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Introduction

This book develops a circle of techniques used to treat linear partial
differential equations
(L.1) Pu= ) a(x)Du=f
|| <m
on a region Q, generally supplemented by boundary conditions on one

or more hypersurfaces in Q. The three main classical examples of (I.1)
are the following:

(I.2) The Laplace equation Au = f
where
82 0%
A=67%++a,_7€3 on Q < R".

This is typically supplemented by the Dirichlet boundary condition
Ul;q =g or the Neumann boundary condition (0u/dv)|sq = g, though
other boundary conditions also occur.

(L.3) The heat equation % u = Au, teR”, xeQ.

This is typically supplemented by an initial condition u(0, x) = f(x) and,
if Q has nonempty boundary, a boundary condition on R™ x 0Q such
as a Dirichlet or Neumann boundary condition.

2

. 0
(I.4) The wave equation <6? — A> u=0, teR, x € Q.
This is typically supplemented by the initial condition u(0, x) = f,(x),
u,(0, x) = f5(x), and if 0Q # & a boundary condition as in the first two
cases.

Equations (I.2)—(I.4) are said to be of elliptic, parabolic, and hyperbolic
type, respectively. These equations and natural generalizations make up
a large portion of the linear partial differential equations of mathematical
physics, and their theory suggests questions to be asked about general
linear PDE. These questions are typically in one of three categories:
existence, uniqueness, qualitative behavior.

3



4 INTRODUCTION

For the purposes of mathematical physics, the first two questions may
be considered preliminary (though not necessarily trivial from a mathe-
matical viewpoint); after all, the point of the application of calculus to
physics is not to prove that real processes actually occur but rather to
describe the nature of such occurrences. Thus the third category forms
the core of classical linear PDE. Within this category, many questions
arise; one asks what the solutions look like, and ideally one would want
to know everything about them. Such properties as regularity, location
of singularities, and estimates in various norms are important examples,
particularly emphasized in this treatment, and more questions arise such
as on the spectral behavior of P, decay of solutions, location of maxima
or nodal sets, limiting behavior under (possibly quite singular) pertur-
bations of the equation or the boundary, and many more. Numerous such
questions are addressed in these pages. We also derive existence and
uniqueness theorems adequate for many linear equations of mathematical
physics, and most such results are fairly simple (unfortunately, one cannot
say the same for nonlinear PDE of mathematical physics).

To put in perspective the role of pseudodifferential operators in the
study of linear PDE, we list four tools of linear PDE.

(1) Functional analysis. The use of various Hilbert, Banach, Frechet,
and LF spaces is all pervasive in modern linear PDE. Sobolev spaces and
spaces of distributions, described in Chapter I, form the setting for most
of the analysis, though other spaces, particularly Holder spaces and
Besov spaces (discussed in Chapter XI) make an occasional appearance.

(2) Fourier analysis. The use of Fourier series and/or the Fourier
transform in constant coefficient PDE is intimately connected with
separation of variables, and Fourier analysis was used by Daniel Bernoulli
in the very beginning of the study of the subject. In the modern approach,
Fourier analysis, via the Plancherel theorem particularly, is often used
to get estimates of solutions to constant coefficient equations, obtained
from variable coefficient equations by freezing the coefficients and, if a
boundary is present, flattening out the boundary. One then patches these
estimates together to get estimates in the variable coefficient situation.

(3) Energy estimates. This includes integral estimates on quadratic
forms of a function and its derivatives. One of the basic estimates of this
sort is Garding’s inequality
(L.5) Re(Pu, u) > c¢||u||fm — c,|ul|72, ue Cy(Q)
for a partial differential operator

P= % a(xD,

la|<2m
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assuming

Re P,,(x, &) = Re( Y aa(x)§“> > cl¢)*m.

la]=2m

i = Dl

a|<m

Here

defines a norm on a space H™ known as a Sobolev space (discussed in
Chapter I). When P is a second order scalar differential operator, (L.5) is
proved simply by integration by parts. For higher order operators, one
way to get (I.5) is to freeze coefficients, obtain such an estimate for constant
coefficient operators by Fourier analysis, and glue these estimates together.
Garding’s inequality for pseudodifferential operators, generalizing (L.5),
will be proved in Chapter II, Section 8, using the calculus of pseudo-
differential operators. Energy estimates are also used to prove existence,
uniqueness, and finite propagation speed for solutions to hyperbolic
equations, and it is in the study of second order hyperbolic equations
that the term energy has a most direct physical interpretation. Garding’s
inequality plays a great role in unifying many of these energy estimates,
as will be seen in Chapters IV and V. Weighted L? estimates, known as
Carleman estimates, have also played an important role in linear PDE,
though they are not much emphasized here, except in Chapter XIV which
considers uniqueness in the Cauchy problem.

