conference took place in Stirling, Scotland. The previous six conferences
were held in 1989 in Twente, The Netherlands; in 1992 in Oxford, UK; in 1995 in
Kloster Irsee, Germany; in 1998 in Marstrand near Goteborg, Sweden; in 2000 in
Ponte de Lima, Portugal; and in 2002 in Dagstuhl, Germany. The proceedings of
these conferences were published as LNCS 375, 669, 947, 1422, 1837, and 2386,
respectively.

Three other international events were co-located with the conference: the
Tenth International Conference on Algebraic Methodology And Software Tech-
nology (AMAST 2004), the Sixth AMAST Workshop on Real-Time Systems
(ARTS 2004), and the Fourth International Workshop on Constructive Meth-
ods for Parallel Programming (CMPP 2004). We thank the organizers of these
events for their interest in sharing the atmosphere of the conference.

May 2004 Dexter Kozen



Acknowledgments

We are grateful to the members of the program committee and their referees for
their care and diligence in reviewing the submitted papers. We are also grateful
to the sponsoring institutions and to the FACS Specialist Group. Finally, we
would like to extend a special thanks to Kelly Patwell for all her hard work with
the organization of the conference.

Program Committee

Roland Backhouse (UK)
Stephen Bloom (USA)

Eerke Boiten (UK)

Jules Desharnais (Canada)
Thorsten Ehm (Germany)
Jeremy Gibbons (UK)

Tan Hayes (Australia)

Eric Hehner (Canada)

Johan Jeuring (The Netherlands)
Dexter Kozen (USA, chair)

K. Rustan M. Leino (USA)
Hans Leiss (Germany)
Christian Lengauer (Germany)
Lambert Meertens (USA)
Bernhard Moeller (Germany)
David Naumann (USA)
Alberto Pardo (Uruguay)
Georg Struth (Germany)
Jerzy Tiuryn (Poland)

Mark Utting (NZ)

Sponsoring Institutions

The generous support of the following institutions is gratefully acknowledged.

Cornell University
University of Stirling
Formal Aspects of Computing Science (FACS) Specialist Group

External Referees

All submitted papers were carefully reviewed by members of the program com-
mittee and the following external referees, who produced extensive review re-
ports that were transmitted to the authors. We apologize for any omissions or
inaccuracies.

Viviana Bono

Ana Bove

David Carrington
Maximiliano Cristia
Sharon Curtis

Colin Fidge

Marcelo Frias
Christoph Herrmann

Wim H. Hesselink
Marcin Jurdzinski
Stefan Kahrs

Zhiming Liu

Clare Martin

Diethard Michaelis
Ernst-Ridiger Olderog
Bruno Oliveira

Steve Reeves

Andreas Schafer

Luis Sierra

Michael Anthony Smith
Jerzy Tyszkiewicz
Pawel Urzyczyn
Geoffrey Watson

Paolo Zuliani



Best Paper Award

Modelling Nondeterminism
Clare E. Martin, Sharon A. Curtis, and Ingrid Rewitzky



Lecture Notes in Computer Science

For information about Vols. 1-3012

please contact your bookseller or Springer-Verlag

Vol. 3125: D. Kozen (Ed.), Mathematics of Program Con-
struction. X, 401 pages. 2004.

Vol. 3120: J. Shawe-Taylor, Y. Singer (Eds.), Learning
Theory. X, 648 pages. 2004.

Vol. 3111: T. Hagerup, J. Katajainen (Eds.), Algorithm
Theory - SWAT 2004. XI, 506 pages. 2004.

Vol. 3109: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz
(Eds.), Combinatorial Pattern Matching. XII, 486 pages.
2004.

Vol. 3105: S. Gébel, U. Spierling, A. Hoffmann, I. Turgel,
O. Schneider, J. Dechau, A. Feix (Eds.), Technologies for
Interactive Digital Storytelling and Entertainment. XVI,
304 pages. 2004.

Vol. 3104: R. Kralovic, O. Sykora (Eds.), Structural In-
formation and Cormunication Complexity. X, 303 pages.
2004.

