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Preface

The author of the story of a science must be guided by the constraints and
demands imposed on him by the definition of ‘‘science’’ itself. A science
is more than a body of knowledge expounded in original papers and
collected in books; it is the active pursuit of this knowledge by a dedicated
group of people (scientists) who are devoted to this ‘‘great adventure’’ by
an inner drive that they cannot deny. Since physics as an intellectual
activity is the search for the fundamental laws of nature, it is the basic
science from which all others are derived; no phenomena in the universe
are foreign to the physicist. But the physicist goes beyond the mere
knowledge of facts because his ultimate concern is deducing from these
facts basic laws that enable him to correlate what appear to be disparate
phenomena and to predict future events. An excellent current example of
this concern is the astrophysicist’s description of the evolution of stars (for
example, the sun) from their present states to their ultimate demise as
white dwarfs, neutron stars, or black holes. The astrophysicist performs
this task by applying the known physical laws to stellar interiors to dis-
cover their dynamic processes.

Since knowledge of natural phenomena or even of natural laws alone
is not science, we have presented the story of physics here not only as the
growth of a body of facts but also as the emergence and evolution of
nature’s laws from facts, which could have stemmed only from a remark-
able intellectual synthesis of fact and fancy (speculation). In connection
with this theme, we emphasize again the important distinction between -
knowledge and science. Every living thing in the universe, even a single
cell, has the knowledge necessary for life, which is far beyond anything
that we know consciously. Our eyes (or the cells in our eyes) know far
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more about the laws of optics than we do, and if we had to tell the organs
in our bodies how to operate, we would quickly die. But despite all their
cleverness, the cells in our bodies are not scientists, nor, as another
example, are bees scientists. even though they know that they can keep
their hives cool by rapidly vibrating their wings; they are arguably techni-
cians, but not scientists.

Proceeding with this idea from cells, insects, and lower animals to
ourselves, we note that each of us, even the most untutored in science,
learns a great deal about the laws of nature without even being conscious
of it. In walking, running, balancing ourselves, and avoiding all kinds of
natural dangers, we constantly apply our subconscious knowledge of the
laws of motion, the law of gravity, the laws of thermodynamics, vectorial
concepts, and symmetry and conservation principles. Keeping in mind
this distinction between knowledge per se and science, we begin our story
of physics with the ancient Greeks, because their written records show
that they were involved in the deliberate pursuit of knowledge (the begin-
ning of science) as the pathway to an understanding of the universe. In
that sense. and in accordance with our prescription, they were certainly
scientists. although not very successful ones.

Since our book is not a history of physics, we do noi explore all the
tacets ol “*Creek physics,”” but present only those salient features that
influenced. whether in the right or the wrong way, the thinking of the
scientists who followed. The discoveries of Pythagoras, Euclid, Archi-
medes, Aristarchus, Hipparchus, and Ptolemy are most notable in this
respect, but to have done more than describe the works of these remark-
able philosophers briefly, yet in sufficient detail to be understandable,
would have expanded this book beyond its intended domain.

The reader who is not interested in the Greek contributions to physics
can begin this book at Chapter 3, which deals primarily with the astro-
nomical works of Nicolaus Copernicus. Tycho Brahe, and Johannes
Kepler, whose derivation of the laws of planetary motion from Brahe’s
observational data is one of the great inteilectual syntheses ot the post-
Copernican era. Comparing this achievement with that of the greatest of
the ancient Greeks shows clearly the vast difference between the specula-
tions of the Greeks (which were experimentally or observationally unsup-
ported) and the sound observational basis of Kepler's deductions.

We single out Galileo Galilei's concept of inertia and Sir Isuac New-
ton’s laws of motion for special emphasis because they are such a great
departure from the thinking of the Greeks and the philosophies of the pre-
Renaissance scholastics. This is most evident in the rapid post-Newtonian
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development of physics, which, in a relatively few years, laid the basis for
all of classical physics and modern physics, even though modern physics,
stemming from the quantum theory and the theory of relativity, departs
drastically from Newtonian physics in certain fundamental features. How-
ever, the conservation principles, the symmetry principles, and the least
action principles of classical (Newtonian) physics developed in the 18th
and 19th centuries by the classical mathematical physicists were carried
over to modern physics with certain crucial changes.

