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Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 17 satellite workshops (AVIS, BYTECODE, CEES, CLASE, CMSB,
COCV, FAC, FESCA, FINCO, GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP,
TGC, UITP), seven invited lectures (not including those that were specific to
the satellite events), and several tutorials. We received over 550 submissions to
the five conferences this year, giving acceptance rates below 30% for each one.
Congratulations to all the authors who made it to the final program! I hope that
most of the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of
Edinburgh, in cooperation with

— Buropean Association for Theoretical Computer Science (EATCS);
— European Association for Programming Languages and Systems (EAPLS);
— Ewropean Association of Software Science and Technology (EASST).

The organizing team comprised:
— Chair: Don Sannella
— Publicity: David Aspinall
— Satellite Events: Massimo Felici
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— Secretariat: Dyane Goodchild

— Local Arrangements: Monika-Jeannette Lekuse
— Tutorials: Alberto Momigliano

Finances: Ian Stark

— Website: Jennifer Tenzer, Daniel Winterstein
— Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and
Reykjavik), Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn
Duesterwald (IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro
(Leicester), Maric-Claude Gaudel (Paris), Roberto Gorrieri (Bologna),
Reiko Heckel (Paderborn), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Kim Larsen (Aalborg), Tiziana Margaria (Dortmund), Ugo Mon-
tanari (Pisa), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh),
Vladimiro Sassone (Sussex), Peter Sestoft (Copenhagen), Michel
Wermelinger (Lisbon), Igor Walukiewicz (Bordeaux), Andreas Zeller
(Saarbriicken), Lenore Zuck (Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the program committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizer of ETAPS 2005, Don Sannella. He
has been instrumental in the development of ETAPS since its beginning; it is
quite beyond the limits of what might be expected that, in addition to all the
work he has done as the original ETAPS Steering Committee Chairman and
current ETAPS Treasurer, he has been prepared to take on the task of orga-
nizing this instance of ETAPS. It gives me particular pleasure to thank him for
organizing ETAPS in this wonderful city of Edinburgh in this my first year as
ETAPS Steering Committee Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair



Preface

The program committee is pleased to present the proceedings of the 14th Inter-
national Conference on Compiler Construction (CC 2005) held April 4--5, 2005,
in Edinburgh, UK, as part of the Joint European Conferences on Theory and
Practice of Software (ETAPS 2005).

Traditionally, CC had been a forum for research on compiler construction.
Starting this year, CC has expanded its mission to a broader spectrum of pro-
gramming tools, from refactoring editors to program checkers to compilers to
virtual machines to debuggers. The submissions we received reflected the new
scope of the conference.

The Program Committee received 91 submissions (one was later withdrawn),
asignificant increase from previous years. From the 90 submissions, the Program
Commiittee selected 21 papers, for an acceptance rate of 23%. Four of the ac-
cepted papers were tool demonstrations; the submission pool included eight such
papers. I believe this is the first CC conference that includes tool demos.

The Program Committee included 15 members representing 10 countries on
three continents. Each committee member reviewed (or delegated) roughly 19
papers. Each paper received three reviews. Sixty-eight external reviewers par-
ticipated in the review process. Committee members were allowed to submit
papers, although no paper by a committee member was selected. The Program
Committee met on December 4, 2004, in New York for a one-day meeting. All
but one of the members participated in the meeting; three members attended
via teleconference.

The work of many contributed to the success of this conference. First of all,
I want to thank the authors for the care they put into their submissions. My
gratitude also goes to Program Committee members and external reviewers for
their insightful reviews. IBM generously provided the teleconference service for
the Program Committee meeting; thanks to Kemal Ebcioglu for arranging this
service. Special thanks go to Manu Sridharan for helping to prepare and run
the Program Committee meeting. CC 2005 was made possible by the ETAPS
Steering Committee, in particular by the hard work of Don Sannella, the ETAPS
2005 Organizing Committee chair, and José Luiz Fiadeiro and Perdita Stevens,
ETAPS chairs. [ would also like to thank Evelyn Duesterwald, Gorel Hedin, Nigel
Horspool and Reinhard Wilhelm, all recent CC chairs, for our many discussions
on CC’s future directions. Finally, we are grateful to Andreas Zeller for accepting
the invitation to give a keynote talk.