Vol. 3103: K. Deb (Ed.), Genetic and Evolutionary Com-
putation - GECCO 2004. XLIX, 1439 pages. 2004.

Vol. 3102: K. Deb (Ed.), Genetic and Evolutionary Com-
putation - GECCO 2004. L, 1445 pages. 2004.

Vol. 3101: M. Masoodian, S. Jones, B. Rogers (Eds.),
Computer Human Interaction. XIV, 694 pages. 2004.

Vol. 3099: I. Cortadella, W. Reisig (Eds.), Applications
and Theory of Petri Nets 2004. XI, 505 pages. 2004.

Vol. 3098: J. Desel, W. Reisig, G. Rozenberg (Eds.), Lec-
tures on Concurrency and Petri Nets. VIII, 849 pages.
2004.

Vol. 3097: D. Basin, M. Rusinowitch (Eds.), Automated
Reasoning. XII, 493 pages. 2004. (Subseries LNAI).
Vol. 3096: G. Melnik, H. Holz (Eds.), Advances in Learn-
ing Software Organizations. X, 173 pages. 2004.

Vol. 3094: A. Niirnberger, M. Detyniecki (Eds.), Adaptive
Multimedia Retrieval. VIII, 229 pages. 2004.

Vol. 3093: S.K. Katsikas, S. Gritzalis, J. Lopez (Eds.),
Public Key Infrastructure. XIII, 380 pages. 2004.

Vol. 3092: J. Eckstein, H. Baumeister (Eds.), Extreme Pro-
gramming and Agile Processes in Software Engineering.
XVI, 358 pages. 2004.

Vol. 3091: V. van Oostrom (Ed.), Rewriting Techniques
and Applications. X, 313 pages. 2004.

Vol. 3089: M. Jakobsson, M. Yung, J. Zhou (Eds.), Applied
Cryptography and Network Security. XIV, 510 pages.
2004.

Vol. 3086: M. Odersky (Ed.), ECOOP 2004 — Object-
Oriented Programming. XIII, 611 pages. 2004.

Vol. 3085: S. Berardi, M. Coppo, F. Damiani (Eds.), Types
for Proofs and Programs. X, 409 pages. 2004.

Vol. 3084: A. Persson, J. Stirna (Eds.), Advanced Infor-
mation Systems Engineering. XIV, 596 pages. 2004.

Vol. 3083: W. Emmerich, A.L. Wolf (Eds.), Component
Deployment. X, 249 pages. 2004.

Vol. 3080: J. Desel, B. Pernici, M. Weske (Eds.), Business
Process Management. X, 307 pages. 2004.

Vol. 3079: Z. Mammeri, P. Lorenz (Eds.), High Speed
Networks and Multimedia Communications. X VIII, 1103
pages. 2004.

Vol. 3078: S. Cotin, D.N. Metaxas (Eds.), Medical Simu-
lation. XVI, 296 pages. 2004.

Vol. 3077: F. Roli, J. Kittler, T. Windeatt (Eds.), Multiple
Classifier Systems. XII, 386 pages. 2004.

Vol. 3076: D. Buell (Ed.), Algorithmic Number Theory.
X1, 451 pages. 2004.

Vol. 3074: B. Kuijpers, P. Revesz (Eds.), Constraint
Databases and Applications. XII, 181 pages. 2004.

Vol. 3073: H. Chen, R. Moore, D.D. Zeng, J. Leavitt
(Eds.), Intelligence and Security Informatics. XV, 536
pages. 2004,

Vol. 3072: D. Zhang, A.K. Jain (Eds.), Biometric Authen-
tication. XVII, 800 pages. 2004.

Vol. 3070: L. Rutkowski, J. Siekmann, R. Tadeusiewicz,
L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004. XXV, 1208 pages. 2004. (Sub-
series LNAI).

Vol. 3068: E. André, L. Dybkj{\}ae r, W. Minker, P.
Heisterkamp (Eds.), Affective Dialogue Systems. XII, 324
pages. 2004. (Subseries LNAI).

Vol. 3067: M. Dastani, J. Dix, A. El Fallah-Seghrouchni
(Eds.), Programming Multi-Agent Systems. X, 221 Pages.
2004. (Subseries LNAI).