In our description of the development of classical physics, we em-
phasize such principles and show that they form the thread that connects
one group of concepts with another (for example, the dynamics of parti-
cles with thermodynamics) and also define the continuity in the evolution
of physics. Since this continuity is not broken by the rise of modern
physics—that is, the quantum theory and the theory of relativity—we
_ carefully show why the quantum theory was necessary and how it
emerged from classical physics.

The transition from the quantum theory to the quantum mechanics
(matrix mechanics and wave mechanics) as developed by Louis de
Broglie, Erwin Schrodinger, Werner Heisenberg, Pau! Dirac, and Max
Born produced a much greater revolutioi: in our thinking than did Max
Planck’s introduction of the quantum concept itself, for what that transi-
tion brought with it (that is, correctly predicted) was phenomena that defy
physical understanding. We have therefore emphasized the physical fea-
tures of the quantum mechanics as much as possible while pointing out the
features that have to be accepted at this point without question.

Given the rapid development of high-energy particle physics during
the last quarter of a century, no story of physics would be complete
without a discussion, however brief, of the important theoretical and
experimental features of current particle physics. We have therefore in-
cluded a discussion of this topic in Chapter 19.

Lloyd Motz
Jefferson Hane Weaver
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CHAPTER 1

Greek Physics

Everything of importance has been said before by
somebody who did not discover it.

~—ALFRED NORTH WHITEHEAD

In writing a book that is not a history of physics but rather a story of the
continuity of the ideas, observations, speculations, and syntheses that
constitute the body of knowledge that we now call physics, we had to
leave out aspects of this subject that rightly belong in a history. With this
point in mind, we approached the Greek contributions to this story with
the knowledge that whatever we included or did not include, the result
would not be entirely satisfactory. Though Greek physics cannot be prop-
erly integrated into Newtonian physics, Greek philosophy and Euclidean
geometry still influence our thinking; for this reason, we have included in
this story of physics the features of Greek thinking that we believe to be
pertinent to physics.

Physics, as we understand and practice it today, was unknown to the
ancient Greeks, and we may speculate where society would be today if
Newton’s laws of motion and his law of gravity had been discovered hy
Aristotle or Archimedes. This is not to say that the Greek philosophers
and mathematicians were not scientists in a very general and amorphous
way; they were indeed, as evidenced by their keen observations of the
heavens, their endless speculations, and their mathematical creations.
Wherein, then, does their science differ from Newtonian science? Pre-
cisely in the absence of physical principles or laws that enable one to
predict future events from current observations or, more generally, to
correlate many apparently disparate phenomena in the universe.

A few examples will illustrate and illuminate this very important
difference. No matter how much the Greek astromoners learned about the
motions of the planets observationally, tha* information alone could not
enable them to predict or understand the periodicity of the tides, the
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behavior of freely fallirg bodies, or the revolution of two neighboring
stars (a binary) about s common point. Newton’s laws, on the other hand,
permitted him: and the physical scientists who followed him to correlate
and explain planetary motions, tides, and other phenomena as manifesta-
tions oi the same physical force, namely, gravity. In the same way,
without a deep understanding of pressure, the Greeks could not apply
Archimedes’s buoyancy principle to the explanation of general atmo-
spheric phenomena as the Newtonians did. Greek science was thus en-
tirely empirical and without basic laws.

But we still owe much to the ancient Greeks for their matheruatics,
their observationa! astronomy, and their range of speculations. Although
mathematics is not physics, an important branch of mathematics, geome-
try, in which the Greeks were great experts, is so intimately related to
physics that the stucdy of Greek geometry is essential to the proper study of
physics. Geometry is important to physics because the laws of motion of
bodies can be onlv expressed in a geometrical context. This is also true
of such phenomena as the spatial interrelationships of bodies and the
empirical description of the motion of a body. If we had no geometry, we
could not formulate physical laws that are useful precisely because they
enable us to correlate disparate spatial events.

