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Preface

The IIT Latin American School of Mathematics (ITTI ELAM) aimed
to stimulate the development of the areas of geometry and topology in
Latin America and to expand the interchange of ideas and contacts among
mathematicians of this region initiated with the support of the OAS in
the T and IT Schools, held respectively in Brazil and Mexico. The III
ELAM congregated more than 250 mathematicians (researches and students)
most of them from Latin America. The members of the Organizing Committee

were: C. Camacho, P. Schweitzer, M. do Carmo and J. Palis (Coordinator%

These Proceedings reflect one of the two main activities of the
meeting, namely a series of research talké covering topics in Dynamical
Systems, Differential Geometry, Foliations, Singularities of Mappings
and Algebraic Topology. The other activity was a series of introductory
courses in these subjects given by M. Peixoto, M. do Carmo, P.Schweitzer,
J. Sotomayor and J. Adem, whose lecture notes are being omr have been in-

formally published by the Organizing Committee.

We hope that these Proceedings can contribute to the further
progress of these areas of Mathematics within and outside Latin America.

To many of our colleagues, to several universities and research
institute of Latin America and to the director of the host institution
L. Dias we express our gratitude for their most valuable help.

We acknowledge the financial support of the Brazilian agencies

CNPq, FINEP, FAPESP and CAPES, as well as the OAS.

Jacob Palis and Manfredo do Carmo

Rio de Janeiro, April, 1977
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EVALUATION OF SOME MAUNDER COHOMOLOGY OPERATIONS

By

José Adem and Kee Yuen Lam
Introduction

In this paper we present an explicit evaluation of primary, secon-
dary and tertiary Maunder cohomology operations on complex projective
spaces. These operations are related to divisibility properties of the
Chern character, as was first discovered by Adams for primary operations
([2]) and later extended by Maunder to higher order operations ([147).

If n is the canonical complex line-bundle over the N-dimensional

complex projective space CPN, we have

ch(n-1)" = (e¥-1)" = " + Et=1{n+t,n}wn+t,

where the rationzl numbers {n+t,n} are the Taylor coefficients and
w € HZ(CPN;Z) is the integral cohomology generator. According with

Adams (loc. cit.) the number
(*) m(t){n+t,n}

is an integer, where the numerical function m(t) is defined by

P

where p runs over the primer numbers.

N\



Roughly speaking, to compute the higher order Maunder operations
(mod 2) on the class o is equivalent to determine the highest power
of two contained in the integers (%), In section 3 we give explicit
expressions that allow us to compute the 2-integers Zt{n+t,n} mod 8
and this is enough for our purpose.

We obtain simple formulas in terms of binomial coefficients to
evaluate the Maunder secondary and tertiary operations on the class W
(see (4.6), (4.17)). Their duals, denoted by ¢§3) for secondary and by
Ogi) for tertiary operations, are also evaluated (see (6.5), (7.12)).
The secondary operations °gi) have been used to solve several problems.
Through "accompany relations" they can be combined to yield non-trivial
operations on real projective spaces, that are applied to solve non-
immersion problems ([5],[63). We do not know how to apply this proce-
dure to the ¢§i). In general, examples of non-trivial tertiary oper-
ations on real projective spaces promise to be interesting.

We do not give any application of our results, with exception of

2242 and r o= 20, with n 2 2.

this one, presented right here. Let q =

Our evaluation of tertiary operations in (7.12), gives
°§i)wq = I'T (mod 2),

in H*(CPq+r/CPq_1;ZZ). Now, a result of Gitler and Milgram ([11]),
shows that the operation ¢£i) on an integral class of dimension % < 2r—7
is a primary operation. This operation in our case becomes zero and we
have proved that the stunted projective space CPqﬂr/CPq'1 cannot be
desuspended 2q—2r+7 times.

Finally, we want to indicate that Dennis Phee Hurley has obtained

in [16], evaluation results for a full family of modified Maunder dual

operations of all orders. His work agrees with our theorem (7.12) and
can be regarded as a generalization of the results given in [10], for

secondary operations. However, it seems that he cannot obtain our

theorem (4.17).