Vol. 3066: S. Tsumoto, R. Stowiriski, J. Komorowski, J.W.
Grzymala-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004. (Subseries LNAI).

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic in
Computer Science. X, 275 pages. 2004. (Subseries LNAI).

Vol. 3064: D. Bienstock, G. Nemhauser (Eds.), Integer
Programming and Combinatorial Optimization. X1, 445
pages. 2004.

Vol. 3063: A. Llamosi, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3062: J.L. Pfaltz, M. Nagl, B. Bohlen (Eds.), Applica-
tions of Graph Transformations with Industrial Relevance.
XYV, 500 pages. 2004.

Vol. 3061: EF. Ramas, H. Unger, V. Larios (Eds.), Ad-
vanced Distributed Systems. VIII, 285 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAI).



Vol. 3059: C.C. Ribeiro, S.L. Martins (Eds. ), Experimental
and Efficient Algorithms. X, 586 pages. 2004.

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3057: B. Jayaraman (Ed.), Practical Aspects of
Declarative Languages. VIII, 255 pages. 2004.

Vol. 3056: H. Dai, R. Srikant, C. Zhang (Eds.), Advances in
Knowledge Discovery and Data Mining. XIX, 713 pages.
2004. (Subseries LNAI).

Vol. 3055: H. Christiansen, M.-S. Hacid, T. Andreasen,
H.L. Larsen (Eds.), Flexible Query Answering Systems.
X, 500 pages. 2004. (Subseries LNAI).

Vol. 3054: 1. Crnkovic, J.A. Stafford, H.W. Schmidt, K.
Wallnau (Eds.), Component-Based Software Engineering.
X1, 311 pages. 2004.

Vol. 3053: C. Bussler, J. Davies, D. Fensel, R. Studer
(Eds.), The Semantic Web: Research and Applications.
XIII, 490 pages. 2004.

Vol. 3052: W. Zimmermann, B. Thalheim (Eds.), Abstract
State Machines 2004. Advances in Theory and Practice.
XII, 235 pages. 2004.

Vol. 3051: R. Berghammer, B. Mdaller, G. Struth (Eds.),
Relational and Kleene-Algebraic Methods in Computer
Science. X, 279 pages. 2004.

Vol. 3050: J. Domingo-Ferrer, V. Torra (Eds.), Privacy in
Statistical Databases. IX, 367 pages. 2004.

Vol. 3049: N|. Bruynooghe, K.-K. Lau (Eds.), Program
Development in Computational Logic. VIII, 539 pages.
2004.

Vol. 3047: FE. Oquendo, B. Warboys, R. Morrison (Eds.),
Software Architecture. X, 279 pages. 2004.

Vol. 3046: A. Lagand, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1016 pages. 2004.

Vol. 3045: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1040 pages. 2004.

Vol. 3044: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1140 pages. 2004.

Vol. 3043: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1180 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, I.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004.

Vol. 3040: R. Conejo, M. Urretavizcaya, J.-L. Pérez-de-
la-Cruz (Eds.), Current Topics in Artificial Intelligence.
X1V, 689 pages. 2004. (Subseries LNAI).

Vol. 3039: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1271 pages. 2004.

Vol. 3038: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-

garra (Eds.), Computational Science - ICCS 2004. LX VI,
1311 pages. 2004.

Vol. 3037: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LX VI,
745 pages. 2004.

Vol. 3036: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
713 pages. 2004.

Vol. 3035: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XII, 326 pages. 2004. (Sub-
series LNAI).

Vol. 3034: J. Favela, E. Menasalvas, E. Chdvez (Eds.), Ad-

vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXXVIII, 1076 pages.
2004.

Vol. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.
Vol. 3031: A. Butz, A. Kriiger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3030: P. Giorgini, B. Henderson-Sellers, M. Winikoff

(Eds.), Agent-Oriented Information Systems. XIV, 207
pages. 2004. (Subseries LNAI).

Vol. 3029: B. Orchard, C. Yang, M. Ali (Eds.), Innovations
in Applied Artificial Intelligence. XXI, 1272 pages. 2004.
(Subseries LNAI).