Today, we know that three kinds of geometries exist, Euclidean (flat
space), hyperbolic (negatively curved space), and elliptical (positively
curved space), but the Greeks knew only of Euclidean geometry, to which
contributions were made not only by Euclid but also by Pythagoras and
Eudoxus. Pythagoras (560480 B.C.) founded a school of philosophers
that lasted some 200 years and greatly influenced Greek thinking. Little is
known about the details of Pythagoras’s life, but he is believed to have
spent much of his earlier years in Egypt and Babylonia learning mathe-
muatics. Forced to leave his lifelong home at Samos, he settled ir-Croton,
Italy, in 530 B.C. and founded his school of philosophy. Although
Pythagoras’s teachings were influential throughout southern Italy, his
antidemocratic views generated strong opposition that ultimately forced
him to flee in 500 B.C. to Metapontum, where he spent his remaining
years. ) '

To the Pythagoreans, number was everything; they believed that all
phenomena in nature could be explained in terms of numerical rela-
tionships, but they gave no recipe for discovering these relationships, and
. so their numerical philosophy was sterile. However, like all basic princi-
ples, the Pythagorean numerology had great heuristic value in that it
prompted the Pythagoreans to seek symmetries and harmonies in all natu-
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ral phenomena. This search led them to the discovery that the harmony of
musical sounds depends on the regularity of the intervals between the
pitches of harmonious sounds.

They generalized these ideas to propose a universal harmony to
account for the apparent motions of the planets, which they associated
with musical notes of different pitch. This theory, called the ‘‘harmony of
the spheres,’’ influenced even Johannes Kepler, who tried, in his early
speculations, to represent the motions of the various planets by different
octaves in the musical scale.

Today, Pythagoras is best known for his famous geon.etric law or
theorem that expresses the length of the hypotenuse of a right triangle in
terms of the lengths of the other two sides. This simple relationship,
which Pythagoras established for a right triangle on a plane, has been
generalized to any number of dimensions and to non-Euclidean geometry.
So generalized, it is the basis of the geometrical interpretation of the laws
of nature. Indeed, Pythagoras’s theorem, in its most general form, is the
starting point of Albert Einstein’s general theory of relativity and all
modern attempts to unify the laws of nature as manifestations of space—
time geometry.

Euclid, of course, is famous for his Eléments, contained in 13 vol-
umes of definitions, postulates (axioms), and theorems, which summarize
all the mathematical knowledge of ancient Greece. Its influence was
tremendous, and Euclidean three-dimensional geometry was accepted, for
hundreds of years, as the correct geometrical framework on which to
formulate the laws of nature. Newtonian mechanics and James Clerk
Maxwell’s electromagnetism incorporated Euclidean geometry into their
theoretical structures. The break with Euclidean geometry occurred when
the great 19th-century geometers like Carl Friedrich Gauss, . Nikolar
Lobachevski, and Georg Riemann began to challenge Euclid’s fifth postu-
late, which states that given a line and a point outside it, only one line can
be drawn through the point parallel to the given line. The denial of this
axiom led to modern non-Euclidean geometry, from which so much mod-
ern theory has evolved.

The vast difference between modemn physics and Greek physics is
perhaps best indicated by our present atomic theory and the Greek atom-
ism that stemmed from Democritus and his school of philosophers. De-
mocritus proposed the very attractive hypothesis that all matter consists of
indivisible particles (atoms) differing in many ways (for example, in size,
mass, color) that combine with each other to form all the matter we see in
the universe. Since the Greek atomists gave no prescription or mathe-
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matical formulas for calculating any properties of matter or predicting any
phenomena, their atomic theory remained useless and sterile.

On the other hand, modern atomic theory based on the electromag-
netic interactions of the electricallv charged constituents of atoms is a
precisely formulated discipline that has evolved out of a synthesis of
mathematics and basic physical principles. As such, it enables physicists
to calculate atomic and molecular phenomena with incredible accuracy.
The Greeks knew about electricity and magnetism, but they never con-
nected electrical and magnetic phenomena with the atoms of Democritus.

Of all the Greek philosophers who concerned themselves with phys-
ical phenomena, Archimedes was the most notable and was the closest to
what we now consider a scientist to be. Archimedes (287-212 B.C.), the
son of the astronomer Phidias, was born at Syracuse and was good friends
with King Hieron, the local ruler. He spent part of his youth in Egypt
learning mathematics from the immediate successors of Euclid. He then
returned to Syracuse, where he remained for the rest of his life.