(4) Fundamental solutions and parametrices. A distribution E(x, y)
such that

(L6) P(x, D)E = 5(x — y)

is called a fundamental solution. If the two sides of (1.6) differ by a smooth
function, E is called a parametrix. One can get a lot of information about
solutions to (I.1) if one of these is known. For variable coefficient equations
it is usually impossible to construct a fundamental solution; one is
generally happy to be able to construct a parametrix. One way to do this
for elliptic operators is the following. A first order approximation to a
parametrix is obtained by freezing coefficients and dropping lower order
terms, getting fundamental solutions for such simple equations, via
Fourier analysis, and gluing these together. A true parametrix is then
obtained by an iterative procedure. This technique is often called the Levi
parametrix method, and one of the simplest applications of the calculus
of pseudodifferential operators, as we shall see in Chapter III, is to carry
out such a procedure. For nonelliptic operators, much more subtle
methods are required to construct parametrices. Developing such methods
is one of the main themes of this book.



6 INTRODUCTION

We begin in Chapter I with a summary of the basic facts about distri-
butions and Sobolev spaces most frequently used in PDE. There are
numerous excellent books giving more leisurely and complete treatments
of this subject, and we mention Yosida’s Functional Analysis [ 1], Gelfand
et al. Generalized Functions [1], Donoghue’s Distribution Theory [1],
Adam’s Sobolev Spaces [1], and particularly the first part of Lions and
Magene’s work on boundary value problems [ 1]. The reader is assumed
to be familiar with functional analysis and should have some under-
standing of distribution theory.

Our subject proper starts with Chapter II, where pseudodifferential
operators are defined and some of their basic properties are studied, such
as the behavior of products and adjoints of such operators, their continuity
on L? and Sobolev spaces, the fact that they do not increase the singular
support of distributions to which they are applied, and the Garding
inequality, generalizing (L.5). In Chapters III through V this calculus of
pseudodifferential operators is applied to some basic questions of existence
and regularity of solutions to elliptic, hyperbolic, and parabolic equations,
and elliptic boundary value problems. The regularity theorem for elliptic
differential operators P of order m, defined as those for which |P(x, &)] >
c|é|™, states that if Pu is C* on an open set U, ue C*(U), and more
generally if Pu possesses a certain degree of smoothness, in an appropriate
space, then u possesses m more degrees of smoothness. An operator P,
for which u is C* wherever Pu is with perhaps u possessing fewer than m
extra orders of smoothness then Pu generally, is called hypoelliptic, and
some results on hypoelliptic operators are given in Chapter III, though
further, deeper results are given in Chapter XV. In Chapter IV one
application is given to a topic in nonlinear PDE: the short time existence
of solutions to quasi-linear hyperbolic equations.

In Chapter VI a new concept, that of the wave front set of a distribution,
is introduced. The wave front set of a distribution on U is a subset of the
cotangent bundle T*U, lying over the singular support of u, and thus is
a refinement of the notion of singular support. It turns out to be the natural
language for stating theorems on the propagation of singularities of
solutions to PDE, and Chapter VI gives a proof of HsSrmander’s theorem
on propagation of singularities. This proof requires a new tool, the sharp
Gérding inequality, proved in Chapter VII.

In Chapter VIII a new theme is taken up, the calculus of Fourier
integral operators, a class more general than pseudodifferential operators.
Such operators are useful for constructing parametrices for many opera-
tors that are not hypoelliptic, in particular hyperbolic operators, and
their use extends classical methods of geometrical optics. This study
makes use of some basic notions of the symplectic form and Hamiltonian
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vector fields. Some excellent references for this aspect of advanced calculus
include Abraham and Marsden’s Foundations of Mechanics [1] and
Arnold’s Mathematical Methods of Classical Physics [1], and also
Caratheodory’s classic [1]. The Hamiltonian vector field associated with
the principal symbol of a pseudodifferential operator (of classical type)
generates a flow on the cotangent bundle called the bicharacteristic flow,
and Hormander’s propagation of singularities theorem asserts that if
Pu = fe C*(U), then the wave front set of u is invariant under this
bicharacteristic flow. A second proof of this result is given in Chapter
VIII, and in Chapters IX and X propagation of singularities for solutions
to boundary value problems is discussed, first in the case of bicharacter-
istics transversal to the boundary and then for bicharacteristics that
“graze” the boundary, being convex with respect to the boundary.