1. The Maunder operations

As defined in [14;p.753], let C(3,r) be the chain complex (3 £ r)

(1.1 C C C1 CO,
where each Ci is a free-graded left module over the mod 2 Steenrod
algebra A, on generators described as follows:

with A-basis {co},

o
C1 with A-basis {c1, C10° c11},
C2 with A-basis {CZ’ €0 ©21° CZZ}’
Cs with A-basis {c3},
where dim Co = 0, dim c; = 2r+i—-1 for i = 1,2,3, and dim Chi ° 3n—-2i,

for n = 1,2. On these generators, the maps di are given by

d1c1

(1.2) d1c10 = Sq01c0,
1

d1c11 = Sq Co-

(Xqur)co,

2r—2

_ 1 2r
dzc2 = Sq ¢y * (XS8q )c11 + (XSq )c10,
.01
1.3 dy€20 = 52 4y
. el 01
dyCyq = Sa'cqg * Sa ey
el
[_dzczz = Sq.cqys
1 2r 2r—2 2r—
(1.4) dge, = Sq'c, + (x5¢°T)c,, + (xsq®T ),y + (xsa’T Mey



where Sq01 = SqZSq1 + Sq1Sq2 and X : A———> A is the canonical

antiautomorphism. Each map di is of degree zero and dzd3 = d1d2 =0

follows from the relations

(1.5) sq'sq! = o,
(1.6) 5q%1sq? < o,
(1.7) 5q'sq®" + 5q%7sq! = o,
(1.8) sa'(xsa®") + (xsa®*"%sq?! + (x5q4%T)sq" = 0.

Associated with C(3,r) we have a pyramid of operations 0§’t, for
3>s >t>0, where each &t is of (s—t)Eh order. We recall that
this set of operations verify the Maunder's axioms and that they sat-

isfy the relations with the Chern character as stated in [14;Th.21].

Let w € HZ(CPN;ZZ) be the mod 2 cohomology generator of the
N-dimensional complex projective space, where N is a large enough
number, and let w" be the n-fold product of w. Sometimes it is
necessary to work in a (2n-—1)-connected complex (see [14;Th.1]). In
this case, through the collapsing map, whois regarded as an element

® N, pn—1,
of H (CP'/CP ,Zz). Set
n—1 ’Zz) ’

*
(1.9) e : C, —> H (cPN/cp

0

as the A-map defined by e(co) = w". For ¢ (or equivalently for wn),
we shall make explicit the primary, secondary and tertiary operations

associated with the chain complex (1.1).



In order to motivate the computation developed in section 3, we
advance the following. Let n be the canonical complex line bundle
over CPN, and 4 = n—1. The n-fold product un can be regarded as an
element of the Grothendieck ring RC(CPN/CPH_1) (see [3;p.622]). If
w € Hz(CPN;Z) represents the integral cohomology generator then, for

the Chern character, we have chuy = e”—1 and
(1.10) chp? = (e¥-1".

2. A binomial identity

In this section we state the Jensen identity concerning binomial

coefficients (g). Let o,B,y and n be positive integers. Then we have
(2.1) T (0*Bky (7+B(nk)y 5 gietving—i
: k=0 k n—k 1=0 n-i :

For a proof see [9].

3. Computation of 2% {n+t,n} mod 8

Write (e®-1" = Em {n+t,n}wn+t where {n+t,n} are the Taylor
coefficients., The valuet;g Zt{n+t,n} mod 2¥ must be computed in order
to evaluate the Maunder operations on CP”. In this section we compute
them mod 8. Computation mod 16 is also available. In general the task
becomes more complicated modulo higher powers of 2.

All computations and divisibility arguments take place in Z(Z)’
the ring of rational numbers with odd denominators. If a,b € Z(Z)’

a = b (mod Zr) means that a-b = 2¥c for some c € Z(Z)' This is the

only kind of congruence considered in our paper.