Archimedes combined theory and experiment inn a manner similar to
scientific procedure today, but no body of basic scientific principles re-
sulted from his work. He attempted to do for science what Euclid had
done for geometry: to show that scientific knowledge can be deduced as
theorems from a set of self-evident propositions. But little is known about
Archimedes’s axioms or the theorems he deduced from them. _

That Archimedes was a great experimentalist, an inventor, and a
keen student of nature is indicated by his discoveries and his mathematical
treatises. Not having a well-equipped laboratory to do actual experiments,
he must have carried out the kind of thought experiments that characterize
all great scientists. He is most famous for his discovery of the principle of
buoyancy ( 1e Archimedes principle), and he probably also knew the law
of the spatial reflection of light from mirrors. His inventions ranged from
the water screw to a planetariuin and the astronomical cross-staff with
which he made accurate celestial observations. He demonstrated his math-
ematical skill by showing how to deduce geometrically the number pi (the
ratio of the circumference of a circle to its diameter) to any desired
accuracy. He did this by approximating the circumference of a circle with
‘the perimeter of a circumscribed or inscribed many-sided regular polygon.
By allowing the number of sides to grow without limit and equating the
perimeter of such a polygon to the circumference of the circle, one obtains
an infinite series for pi.

Archimedes also wrote his Sand-Reckoner to demonstrate that very
large finite numbers and the infinite itself are indeed different, as shown
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by the opening sentences: ‘‘There are some, King Gelon, who think that
the number of the sand is infinite in multitude: and I mean by the sand not
only that which exists about Syracuse and the rest of Sicily but also that
which is found in every region whether inhabited or uninhabited. And
again, there are some who, without regarding it as infinite, yet think that
no number has been named which is great enough to exceed its multi-
tude.”’ Archimedes calculated how many grains of sand would fit in a
poppy seed, then how many poppy seeds would be needed to equal the
diameter of a finger, and so on out to a distance of some 10,000 stadia
(one stadium is 607 feet) to arrive at the number of grains of sand he
believed would be needed to fill the entire universe. More important than
his ease in dealing with these large numbers was his classification of them
by orders and periods.

' Archimedes died at the age of 75 when Syracuse finally fell to Rome
after a brutal siege prolonged by Archimedes’s ingenious defensive de-
vices. According to Herbert Westren Turnbull’s book The Great Mathe-
maticians,! the Roman commander, Marcellus, had ordered that Archi-
medes be taken alive because he ‘‘uses our ships like cups to ladle water
from the sea, drives off our sambuca ignominiously with cudgel-blows,
and by the multitude of missiles that he hurls at us all at once, outdoes the
hundred-handed giants of mythology!”” Although Archimedes’s efforts in ;
defense of his city were extraordinary, he saw them as no more than
applications of mechanics, a subject that paled in importance in com-
parison with his beloved geometry. So devoted was Archimedes to his
subject that when the city fell and the Roman legions were pouring
through the breached gates, Archimedes continued to puzzle over a math-
ematical diagram drawn in the sand and was killed by a Roman soldier.
Alfred North Whitehead viewed the death of Archimedes as a monu-
mental event because ‘‘[tlhe Romans were a great race, but they were
cursed by the sterility which wa'ts upon practicality.”’ In Whitehead’s
opinion, ‘‘the Romans were not dreamers enough to arrive at new points
of view, which could give more fundamental control over the forces of
nature.’’ In short, ‘“‘no Roman lost his life because he was absorbed in the
contemplation of a mathematical diagram.”’

We finally come to Aristotle (384-322 B.C.), Plato’s most famous
student, who predated Archimedes'by some hundred years. Born in
Stagira in Chalcidice, Aristotle’s philosophy governed human thinking for -
nearly two millennia in fields ranging from physics and meteorology to
biology and psychology. His father was the court physician at Macedon
and probably contributed to Aristotle’s early interest in biology and the
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classification of sciences. Orphaned at an early age, Aristotle joined Pla-
to’s Academy in 367 B.C. and spent the next 20 years studying under the
master, who ‘‘recognized the greatness of this pupil from the supposedly
barbarian north, and spoke of him once as the Nous of the Academy—as
il to say, Intelligence Personified.’’2 After the death of his teacher in 347
B.C., Aristotle spent several years wandering among several of the nearby
Greek kingdoms before returning to Macedon to tutor the young prince
who would one day be known as Alexander the Great. After his return to
Athens, Aristotle founded his school, the Lyceum, which attracted many
students and—unlike Plato’s Academy, which was devoted to mathemat-
ics and political philosophy—emphasized biology and the natural sci-
ences.3 Aristotle’s belief that observation was essential to the study of
science prompted him to collect ‘‘a natural history museum and a library
of maps and manuscripts (including his own essays and lecture notes), and
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organiz[e] a program of research which inter alia laid the foundation for
all histories of Greek natural philosophy, mathematics and astronomy,
and medicine.”’4 “‘If we may believe Pliny, Alexander instructed his
hunters, gamekeepers, gardeners and fishermen to furnish Aristotle with
all the zoological and botanical material he might desire; other ancient
writers tell us that at one time he had at his disposal a thousand men
scattered throughout Greece and Asia, collecting for him specimens of the
fauna and flora of every land.”’s