In Chapter XI we study the behavior of various classes of pseudo-
differential operators on L? and Holder spaces and include a treatment
of estimates for solutions to regular elliptic boundary value problems
(discussed in Chapter V in the L? context) within these categories. In
this chapter we make use of results of Marcinkiewicz, Mikhlin, and
Hormander on continuity of certain Fourier multipliers on LP(R"). Stein’s
book Singular Integrals and Differentiability Properties of Functions [1]
provides a thorough treatment of this material.

Chapter XII studies questions about the eigenvalues and eigenfunctions
of an elliptic self adjoint operator on a compact manifold, including
eigenvalue asymptotics and convergence of eigenfunction expansions, and
some applications to harmonic analysis on compact Lie groups, among
other things. Fourier integral operators provide the tool for studying
functions of an elliptic self-adjoint operator. This study in turn is the
key to a systematic generalization of many topics in classical harmonic
analysis on the torus. Several alternative approaches are given to some
results, some of which involve using Tauberian theorems, and we include
an appendix on Wiener’s Tauberian theorem and some consequences.
Generally, I have preferred to refer to other books where certain pre-
requisite material has been well treated, to keep this work from becoming
enormous. However, it seems to me that most expositions of Wiener’s
Tauberian theorem encourage the reader to avoid perceiving the nature
of Wiener’s inspiration—namely that his closure of translates theorem
was a very simple result that wonderfully tied together many seemingly
diverse Tauberian theorems, of which the Hardy-Littlewood and Kara-
mata theorems are important and most frequently used examples.

Chapter XIII is devoted to the Calderon-Vaillancourt theorem on L?
boundedness of pseudodifferential operators in a borderline case not
covered in Chapter II, and to Hoérmander-Melin inequalities, on the
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semiboundedness of second order pseudodifferential operators. Chapter
XIV gives some results on uniqueness in the Cauchy problem: given a
hypersurface X dividing U into two parts, U and U, when does Pu = 0
onU,u = 0on U" imply u = 0 on a neighborhood of £?

These first fourteen chapters deal primarily with operators which are
either elliptic or whose characteristics are simple. The final chapter studies
operators with double characteristics. Included here are such hypoelliptic
operators as arise in the analysis of the J-Neumann problem in strictly
pseudoconvex domains and also certain equations of mathematical
physics, such as the equations of crystal optics.

Chapters II through VII have been covered by the author in a one
semester course at the University of Michigan, for students who the
previous semester had covered some basic PDE, including the Sobolev
space theory and Fourier analysis given in Chapter 1. A preliminary
version of these chapters was published as a Springer Lecture Note
(Taylor [3]). Most of the material in Chapters VIII through XV has been
covered by the author in various courses and seminars at Michigan, Stony
Brook, the Courant Institute, and Rice University. The entire book
contains more material than one would cover in a year’s course, and it
should be noted that not every chapter depends on all the previous ones.
Chapter XI on L? and Hoélder estimates could be read directly after
Chapter II. If one wanted to get quickly to Chapter VIII on Fourier
integral operators, one could skip Chapter V on elliptic boundary value
problems and the proof of propagation of singularities in Chapter VI
using the sharp Garding inequality, and hence also Chapter VII. As for
Chapter XIII, the Claderon-Vaillancourt theorem could be treated
directly after Chapter II, and the Hormander-Melin inequality after
Chapter VIII. Chapter XIV and almost all of Chapter XV could be read
right after Chapter VIII, the Hormander-Melin inequality playing a role
in some results of the first section of Chapter XV.

The treatment of Fourier integral operators emphasizes the local
theory. I avoid discussing an invariantly defined symbol of a Fourier
integral operator and in particular do not introduce the Keller-Maslov
line bundle. For a complementary treatment of Fourier integral operators
which does emphasize such global techniques, I recommend Duistermaat’s
Fourier Integral Operators [1]. Also the reader should consult the original
paper of Hormander [14], of Duistermaat and Hormander [1], and the
book of Guillemin and Sternberg [1].