Vol. 3028: D. Neuenschwander, Probabilistic and Statis-
tical Methods in Cryptology. X, 158 pages. 2004.

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. X1, 628 pages. 2004.
Vol. 3026: C. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3024: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3023: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 611 pages. 2004.

Vol. 3022: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3021: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 633 pages. 2004.

Vol. 3019: R. Wyrzykowski, J.J. Dongarra, M. Paprzy-
cki, J. Wasniewski (Eds.), Parallel Processing and Applied
Mathematics. XIX, 1174 pages. 2004.

Vol. 3018: M. Bruynooghe (Ed.), Logic Based Program
Synthesis and Transformation. X, 233 pages. 2004.

Vol. 3017: B. Roy, W. Meier (Eds.), Fast Software Encryp-
tion. XI, 485 pages. 2004.

Vol. 3016: C. Lengauer, D. Batory, C. Consel, M. Odersky
(Eds.), Domain-Specific Program Generation. XII, 325
pages. 2004.

Vol. 3015: C. Barakat, I. Pratt (Eds.), Passive and Active
Network Measurement. XI, 300 pages. 2004.

Vol. 3014: F. van der Linden (Ed.), Software Product-
Family Engineering. IX, 486 pages. 2004.



Table of Contents

Invited Talk

Extended Static Checking for Java ........... .. ... .. .. ... . . ...
Greg Nelson

Contributed Papers

Constructing Polymorphic Programs with Quotient Types ..............
Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride

Optimizing Generic Functions .......... ... ... ... i
Artem Alimarine and Sjaak Smetsers

Inferring Type Isomorphisms Generically.............. ... ... ... ...
Frank Atanassow and Johan Jeuring

Friends Need a Bit More: Maintaining Invariants Over Shared State ... ...
Mike Barnett and David A. Naumann

Chasing Bottoms — A Case Study in Program Verification
in the Presence of Partial and Infinite Values .. ........................
Nils Anders Danielsson and Patrik Jansson

Describing Gen/Kill Static Analysis Techniques with Kleene Algebra .. ...
Therrezinha Fernandes and Jules Desharnais

A Free Construction of Kleene Algebras with Tests.....................
Hitoshi Furusawa

Streaming Representation-Changers .. ........ ... .. .. .o,
Jeremy Gibbons

Probabilistic Predicative Programming ...............................
Eric C.R. Hehner

An Algebraof Scans. ..... ... e
Ralf Hinze

Compiling Exceptions Correctly ......... ...,
Graham Hutton and Joel Wright

Modelling Nondeterminism . .........couiiiin i ieieinnenanns
Clare E. Martin, Sharon A. Curtis, and Ingrid Rewitzky



X Table of Contents

Lazy Kleene Algebra ....... ... i 252
Bernhard Maller

Augmenting Types with Unbounded Demonic
and Angelic Nondeterminacy . ......... ..o, 274
Joseph M. Morris

An Injective Language for Reversible Computation ..................... 289
Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi

Prototyping Generic Programming in Template Haskell . ................ 314
Ulf Norell and Patrik Jansson

Transposing Relations: From Maybe Functions to Hash Tables ........... 334
José Nuno Fonseca de Oliveira
and César de Jesus Pereira Cunha Rodrigues

Pointer Theory and Weakest Preconditions without Addresses and Heap .. 357
Birgit Schieder

Travelling Processes . ... ..ottt e e 381
Xinbei Tang and Jim Woodcock

Author Index ......... . . 401



Extended Static Checking for Java

Greg Nelson

Imaging Systems Department
HP Labs
Mail Stop 1203
1501 Page Mill Road
Palo Alto, CA 94304, USA
gnelson@hp.com

Abstract. The talk provides an overview and demonstration of an Ex-
tended Static Checker for the Java programming language, a program
checker that finds errors statically but has a much more accurate seman-
tic model than existing static checkers like type checkers and data flow
analysers. For example, ESC/Java uses an automatic theorem-prover and
reasons about the semantics of assignments and tests in the same way
that a program verifier does. But the checker is fully automatic, and
feels to the programmer more like a type checker than like a program
verifier. A more detailed account of ESC/Java is contained in a recent
PLDI paper [1]. The checker described in the talk and in the PLDI paper
is a research prototype on which work ceased several years ago, but Joe
Kiniry and David Cok have recently produced a more up-to-date checker,
ESC/Java 2 [2].