Berkeley, January 2005 Rastislav Bodik
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When Abstraction Fails

Andreas Zeller

Saarland University, Saarbriicken, Germany
zeller@cs.uni-sb.de

Abstract. Reasoning about programs is mostly deduction: the reason-
ing from the abstract model to the concrete run. Deduction is useful
because it allows us to predict properties of future runs—up to the point
that a program will never fail its specification. However, even such a 100%
correct program may still show a problem: the specification itsell may
be problematic, or deduction required us to abstract away some relevant
property. To handle such problems, deduction is not the right answer——
especially in a world where programs reach a complexity that makes them
indistinguishable from natural phenomena. Instead, we should enrich our
portfolio by methods proven in natural sciences, such as observation, in-
duction, and in particular experimentation. In my talk, I will show how
systematic experimentation automatically reveals the causes of program
failures—in the input, in the program state, or in the program code.

1 Introduction

I do research on how to debug programs. It is not that I am particularly fond of
bugs, or debugging. In fact, I hate bugs, and I have spent far too much time on
chasing and eradicating them. People might say: So, why don’t you spend your
research time on improving your specification, model checker, software process,
architecture, or whatever the latest and greatest advance in science is. I answer:
All of these help preventing errors, which is fine. But none can prevent surprises.
And I postulate that surprises are unavoidable, that we have to teach people how
to deal with them and to set things straight after the fact.

As one of my favorite examples, consider the sample program in Fig. 1 on
the following page. Ideally, the sample program sorts its arguments numerically
and prints the sorted list, as in this run (r,):

sample 9 8 7 = 789
With certain arguments, sample fails (run 7):
sample 11 14 = 0 11

Surprise! While the output of sample is still properly sorted, the output is not
a permutation of the input—somehow, a zero value has sneaked in. What is the
defect that causes this failure?
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/* sample.c -- Sample C program to be debugged */

#include <stdio.h>
#include <stdlib.h>

static void shell_sort(int a[], int size)
{
int i, j;
int h = 1;
do {
h=h=x*x3+1;
} while (h <= size);
do {
h /= 3;
for (i = h; i < size; i++)

{

for (j =1i; j >= h & a(j - h] > v; j -= h)
alj] alj - hl;

if (1 1= §)
aljl = v;

int v = alil;
i

}
} while (h != 1);

int main(int argc, char *argv[])
{
int i
int *a

0;
NULL;

"o

a = (int *)malloc((argc - 1) * sizeof(int));
for (i = 0; i < argec - 1; i++)
a[i] = atoi(argv[i + 11);

shell_sort(a, argc);

for (i = 0; i < argc - 1; i++)
printf("4d ", alil);
printf("\n");

free(a);
return O;

Fig. 1. The sample program (almost) sorts its arguments

In principle, debugging a program like sample is easy. Initially, some pro-
grammer has created a defect—an error in the code. When executed, this defect
causes an infection—an error in the program state. (Other people call this a
fault, but I prefer the term infection, because the error propagates across later
states, just like an infection.) When the infection finally reaches a point where it
can be observed, it becomes a failure——in our case, the zero in the output. Given
that a failure has already occurred, it is the duty of the programmer to trace back
this cause-effect chain of infections back to the defect where it originated—the
defect that caused the failure.

As an experienced programmer, you may be able to walk your way through
the source code in Fig. 1 and spot the defect. When it comes to doing so in a
general, systematic, maybe even automated way, we quickly run into trouble,
though. The difficulty begins with the terms. What do we actually mean when
we say “the defect that caused the failure”? What are we actually searching for?
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2 Errors are Easy to Detect, But Generally Impossible
to Locate

An error is a deviation from what is correct, right, or true. To tell that something
is erroneous thus requires a specification of what is correct, right, or true. This
can be applied to output, input, state, and code:

Errors in the output. An externally visible error in the program behavior is
called a failure. Our investigation starts when we determine (or decide) that
this is the case.