First we assert that 2%{n+t,n} is in Z(Z) for all n and t. When
n=1=1, 2t {1+t,1} = Zt/(t+1)! is indeed in Z(Z)’ because of the well
known fact:

m—o. (m)

(3.1) The highest power of 2 dividing m! is 2 , where a(m) is

the number of 1's in the dyadic expansion of m.

The general assertion that Zt{n+t,n}€ Z(Z) now follows inductively

from
Proposition (3.2). For all n,t > 0 we have
t v t—i
(3.3) 2°{n+1+t, n+1} = 2 27 {n+i,n}2 {1+t-1,1}.
i=0
The proof is by equating coefficients of wn+1+t in

(ew_1)n+1 = (em—q)n(ew—1).
To compute 2t {n+t,n} mod 8, we first do so for n = 1 in
theorem (3.4) below. We then attack the general case inductively on n,

using arguments based on (3.2) and the binomial identity (2.1).

Theorem (3.4). For every t > 0 the value of Zt/(t+1)! mod 8

is given by
t
(3.5) oy = (D - 235D a3 (mod 8).

Proof. The formula is directly verified for t = 0,1,2 and 3,

so we take t > 4, in which case the last term on the right hand side

is always divisible by 8 (see(3.1)) and may as well be dropped.



t
Introduce the function F(t) = II (2i+1) and note the identity
i=0
t
2ty _ 2
(3.6) ( t) = T F(t-1).
Writing (11?t) = %;%l (a}) and using (3.6) to substitute for the

binomial coefficients, we reduce (3.5) to the equivalent form

t t
(3.7) (t—fﬂ— (F(t)=1) — (t—E1T F(t=2) = 0 (mod 8).
Since F(t+2) = —F(t) (mod 4), we have
1 = 4h or 4h+3
F(t) = {(mod 4)
-1 t = 4h+1 or 4h+2

From this and (3.1}, we easily check that (3.7) is true when t = 0,3
(mod 4) or when a(t+1) > 3; for in these cases each individual term
of (3.7) is a multiple of 8. The only remaining possibility is when
t = 2r+1, in which case Zt/(t+1)! and Zt/(t—1)! are both even, so we
may replace F(t), F(t-2) by their mod 4 values in (3.7), reducing it to

2t 2t

(3.8) 2 )T T e T 2 0 (mod 8) t = 2%+,

Now (3.8) is true because its left hand side equals Zt/(t+1)! times

a multiple of 4., This ends the proof of our theorem.
Theorem (3.9). The value of Zt{n+t,n} mod 8 is given by

(3.10) 2%n+t,n} = (MY - 2(“*t2_t1‘€) + 4A (mod 8),

P



where € = 1 or 3 according as n is even or odd, and A depends on the

mod 4 value of n as follows:

n(4) 1 2 3 4

n+2t—7 (n+2t 3)

+2t— +2t=3 +2t—7
™25 M2 ) MY - O

G

+

Proof. By induction on n. When n = 1 this is theorem (3.4).
Supposing inductively that the theorem holds for n = 4m+1, we shall
derive in succession that it also holds for 4m+2, 4m+3, 4m+4 and 4m+5.
The argument is given only for passing from 4m+1 to 4m+2, since the
other steps are entirely similar, and equally tedious.

Take, then, n = 4m+1, and assume it has been proved that

t _ n+2t +2t—3 +2t—7
2%n+t,n} = (U0 - 2T < 4 ED (mod 8).
By formula (3.3) we have
t LI | t—i
(3.11) 2°{n+1+t, n+1} = & 27 {n+i,n}2" “{1+t—i,1} =

i=0

t .
zi;o [(ngfl) _ (n+21—3) + 4(n+21—7)] E(1+2t—21 _ (22—3112) 2t iig6)]

We can expand the product in the above expression, drop all multiples
of 8, and end up with 6 summation terms. Each term can be written in

the form Ekak according to (2.71). For example,

t : . t
2t—2 k
T 0(n§?1)(1+t_4 Iy = 5 02 (n+1;§:—k) - (n+2r2t) . z(n+2t) . 4(n+2%21) .
1= =