References

1. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James
B. Saxe, and Raymie Stata. Extended Static Checking for Java. Proc. PLDI’02.
ACM. Berlin, Germany, 2002.

2. David Cok and Joe Kiniry. ESC/Java 2 project page.
http://wuw.cs.kun.nl/sos/research/escjava/main.html.

D. Kozen (Ed.): MPC 2004, LNCS 3125, p. 1, 2004.
© Springer-Verlag Berlin Heidelberg 2004



Constructing Polymorphic Programs
with Quotient Types

Michael Abbott!, Thorsten Altenkirch?, Neil Ghani', and Conor McBride?

! Department of Mathematics and Computer Science, University of Leicester
michael@araneidae.co.uk, ng13@mcs.le.ac.uk
2 School of Computer Science and Information Technology, Nottingham University
txaQcs.nott.ac.uk
3 Department of Computer Science, University of Durham
c.t.mcbride@durham.ac.uk

Abstract. The efficient representation and manipulation of data is one of the
fundamental tasks in the construction of large software systems. Parametric
polymorphism has been one of the most successful approaches to date but, as
of yet, has not been applicable to programming with quotient datatypes such
as unordered pairs, cyclic lists, bags etc. This paper provides the basis for
writing polymorphic programs over quotient datatypes by extending our recently
developed theory of containers.

1 Introduction

The efficient representation and manipulation of data is one of the fundamental tasks
in the construction of large software systems. More precisely, one aims to achieve
amongst other properties: i) abstraction so as to hide implementation details and thereby
facilitate modular programming; ii) expressivity so as to uniformly capture as wide a
class of data types as possible; iii) disciplined recursion principles to provide convenient
methods for defining generic operations on data structures; and iv) formal semantics to
underpin reasoning about the correctness of programs. The most successful approach
to date has been Hindley-Milner polymorphism which provides predefined mechanisms
for manipulating data structures providing they are parametric in the data. Canonical
examples of such parametric polymorphic functions are the map and fold operations
which can be used to define a wide variety of programs in a structured and easy to
reason about manner.

However, a number of useful data types and associated operations are not express-
ible in the Hindley-Milner type system and this has lead to many proposed extensions
including, amongst others, generic programming, dependent types (Altenkirch and
McBride, 2003), higher order types (Fiore et al., 1999), shapely types (Jay, 1995),
imaginary types (Fiore and Leinster, 2004) and type classes. However, one area which
has received less attention is that of quotient types such as, for example, unordered
pairs, cyclic lists and the bag type. This is because the problem is fundamentally rather
difficult — on the one hand one wants to allow as wide a theory as possible so as to
encompass as many quotient types as possible while, on the other hand, one wants to
restrict one’s definition to derive a well-behaved meta-theory which provides support

D. Kozen (Ed.): MPC 2004, LNCS 3125, pp. 2-15, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



Constructing Polymorphic Programs with Quotient Types 3

for key programming paradigms such as polymorphic programming etc. Papers such
as Hofmann (1995) have tended to consider quotients of specific types rather than
quotients of data structures which are independent of the data stored. As a result, this
paper is original in giving a detailed analysis of how to program with quotient data
structures in a polymorphic fashion. In particular,

e We provide a syntax for declaring quotient datatypes which encompasses a variety
of examples. This syntax is structural which we argue is essential for any theory of
polymorphism to be applicable.

e We show how the syntax of such a declaration gives rise to a quotient datatype.

e We provide a syntax for writing polymorphic programs between these quotient
datatypes and argue that these programs do indeed deserve to be called
polymorphic.

e We show that every polymorphic function between our quotient datatypes is
represented uniquely by our syntax. That is, our syntax captures all polymorphic
programs in a unique manner.