Errors in the input. For the program input, we typically know what is valid
and what not, and therefore we can determine whether an input is erroneous
or not. If the program shows a failure, and if the input was correct, we know
the program as a whole is incorrect.

Errors in the program state. It is between input and output that things
start to get difficult. When it comes to the program state, we frequently
have specifications that allow us to catch infections—for instance, when a
pre- or postcondition is violated. Types can be seen as specifications that de-
tect and prevent illegal variable values. Common programming errors, such
as buffer overflows or null pointer dereferences, can be specified and detected
at compile time.

Errors in the code. Unfortunately, specifications apply only to parts of the
program state: conditions apply to selected moments in time; types allow
a wide range of values; tools can only check for common errors. Therefore,
there will always be parts of the state for which correctness is not specified.
But if we do not know whether a variable value is correct, we cannot tell
whether the code that generated this value is correct. Therefore, we cannot
exactly track down the moment the value got infected, and therefore, we
cannot locate the defect that caused the failure.

Of course, we can catch errors by simply specifying more. A specification that
covers each and every aspect of a program state would detect every single error.
Unfortunately, such a specification would ne no less complex and error-prone
than the program itself.

In practice, it is the programmer who decides what is right upon examining
the program—and fixes the program according to this implied specification. In
such a cases, deciding which part of a program is in error can only be told after
the decision has been made and the error has been fixed. Once we know the
correct, right, and true code, we can thus tell the defect as a deviation from the
corrected code. In other words, locating a defect is equivalent to writing a correct
program. And we know how hard this is.

3 Causes Need Not be Errors, But Can Easily be Located

While it may be hard to pinpoint an error, the concept of causality is far less
ambiguous. In general, a cause is an event that precedes another event (the
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effect), such that the effect would not have occurred without the cause. For
programs, this means that any aspect of an execution causes a failure if it can
be altered such that the failure no longer occurs. This applies to input, state,
and code:

Causes in the input. We can change the input of the sample program from

11 14 (run 7)) to 7 8 9 (run 7,), and the failure no longer occurs. Hence,
we know that the input causes the failure.
One may argue that in any program, the input determines the behavior and
thus eventually causes any failure. However, it may be only parts of the input
that are relevant. For instance, if we run sample with 11, we find that it is
the additional 14 argument which causes the failure:

sample 11 = 11

Causes in program state. If we can change some variable during execution
such that the failure no longer occurs, we know that the variable caused the
failure.

Again, consider the failing sample run r,. We could use an interactive de-
bugger and stop the program at main() (Line 28), change argc from 2 to 1,
and resume execution. We would find an output of 11, and thus find out
that the value of argc caused the failure.

As we can see from this example, a cause does not imply an error: The value
of argc probably is correct with respect to some implied specification; yet,
it is tied to the failure.

Causes in the code. All variable values are created by some statement in the

code; and thus, there are statements which cause values which again cause
failures.
In the sample program, there is a statement which exactly does that, and
which can (and should) be changed to make the failure no longer occur. The
interesting aspect is that we can find that statement from the causes in the
program state. If we can find a failure cause in the program state, we can
trace it back to the statement which generated it.

Once again, it is important to note that causes and errors are two orthogonal
concepts. We can tell an error without knowing whether it is a cause for the
failure at hand, and we can tell a cause without knowing whether it is an error.
In the absence of a detailed specification, though, we must rely on causality to
narrow down those statements which caused the error—in the hope that the
defect is among them.

4 Isolating Failure Causes with Automatic Experiments
Verifying that something is a cause cannot be done by deduction. We need

at least two experiments: One with the cause, and one without; if the effect
occurs only with the cause, we're set. This implies that we need two runs of the