If we do this for all the six terms, and ignore multiples of 8 along

the way, we end up with the following huge sum




(3.12) {(n+if+1) + Z(Q:;f) + 4(n+2t— )} _2{(n+2t 2) . 2(n+2t—3)}
+ 4(n+t2t3~6) (n+2t 2) + 2(1'1+2t 3)} + 4(1'1 tZtZ——) + 4(n+t2f3—6)

In this sum, the second and the third { } can be combined and simpli-
fied mod 8, the last term cancels a previous term mod 8. Using the

identity (g) = (ab ) o+ (b 1), we get the result

(n+1:2t) _,z(n+1+2t 1) + 4[(n+1+2t 3) + (n+1t3;—6)]’

which is the mod 8 value of Zt{n+1+t,n+1}, as is to be proved. This
establishes the theorem for n+1 = 4m+2, and we can go on to 4m+j,

3 < j £ 5 by the same steps of argument, completing the induction.

Of course, if we are only interested in the mod 4 or mod 2 values

of Zt{n+t,n}, things will be greatly simplified. We shall just record

n+2t)

Corollary (3.13). 2%{n+k,n} = (™ (mod 2).
Corollary (3.14).  2%{n+t,n} = (™7F% - 2(™2% (mod 4).

Now, as a check to the correctness of theorem (3.9), we propose

to show, in a somewhat different way.
- _ 2—1
Proposition (3.15). If n = 0 (mod 2 ), then

1
2%(n+t,n} = (M2 2™ (mod 27).
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Proof. By induction on %. If & = 1, see corollary (3.13).
Assume the proposition true for n, we will show its truth for 2n.

For this purpose write the inductive hypothesis as

Zw o
S =" = g [(“"2t ~ (™25 et (mod 2%).
t=0

2 - .2 2+1

Now, if a = b, mod 22, £ >0, then a° = b” mod 2 because

2 _ .2 _

a“ — b (a—b)2 + 2b(a-b). This is true even if a,b are power series.

Hence we get

g 2
(5 W) = (Et_ot(nfgt) ~‘2(n??ﬂ 16 (mod 2**1y.

The coefficient of ob in the right hand side is

5 [(ntfi) _ 2(n+21 1)][(n+2t 21) _ 2(n+52;i%~1)].
i=0

If we treat this summation in the same way as we treated (3.11), by

241

applying (2.1), and dropping multiples of 2 along the way, we obtain

the simple result

2n+2t 2n+2t—1
Y =20

2+1

which is congruent mod 2 to Zt{2n+t,2n}, the coefficient of wb in

the left hand side. Thus our induction is completed.
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4. Evaluation of the Maunder operations on CPN

Now we go back to the evaluation on & of the primary, secondary
and tertiary operations, associated with the chain complex C(3,r}. In
Maunder's notations these are: °1’0(e), 02’0(5) and 03’0(5), where €
is the A-map (1.9) of degree 2n.

°K’0(k) is an equivalence

If x is of degree q, we recall that
*
class of maps & : Cé-—*9 H (CPN;ZZ) of degree q—K+1, where two maps
are considered equivalent if they differ by a map in the indeterminacy

of ®%50, Also, ok, 0

(A) is defined only for those A-maps x such that
each ¢t’0(1), for K > t > 0, is the equivalence class containing the
zero map (see [13],[14]). For our particular case of the first three
operations on CPN, we will try to present these facts in a simpler
equivalent form.

The primary operation is ¢1’0[€) = ed1 and from (1.2), it follows

that this operation is given by

2
(Xsq“Hw",
4.1 sq®Tw™ = o,
Sq1wn =0

Zr)wn‘

Consequently, we can regard @1’0(8) as represented only by (XSq
We make the first use of the computation developed in section 3,
as follows. From Adams's theorem [2;Th.2] together with (1.10) and

the congruence (3.13), we get

2ry.n _ (n+2r)wn+r

(4.2) (XSq™ " )w r >

and this completes the evaluation of the primary operation ¢1’0(£).