To execute this program of research we extend our work on container datatypes
(Abbott, 2003; Abbott et al., 2003a,b). Container types represent types via a set of
shapes and locations in each shape where data may be stored. They are therefore like
Jay’s shapely types (Jay, 1995) but more general as we discuss later. In previous papers
cited above, we have shown how these container types are closed under a wide variety
of useful constructions and can also be used as a framework for generic programming,
eg they support a generic notion of differentiation (Abbott et al., 2003b) which derives
a data structure with a hole from a data structure.

This paper extends containers to cover quotient datatypes by saying that certain
labellings of locations with data are equivalent to others. We call these structures
quotient containers. As such they correspond to the step from normal functors to
analytic functors in Joyal (1986). However, our quotient containers are more general
than analytic functors as they allow infinite sets of positions to model coinductive
datatypes. In addition, our definition of the morphisms between quotient containers
is new as is all of their applications to programming. In addition, while pursuing the
above program, we also use a series of running examples to aid the reader. We assume
only the most basic definitions from category theory like category, functor and natural
transformations. The exception is the use of left Kan extensions for which we supply
the reader with the two crucial properties in section 2. Not all category theory books
contain information on these constructions, so the reader should use Mac Lane (1971);
Borceux (1994) as references.

The paper is structured as follows. In section 2 we recall the basic theory of
containers, container morphisms and their application to polymorphic programming.
We also discuss the relationship between containers and shapely types. In section 3
we discuss how quotient datatypes can be represented in container theoretic terms
while in section 4 we discuss how polymorphic programs between quotient types can
be represented uniquely as morphisms between quotient containers. We conclude in
section 5 with some conclusions and proposals for further work.



4 Michael Abbott et al.

2 A Brief Summary of Containers

Notation: We write N for the set of natural numbers and if n € N, we write n for the
set {0,...,n— 1}. We assume the basic definitions of category theory and if f: X — Y
and g : Y — Z are morphisms in a category, we write their composite gof : X — Z as is
standard categorical practice. We write K for the constantly 1 valued functor from any
category to Sets. If A is a set and B is an A indexed family of sets, we write Y a:A. B(a)
for the set {(a,b) | a € A,b € B(a)}. We write ! for the empty map from the empty set
to any other set. Injections into the coproduct are written inl and inr.

This paper uses left Kan extensions to extract a universal property of containers
which is not immediately visible. We understand that many readers will not be familiar
with these structures so we supply all definitions and refer the reader to Mac Lane
(1971) for more details. Their use is limited to a couple of places and hence doesn’t
make the paper inaccessible to the non-cogniscenti. Given a functor [/ : & — % and
a category %, precomposition with I defines a functor _ol : [B,%] — [«/,€]. The
problem of left Kan extensions is the problem of finding a left adjoint to _o /. More
concretely, given a functor F : &/ — €, the left Kan extension of F along [ is written
Lan; F defined via the natural isomorphism

(B,€)(Lan; F,H) = [o,€)(F,Hol) (1)

One can use the following coend formula to calculate the action of a left Kan extension
when @ = Sets and &7 is small

A€ol
(LanyF)X = / B(IA,X) x FA @)

What Are Containers? Containers capture the idea that concrete datatypes consist of
memory locations where data can be stored. For example, any element of the type of
lists List(X) of X can be uniquely written as a natural number n given by the length of
the list, together with a function {0,...,n — 1} — X which labels each position within
the list with an element from X. Thus we may write

List(X) = Y n:N. {0,....n—1} > X 3)

We may think of the set {0,...,n— 1} as n memory locations while the function f
attaches to these memory locations, the data to be stored there. Similarly, any binary tree
tree can be uniquely described by its underlying shape (which is obtained by deleting
the data stored at the leaves) and a function mapping the positions in this shape to the

data thus:
X
B = /‘@

DR

More generally, we are led to consider datatypes which are given by a set of shapes S
and, for each s € S, a set of positions P(s) which we think of as locations in memory
where data can be stored. This is precisely a container



Constructing Polymorphic Programs with Quotient Types 5

Definition 2.1 (Container). A container (S P) consists of a set S and, for each s € S,
a set of positions P(s).