The beginning student of partial differential equations should be aware
that many other methods have been brought to bear besides those con-
nected with pseudodifferential operators. This present book is not intended
as a general introduction to the subject of partial differential equations,
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and we want to give the reader some guide to a set of books which, together,
would provide a fairly complete introduction. First, some general texts
introducing most of the basic problems of the classical theory, on a fairly
elementary level, are: R. Courant and D. Hilbert, Methods of Mathematical
Physics, vol. 2 [1]; and P. Garabedian, Partial Differential Equations [1].
More complete references are given in the bibliography.

Some books that cover a more restricted class of problems, using more
advanced techniques, particularly functional analysis and energy esti-
mates, include: L. Bers, F. John and M. Schechter, Partial Differential
Equations, [1]; L. Hormander, Linear Partial Differential Operators, [16];
S. Mizohata, The Theory of Partial Differential Equations [1]; and,
F. Tréves, Linear Partial Differential Equations with Constant Coefficients
[1]. For a treatment of elliptic operators, see: S. Agmon, Lectures on
Elliptic Boundary Value Problems [2]; D. Gilbarg and N. Trudinger,
Elliptic Partial Differential Equations of the Second Order [1]; J. Lions
and E. Magenes, Inhomogeneous Boundary Value Problems and Appli-
cations [1]; C. B. Morrey, Multiple Integrals in the Calculus of Variations
[1];and M. Protter and H. Weinberger, Maximum Principles in Differential
Equations [1]. The books by Gilbarg and Trudinger and by Morrey give
thorough treatments of quasilinear elliptic equations.

For the connection between the heat equation and diffusion processes,
see: A. Friedman, Stochastic Differential Equations and Applications [2];
and H. McKean, Stochastic Integrals [1]. For the study of scattering
theory, quantum mechanical and classical, respectively, I refer to: W.
Amrein, J. Jauch, and K. Sinha, Scattering Theory in Quantum Mechanics
[1]; and P. Lax and R. Phillips, Scattering Theory [1]. Some results on
nonlinear wave equations are given in R. Courant and K. Friedrichs,
Supersonic Flow and Shock Waves [61]; and G. Whitham, Linear and
Nonlinear Waves [1]. Finally, one should see an old fashioned treatment
of PDE using mainly Green’s formula and separation of variables. A good
one is I. Stakgold, Boundary Value Problems of Mathematical Physics [1];
and good treatments of the special function theory created to treat such
problems are given in N. Levedev, Special Functions and their Applications
[1]; and F. Olver, Asymptotics and Special Functions [1].

It seems quite likely that special function theory will make a comeback
in PDE as modern breakthroughs allow one to use such functions in a
more sophisticated way than was done during the last century, even as
today more sophisticated use is made of the exponential function than
in the eighteenth century. The only higher transcendental function used
in this book is the Airy function, which appears in Chapter X.



CHAPTER 1

Distributions and Sobolev Spaces

Distributions and Sobolev spaces form a most convenient vector by
which methods of functional analysis are brought to bear on problems
in partial differential equations, and Fourier analysis plays an enormous
role. The basic results used in most of this book are summarized in Sec-
tions 1-5. Brief proofs of most of the crucial results are given and references
are provided for further results. For more leisurely treatments of Sobolev
spaces the reader might referto Tréves[1], Yosida [1], Bergh and Lofstrém
[1], Lions and Magenes [1], or Adams [1]. Of course, Schwartz [1]
and Gelfand et al. [1] are the classics for distribution theory; see also
Donoghue [1]. The treatment here owes a great deal to the expositions
of Yosida and Hérmander [6], except that I emphasize the interpolation
method of A. Calderon. The sixth section treats very briefly Sobolev
spaces associated with L?. Such spaces occur only in Chapters XI and XII
of this book. I refer particularly to Stein [1] for analysis on L?.

I agree with Sternberg [1] that any long list of concepts should be
accompanied by some nontrivial theorem, so in Section 7 some basic
Fourier analysis is applied to prove local solvability of partial differential
equations with constant coefficients.

§1. Distributions

Here we define certain spaces of smooth functions, C”(Q) and CJ(Q),
and their dual spaces, '(Q) and 2'(Q), which are spaces of distributions.
We let Q be an open subset of R”, or more generally a smooth paracompact
manifold. Suppose Q = UQj where each Q; is open and has compact
closure in Q;, ;. When Q = R”, we shall define the Schwartz space & of
rapidly decreasing functions, and its dual ./, the space of tempered dis-
tributions.

For a compact subset K of Q and a nonnegative integer j, define a
seminorm pg ; on smooth functions by

(1.1) P (W) = sup {|D*u(x)|:[a| < j}

10