Aristotle viewed mathematics as the key to providing a model for
organizing science. This impression was probably formed while he was at
Plato’s Academy, where mathematics and dialectic discussions geared
toward examining the assumptions made in reasoning were most heavily
studied. Aristotle viewed the structure of science as ‘‘an axiomatic system
in which theorems are validly derived from basic principles, some pro-
prietary to the science (‘hypotheses’ and ‘definitions,’ the second corre-
sponding to Euclid’s ‘definitions’), others having an application in more
than one system (‘axioms,’ corresponding to Euclid’s ‘common no-
tions’).”” His attempt to use mathematics as a tool for generalization,
however, necessitated that the dialectic so favored by Plato be assigned a
supporting role, to be called forth when mathematics could not free sci-
ence of its regress and circularity.6 '

Although Aristotle is deservedly praised for his classification system,
which exercised such a strong influence on the development of biology,
his contributions to physics were undistinguished. His Physics was some-
thing of a metaphysical mishmash that purported to grapple with so-called
‘‘ultimate topics’’ ranging from infinity and time to motion and space. It
did provide a valuable historical record because Aristotle recounted the
views of earlier pre-Socratic philosophers. However, his purpose was not
so much to call attention to the contributions of his predecessors as to
enable him to refute and disparage their opinions. While Physics offered
little in the way of astronomical knowledge and explicitly rejected the
Pythagorean belief that the sun is at the center of the universe, Aristotle’s
meteorological speculations about the continual process of change in the
world were inspired: ‘‘[T]he sun forever evaporates the sea, dries up
rivers and springs, and transforms at last the boundless ocean into the
barest rock; while conversely the uplifted moisture, gathered into clouds,
falls and renews the rivers and the seas.’’7 However, Aristotle was unable
to synthesize his observations, discern underlying patterns in nature, and
thereby formulate a useful theory about the physical world.

He did try to develop a theory of motion that would explain the
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kinematical behavior of all observable objects from the stars down to
terrestrial bodies. He was misled in his analysis of the motions of bodies
by his belief that a body can be kept in motion only if the body is in direct
contact with a ‘‘continually operating mover.”” If the mover did not
maintain contact with the body, the body stopped moving instantaneously:
. Aristotle had no notion of the concept of inertia, so he failed to discover
the laws of motion.

To explain why phenomena happen, Aristotle introduced his doctrine
of causes, which reduced all causes to four basic ones that he labeled
“‘material,”” ‘‘formal,”’ ‘‘efficient,”” and ‘‘final.”” We mention these la-
bels here merely to show how far removed Aristotle’s thinking was from
the modern concept of causality. That Aristotle was a keen observer is
evidenced by his geological discoveries and his biological classification
schemes. These contributions are still noteworthy and valid.

Taken as a whole, then, Greek physics is not very significant; its
greatest value lies in demonstrating how fruitless a putative exact science
is if it does not have a sound theoretical foundation supported by a nower-
ful mathematics. The Greeks discovered many interesting facts about
nature, but their science did not progress because they had no principles to
guide them in constructing a science with its own seeds of growth. We
believe, however, that we can learn something important from the Greeks,
for modern physics is in danger of developing into a body of theories
without facts. Though the Greeks had no®mathematical formalism to
develop a strong theoretical base for their physics, they were ingenious
and clever in their speculations. Today, something similar prevails in the -
most advanced stages of physics; elementary particle physics is drowning
in a sea of formalism. Paper after paper, each with a welter of recondite
mathematical equations, but with no numerical deductions, appears in the
most prestigious journals of physics today. The absence of numbers at the
ends of these papers is a clear symptom of the ill health of theoretical
physics today, for it shows that theoreticians are discussing a fanciful
universe, rather than the real one.