Of course, in general we do not want to restrict ourselves to the category of sets since
we want our theory to be applicable to domain theoretic models. Rather, we would
develop our theory over locally cartesian closed categories (Hofmann, 1994), certain
forms of fibrations such as comprehension categories (Jacobs, 1999) or models of
Martin-Lof type theory — see our previous work (Abbott, 2003; Abbott et al., 2003a,b)
for such a development. However, part of the motivation for this paper was to make
containers accessible to the programming community where we believe they provide a
flexible platform for supporting generic forms of programming. Consequently, we have
deliberately chosen to work over Sets so as to enable us to get our ideas across without
an overly mathematical presentation.
As suggested above, lists can be presented as a container

Example 2.2 The list type is given by the container with shapes given by the natural
numbers N and, for n € N, define the positions P(n) to be the set {0,...,n—1}.

To summarise, containers are our presentations of datatypes in the same way
that data declarations are presentations of datatypes in Haskell. The semantics of a
container is an endofunctor on some category which, in this paper, is Sets. This is given

by

Definition 2.3 (Extension of a Container). Let (S > P) be a container. Its semantics,
or extension, is the functor Tg,p : Sets — Sets defined by

Tsop(X) = Y,s:S. (P(s) = X)

An element of T, p(X) is thus a pair (s, f) where s € Sis ashape and f : P(s) — X isa
labelling of the positions over s with elements from X . Note that T, p really is a functor
since its action on a function g : X — Y sends the element (s, f) to the element (s,go f).
Thus for example, the extension of the container for lists is the functor mapping X to

Yn:N. {0,...,n—1} - X .

As we commented upon in equation 3, this is the list functor.

The theory of containers was developed in a series of recent papers (Abbott, 2003;
Abbott et al., 2003a,b) which showed that containers encompass a wide variety of
types as they are closed under various type forming operations such as sums, products,
constants, fixed exponentiation, (nested) least fixed points and (nested) greatest fixed
points. Thus containers encapsulate a large number of datatypes. So far, we have dealt
with containers in one variable whose extensions are functors on Sets. The extension to
n-ary containers, whose extensions are functors Sets” — Sets, is straightforward. Such
containers consist of a set of shapes S, and for each s € S there are n position sets P,(s).
See the above references for details.

We finish this section with a more abstract presentation of containers which will be
used to exhibit the crucial universal property that they satisfy. This universal property
underlies the key result about containers. First, note that the data in a container (S P)



6 Michael Abbott et al.

can be presented as a functor P : S — Sets where here we regard the set S as a discrete
category and P maps each s to P(s). In future, we will switch between these two views
of a container at will. The semantic functor s, p has a universal property given by the
following lemma.

Lemma 2.4. Let P : S — Sets be a container. Then T, p is the left Kan extension of K|
along P ¢

P

§ ———— > Sets

K
: Ts.p = LanpK,

Sets

Proof We calculate as follows

5:S
(LanpK))X = / Sets(Ps,X) x Kis = Y.s:5. Sets(Ps,X) = Tsp(X)

where the first equality is the classic coend formula for left Kan extensions of equation
2, the second equality holds as S is a discrete category and 1 is the unit for the product,
and the last equality is the definition of T, p(X). O

As we shall see, this universal property will be vital to our representation theorem.

2.1 Container Morphisms

Containers are designed for implementation. Thus, we imagine defining lists in a
programming language by writing something like

data List = (n:Nbpn)

although the type dependency means we need a dependently typed language. If we
were to make such declarations, how should we program? The usual definitions of lists
based upon initial algebras or final coalgebras give rise naturally to recursive forms
of programming. As an alternative, we show that all polymorphic functions between
containers are captured uniquely by container morphisms.

Consider first the reverse function applied to a list written in container form (n, g).
Its reversal must be a list and hence of the form (n’,g’). In addition, n’ should only
depend upon n since reverse is polymorphic and hence shouldn’t depend upon the actual
data in the list given by g. Thus there is a function N — N. In the case of reverse,
the length of the list doesn’t change and hence this is the identity. To define g’ which
associates to each position in the output a piece of data, we should first associate to
each position in the output a position in the input and then look up the data using g.



