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MATHEMATICAL METHODS AND MODELS
FOR ECONOMISTS

This book is intended as a textbook for a first-year Ph.D. course in mathe-
matics for economists and as a reference for graduate students in econom-
ics. It provides a self-contained, rigorous treatment of most of the concepts
and techniques required to follow the standard first-year theory sequence
in microeconomics and macroeconomics. The topics covered include an
introduction to analysis in metric spaces, differential calculus, comparative
statics, convexity, static optimization, dynamical systems, and dynamic opti-
mization. The book includes a large number of applications to standard eco-
nomic models and more than two hundred problems that are fully worked
out.

Angel de la Fuente is Assistant Professor of Economics at the Instituto
de Analisis Econémica (CSIC), Adjunct Professor at the Department of
Economics of the Universidad Auténoma de Barcelona, and Research
Affiliate at the Centre for Economic Policy Research (CEPR), London.
Besides his interest in mathematical economics, he specializes in growth and
regional economics. Professor de la Fuente has published in the Journal of
Monetary Economics, the Journal of Economic Dynamics and Control, Eco-
nomic Policy, Revista Espafiola de Economia, and Investigaciones Econdmi-
cas, among other journals.
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Preface and Acknowledgments

Much of the time of the average graduate student in economics is spent
learning a new language, that of mathematics. Although the investment does
eventually pay off in many ways, the learning process can be quite painful.
I know because I have been there. I remember the long nights spent puz-
zling over the mysteries of the Hamiltonian, the frustration of not under-
standing a single one of the papers in my second macroeconomics reading
list, the culture shock that came with the transition from the undergraduate
textbooks, with their familiar diagrams and intuitive explanations, into
Debreu’s Theory of Value, and my despair before the terse and incredibly
dry prose of the mathematics texts where I sought enlightenment about the
arcane properties of contractions.

This book is an attempt to make the transition into graduate economics
somewhat less painful. Although some of my readers may never believe me,
I have tried to do a number of things that should make their lives a bit easier.
The first has been to collect in one place, with a homogeneous notation, most
of the mathematical concepts, results, and techniques that are required to
follow the standard first- and second-year theory courses. I have also tried
to organize this material into a logical sequence and have illustrated its
applications to some of the standard models. And last but not least, I have
attempted to provide rigorous proofs for most of the results as a way to get
the reader used to formal reasoning. Although a lot of effort has gone into
making the text as clear as possible, the result is still far from entertaining.
Most students without a good undergraduate background in mathematics
are likely to find the going a bit rough at times. They have all my sympathy
and the assurance that it does build character.

This book has been long in the making. It started out as a set of notes that
I wrote for myself during my first year at Penn. Those notes were then
refined for the benefit of my younger classmates when I became a teaching
assistant, and they finally grew into lecture notes when I had the misfortune
to graduate and was forced onto the other side of the lectern. Along the way,
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I have had a lot of help. Much of the core material can be traced back to
class lectures by Richard Kihlstrom, George Mailath, Beth Allen, David
Cass, Maurice Obstfeld, Allan Drazen, Costas Azariadis, and Randy Wright.
The first typed version of these notes was compiled jointly with Francis
Bloch over a long and sticky Philadelphia summer as a reference for an
introductory summer course for incoming students. Francis had the good
sense to jump ship right after that, but some of his material is still here in
one form or another. Several colleagues and friends have had the patience
to read through various portions of the manuscript and have made many
useful comments and suggestions. Among these, I would especially like to
thank David Pérez and Maite Naranjo, who has also contributed a couple
of the more difficult proofs. Thanks are also due to several generations of
students at the Universidad Auténoma de Barcelona and various other
places, who, while sweating through successive versions of this manuscript,
have helped me to improve it in various ways and have detected a fair
number of errors, as well as the usual typos. Finally, I would like to thank
Conchi Rodriguez, Tere Lorenz, and the rest of the staff at the Instituto de
Andlisis Econémica for their secretarial support and for their heroic behav-
ior at the Xerox machine.
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Preliminaries






1

Review of Basic Concepts

This chapter reviews some basic concepts that will be used throughout the
text. One of its central themes is that relations and functions can be used to
introduce different types of “structures” in sets. Thus relations of a certain
type can be used to order sets according to criteria like precedence, size, or
goodness; algebraic operations are defined using functions, and a function
that formalizes the notion of distance between two elements of a set can be
used to define topological concepts like convergence and continuity. In addi-
tion, we also introduce some simple notions of logic and discuss several
methods of proof that will be used extensively later on.

1. Sets

A set is a collection of objects we call elements. We will denote sets by capital
letters, and elements by lowercase letters. If x is an element of a set X, we
write x € X, and x ¢ X otherwise. A set A is a subset of X if all elements of
A belong to X. This is written A < X (A is contained in X'). Formally, we can
write

AcX o (xeA=xeX)

where the one-way arrow (=) denotes implication, and the two-way arrow
(&) indicates equivalence. Two sets, A and B, are equal if they have the same
elements, that is, A=B if and only if A c B and B c A. The symbol &
denotes the empty set, a set with no elements. By convention, ¢ is a subset
of any set X.

Given a set X, the power set of X, written P(X) or 2%, is the set consist-
ing of all the subsets A of X. A class or family of sets in X is a subset of
P(X), that is, a set whose elements are subsets of X. We will use “hollow”
capital letters to denote families of sets. For example,

A={A; A cX,iel}
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X X

AuB ANB

Figure 1.1. Union and intersection of two sets.

where [ is some index set, such as the set of all natural numbers smaller than
some given number 7.

In what follows we will take as given some set X (the universal set), and
assuming that “there is nothing” outside X, we will work with its subsets.
Given two subsets of X, A and B, we define their union, A U B, as the set

AuB={xeX; xeAorxeB}

That is, A U B is the set of elements of X that belong to A or to B or to both.
Similarly, the intersection of A and B, denoted by A m B, is the set whose
elements belong to both sets at the same time:

ANnB={xeX;xeAandxeB}

These concepts can be extended in a natural way to classes of more than
two sets. Given a family of subsets of X, A ={A;; i € I}, its union and inter-
section are given respectively by

UA=U A ={xeX;Jielsth.xe A;} and
ﬁA=('\,-€1Ai ={XEX; XEA,' VIEI}

where the existential quantifier “3” means “there exists some,” the universal
quantifier “¥” means “for all,” and “s.th.” means “such that.” That is, x is
an element of the union UA if it belongs to at least one of the sets in the
family A, and it is an element of the intersection if it belongs to all sets in
the class.

The following theorem summarizes the basic properties of unions and
intersections of sets.

Theorem 1.1. Properties of unions and intersections of sets. Let A, B, and C
be three subsets of X. Then the following properties hold:



