PROGRAMMING
BA N G U AuE E
R A GAM: AT i 8

Maichael L. Scott

Programming Language
Pragmatics

Michael L. Scott
University of Rochester

Ml

LAUVIRALL

E200000060

Senior Editor: Denise E. M. Penrose

Director of Production & Manufacturing: Yonie Overton
Production Editor: Edward Wade

Editorial Coordinator: Meghan Keeffe

Cover Design: Ross Carron Design

Cover Photograph: (O Ann Cecil/Photo 20-20/PNI

Text Design: Rebecca Evans and Associates
Composition: Ed Sznyter, Babel Press

Technical Illustration: Cherie Plumlee

Copyeditor: Donna King, Progressive Publishing Alternatives
Proofreader: Christine Sabooni

Indexer: Ty Koontz

Printer: Courier Corporation

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances where Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
Editorial and Sales Office

340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205

USA

Telephone 415/392-2665
Facsimile 415/982-2665

Email mkp@mkp.com
WWW http://www.mkp.com

Order toll free 800/745-7323

Advice, Praise, and Errors: Any correspondence related to this publication or intended for the au-
thor should be addressed to the Editorial and Sales Office of Morgan Kaufmann Publishers, Dept.
PLP APE or sent electronically to plp@mkp.com. Information regarding error sightings is encour-
aged; electronic mail can be sent to plpbugs@mbkp.com. Please check the errata page at www.mkp.
com/plp to see if the bug has already been reported.

Copyright (©2000 by Morgan Kaufmann Publishers

All rights reserved
Printed in the United States of America
04 03 02 01 00 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without
the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Scott, Michael Lee
Programming language pragmatics / Michael L. Scott.
2 cm.

Includes bibliographical references and index.

ISBN 1-55860-442-1 (hardback) — ISBN 1-55860-578-9 (paperback)

1. Programming languages (Electronic computers) I. Title.

QA76.7.538 2000

005.13—dc21 99-047125
CIP

Programming Language
Pragmatics

About the Author

Michael L. Scott is a professor of computer science at the University of Rochester,
where he chaired the Computer Science Department from 1996 to 1999. He re-
ceived his Ph.D. in computer sciences in 1985 from the University of Wisconsin-
Madison, where he was a member of the Crystal and Charlotte research groups.
His research interests lie in parallel and distributed computing, including oper-
ating systems, languages, architecture, and tools. He is the designer of the Lynx
distributed programming language and a co-designer of the Charlotte and Psy-
che parallel operating systems, the Bridge parallel file system, and the Cashmere
distributed shared memory system. His MCS mutual exclusion lock, co-designed
with John Mellor-Crummey of Rice University, appears in a wide variety of
commercial and academic systems.

Dr. Scott is a member of the Institute of Electrical and Electronics Engineers,
the Association for Computing Machinery, the Union of Concerned Scientists,
and Computer Professionals for Social Responsibility. He has served on a wide
variety of program committees and grant review panels, and has been a prin-
cipal or co-investigator on grants from the NSF, ONR, DARPA, NASA, the De-
partment of Defense, the Ford Foundation, and Digital Equipment Corporation
(now Compaq). He has contributed to the GRE advanced exam in computer
science, and is the author of more than fifty refereed publications. He received a
Bell Labs Doctoral Scholarship in 1983 and an IBM Faculty Development Award
in 1986.

To my three Irish roses

Preface

A course in computer programming provides the typical student’s first exposure to
the field of computer science. Most of the students in such a course will have
had previous exposure to computers, in the form of games and other personal
computer applications, but it is not until they write their own programs that they
begin to appreciate how these applications work. After gaining a certain level
of facility as programmers (presumably with the help of a good course in data
structures and algorithms), the natural next step is to wonder how programming
languages work. This book provides an explanation.

In the conventional “systems” curriculum, the material beyond data struc-
tures (and possibly computer organization) is compartmentalized by subarea,
with courses in programming languages, compilers, computer architecture, op-
erating systems, database management systems, and possibly software engineer-
ing, graphics, or user interface systems. One problem with this approach is that
many of the most interesting things in computer science occur at the boundaries
between these subareas. The RISC revolution, for example, has forged an in-
timate alliance between computer architecture and compiler construction. The
advent of microkernels has blurred the boundary between the operating system
kernel and the language run-time library. The spread of Java-based systems has
similarly blurred the boundary between the compiler and the run-time library.
Aggressive memory systems for supercomputers are redefining the relative roles
of the operating system, the compiler, and the hardware. And programming
language design has always been heavily influenced by implementation issues.
Increasingly both educators and researchers are recognizing the need to focus on
these interactions.

Another problem with the compartmentalized curriculum is that it offers
more courses than the typical undergraduate can afford to take. A student
who wants to gain a solid background in theory, artificial intelligence, numerical
methods, or various allied fields cannot afford to take five upper-level courses in
systems. Rather than give the student an in-depth look at two or three relatively
narrow subareas, I believe it makes sense to provide an integrated look at the
most fundamental material across subareas.

xviii

Preface

At its core, Programming Language Pragmatics is a book about how program-
ming languages work. It is in some sense a mixture of traditional texts in pro-
gramming languages and compilers, with just enough assembly-level architec-
ture to accommodate the student who has not yet had a course in computer
organization. It is not a language survey text: rather than enumerate the de-
tails of many different languages, it focuses on concepts that underlie all of the
languages the student is likely to encounter, illustrating those concepts with ex-
amples from various languages. It is also not a compiler construction text: rather
than explain how to build a compiler (a task few programmers will ever need to
tackle in its entirety, though they may use front-end techniques in other tools), it
explains how a compiler works, what it does to a source program, and why. Lan-
guage design and implementation are thus explored together, with an emphasis
on the ways in which they interact. When discussing iteration (Section 6.5.1),
we can see how semantic issues (what is the scope of an index variable? what
happens if the body of a loop tries to modify the index or loop bounds?) have
interacted with pragmatic issues (how many branch instructions must we exe-
cute in each iteration of the loop? how do we avoid arithmetic overflow when
updating the index?) to shape the evolution of loop constructs. When discussing
object-oriented programming, we can see how the tension between semantic el-
egance and implementation speed has shaped the design of languages such as
Smalltalk, Eiffel, C++, and Java.

In the typical undergraduate curriculum, this book is intended for the pro-
gramming languages course. It has a bit less survey-style detail than certain other
texts, but it covers the same breadth of languages and concepts, and includes
much more information on implementation issues. Students with a strong in-
terest in language design should be encouraged to take additional courses in
such areas as formal semantics, type theory, or object-oriented design. Simi-
larly, students with a strong interest in language implementation should take a
subsequent course in compiler construction. With this book as background, the
compiler course will be able to devote much more time than is usually possible
to code generation and optimization, where most of the interesting work these
days is taking place.

At the University of Rochester, the material in this book has been used for over
a decade to teach a course entitled “Software Systems.” The course draws a mix-
ture of mid- to upper-level undergraduates and first-year graduate students. The
book should also be of value to professional programmers and other practition-
ers who simply wish to gain a better understanding of what’s going on “under the
hood” in their favorite programming language. By integrating the discussion of
syntactic, semantic, and pragmatic (implementation) issues, the book attempts
to provide a more complete and balanced treatment of language design than is
possible in most texts. The hope is that students will come to understand why
language features were designed the way they were, and that as programmers
they will be able to choose an appropriate language for a given application, learn
new languages easily, and make clear and efficient use of any given language.

In most chapters the concluding section returns to the theme of design and

Preface xix

implementation, highlighting interactions between the two that appeared in pre-
ceding sections. In addition, Appendix B contains a summary list of interactions,
with references to the sections in which they are discussed. These interactions are
grouped into several categories, including language features that most designers
now believe were mistakes, at least in part because of implementation difficul-
ties; potentially useful features omitted from some languages because of concern
that they might be too difficult or slow to implement; and language features
introduced at least in part to facilitate efficient or elegant implementations.

Some chapters (2, 4, 5, 9, and 13) have a heavier emphasis than others on
implementation issues. These can be reordered to a certain extent with respect
to the more design-oriented chapters, but it is important that Chapter 5 or its
equivalent be covered before Chapters 6, 7, or 8. Many readers will already be
familiar with some or all of the material in Chapter 5, most likely from a course
on computer organization. In this case the chapter can easily be skipped. Be
warned, however, that later chapters assume an understanding of the assembly-
level architecture of modern (i.e., RISC) microprocessors. Some readers may
also be familiar with some of the material in Chapter 2, perhaps from a course
on automata theory. Much of this chapter can then be read quickly, pausing
perhaps to dwell on such practical issues as recovery from syntax errors.

For self-study, or for a full-year course, I recommend working through the
book from start to finish. In the one-semester course at Rochester, we also cover
most of the book, but at a somewhat shallower level. The lectures focus on the
instructor’s choice of material from the following chapters and sections: 1, 2.1
through 2.2.3, 3, 4, 6, 7, 8, 9.1 through 9.3, and 10 through 12. Students are asked
to read all of this material except for those sections marked with an asterisk. They
are also asked to skim Chapter 5; most have already taken a course in computer
organization.

For a more traditional programming languages course, one would leave out
Section 2.2 and Chapters 4, 5, and 9, and deemphasize the implementation-
oriented material in the remaining chapters, devoting the extra time to more
careful examination of semantic issues and to alternative programming para-
digms (e.g., the foundational material in Chapter 11). For a school on the
quarter system, one appealing option is to offer an introductory one-quarter
course and two optional follow-on courses. The introductory quarter might
cover these chapters and sections: 1, 2.1 through 2.2.3, 3, 6, 7, and 8.1 through
8.4. A language-oriented follow-on quarter might cover Sections 8.5 through
8.6, Chapters 10 through 12, and possibly supplementary material on formal se-
mantics, type systems, or other related topics. A compiler-oriented follow-on
quarter might cover Sections 2.2.4 through 2.3, and Chapters 4, 5 (if necessary),
9, and 13, and possibly supplementary material on automatic code generation,
aggressive code improvement, programming tools, and so on. One possible ob-
jection to this organization is that it leaves object orientation and functional and
logic programming out of the introductory quarter. An alternative would be
to start with a broader and more exclusively design-oriented view, moving Sec-
tions 1.4 through 1.6 and 2.2.1 through 2.2.3 into the compiler-oriented quarter,

XX

Preface

deemphasizing the implementation-oriented material in Chapters 6 through 8,
and adding Sections 10.1 through 10.4, 10.6, and the nonfoundational material
in Chapter 11.

T'assume that the typical reader already has significant experience with at least
one high-level imperative programming language. Exactly which language it is
shouldn’t matter. Examples are drawn from a wide variety of languages, but
always with enough comments and other discussion that readers not familiar
with the language should be able to understand them easily. Algorithms, when
needed, are presented in an informal pseudocode that should be self-explanatory.
Real programming language code is set in this font (Computer
Modern) . Pseudocode is set in this font (UniversLight).

Each of the chapters ends with review questions and a set of more challenging
exercises. Particularly valuable are those exercises that direct students toward
languages or techniques that they are unlikely to have encountered elsewhere,
or to encounter elsewhere soon. I recommend programming assignments in
C++ or Java; Scheme, ML, or Haskell; and Prolog. An assignment in exception
handling is also a good idea; it may be written in Ada, C++, Java, ML, or Modula-
3. If concurrency is covered, an assignment should be given in SR, Java, Ada, or
Modula-3, depending on local interest. Sources for language implementations
are noted in Appendix A.

In addition to these smaller projects (or in place of them if desired), instruc-
tors may wish to have students work on a language implementation. Since build-
ing even the smallest compiler from scratch is a full-semester job, students at
Rochester have been given the source for a working compiler and asked to make
modifications. For many, this is their first experience reading, understanding,
and modifying a large existing program—a valuable exercise in and of itself.
The Rochester PL/0 compiler translates a simple language due to Wirth [Wir76,
pp. 307-347] into MIPS I assembly language, widely considered the “friendli-
est” of the commercial RISC instruction sets. An excellent MIPS interpreter
(“SPIM”) is available from the Computer Science Department at the University
of Wisconsin (www.cs.wisc.edu/~larus/spim.html). Source for the compiler itself
is available from Rochester (ftp://ftp.cs.rochester.edu/pub/packages/plzero/). It is
written in C++, with carefully separated phases and extensive documentation.

About the Cover

The triangular icon on the cover is meant to symbolize the syntactic, seman-
tic, and pragmatic facets of programming language design, each of which finds
meaning in the context of the other two. This book aims to pay equal attention
to all three facets; it takes its name from the one that tends to receive the least
attention in other language texts.

Preface xxi

Acknowledgments

Many people have contributed to this book. My thanks to the many review-
ers who contributed comments and suggestions, including Greg Andrews, John
Boyland, Preston Briggs, Jim Larus, Steve Muchnick, David Notkin, Ron Ols-
son, Constantine Polychronopoulos, and others who remain anonymous. I have
done my best to address their concerns; the errors that remain are entirely my
own. My thanks also to the students of CSC 2/454 (formerly 2/452) who served
as guinea pigs for early versions of the book, and whose feedback served to im-
prove it greatly. Thanks in particular to Donna Byron and Brandon Sanders
for their extensive comments, to Scott Ventura for the web browser example of
Section 12.2.3, and to Angkul Kongmunvattana for helping me understand the
difference between useful and distracting cross-references.

I am of course indebted to the hard-working staff of Morgan Kaufmann Pub-
lishers, and to Denise Penrose, Mike Morgan, Edward Wade, and Meghan Keeffe
in particular. The University of Rochester and its Computer Science Depart-
ment provided a stimulating and supportive academic home while I was work-
ing on the book. Sarada George and Dianne Reiman Cass spent days chasing
bibliographic references. Finally, my thanks to my family for 5 long years of
patience.

The original manuscript for this book was composed on an Apple Powerbook
Duo computer using Marc Parmet’s port of the emacs text editor and Andrew
Trevorrow’s OzTEX version of TgX. Diagrams were drawn with Adobe Illustrator.

Computer Science and Engineering Textbooks
from Morgan Kaufmann Publishers

Artificial Intelligence
Genetic Programming: An Introduction
Wolfgang Banzhaf, Peter Nordin, Robert E. Keller; and Frank D. Francone
Essentials of Artificial Intelligence
Matt Ginsberg
Readings in Agents
Edited by Michael N. Huhns and Munindar P. Singh
Case-Based Reasoning
Janet Kolodner
Genetic Programming Ill: Darwinian Invention and Problem Solving
John R. Koza, Forrest H. Bennett Ill, David Andre, and Martin A. Keane
Elements of Machine Learning
Pat Langley
Readings in Intelligent User Interfaces
Mark T. Maybury and Wolfgang Wahlster
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
Judea Pearl
Artificial Intelligence: An Introduction
Nils J. Nilsson
Introduction to Knowledge Systems
Mark Stefik

Computer Architecture
The Student’s Guide to VHDL
Peter J. Ashenden
Parallel Computer Architecture: A Hardware/Software Approach
David E. Culler and Jaswinder Pal Singh with Anoop Gupta
Computer Architecture: A Quantitative Approach 2ed.
John L. Hennessy and David A. Patterson
Readings in Computer Architecture
Edited by Mark D. Hill, Norman P, Jouppi, and Gurindar S. Sohi
Introduction to Parallel Algorithms and Architectures: Arrays, Trees & Hypercubes
F. Thomson Leighton
Advanced Compiler Design & Implementation
Steven S. Muchnick
Parallel Programming with MPI
Peter S. Pacheco
Computer Organization & Design: The Hardware/Software Interface 2ed.
David A. Patterson and John L. Hennessy

Database
Distributed Algorithms
Nancy A. Lynch
Readings in Database Systems 3ed.
Edited by Michael Stonebraker and Joseph M. Hellerstein
Principles of Multimedia Database Systems
V. S. Subrahmanian
Principles of Database Query Processing for Advanced Applications
Clement T. Yu and Weiyi Meng
Advanced Database Systems
Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T, Snodgrass, V. S. Subrahmanian, and
Roberto Zicari

Human-Computer Interaction and Computer Graphics
Readings in Human-Computer Interaction: Toward the Year 2000 2ed.

Edited by Ronald M. Baecker; Jonathan Grudin, William Buxton, and Saul Greenberg
Readings in Information Visualization: Using Vision to Think

Edited by Stuart K. Card, Jock Mackinlay, and Ben Shneiderman

Multimedia Information & Systems
Readings in Information Retrieval
Edited by Karen Sparck Jones and Peter Willett

Networking
Understanding Networked Applications: A First Course
David G. Messerschmitt
Computer Networks: A Systems Approach 2ed.
Larry L. Peterson and Bruce S. Davie
Optical Networks: A Practical Perspective
Rajiv Ramaswami and Kumar N. Sivarajan
High-Performance Communication Networks 2ed.
Jean Walrand and Pravin Varaiya

Theory
Fundamentals of the Theory of Computation: Principles and Practice
Raymond Greenlaw and H. James Hoover

Forthcoming
Database: Principles, Programming, Performance 2ed.
Patrick E. O'Nell
Introduction to Data Compression 2ed.
Khalid Sayood
Interactive Programming in Java
Lynn Andrea Stein
Computers as Components: Principles of Embedded Computing System Design
Wayne Wolf

Contents

About the Author ii
Preface xvii

Chapter | Introduction |

[.I The Art of Language Design 3
.2 The Programming Language Spectrum 5
.3 Why Study Programming Languages? 7
|4 Compilation and Interpretation 9
I.5 Programming Environments 14
.6 An Overview of Compilation 15
[.6.I Lexical and Syntax Analysis 16
[.6.2 Semantic Analysis and Intermediate Code Generation 18
.63 Target Code Generation 22
.64 Code Improvement 24
I.7 Summary and Concluding Remarks 24
1.8 Review Questions 25
1.9 Exercises 26
[.10 Bibliographic Notes 28

Chapter 2 Programming Language Syntax 31

2.1 Specifying Syntax: Regular Expressions and Context-Free Grammars 32
2.1.1 Tokens and Regular Expressions 33
2.1.2 Context-Free Grammars 34
2.1.3 Derivations and Parse Trees 36
22 Recognizing Syntax: Scanners and Parsers 39
2.2.1 Scanning 40
222 Top-Down and Bottom-Up Parsing 48
223 Recursive Descent 5]

viii

Contents

2:5%

24
25
2.6
2.7

2.2.4* Syntax Errors 57

2.2.5 Table-Driven Top-Down Parsing 62
2.2.6 Bottom-Up Parsing 75
Theoretical Foundations 87

2.3.1 Finite Automata 88

232 Push-Down Automata 92

2.33 Grammar and Language Classes 93
Summary and Concluding Remarks 94
Review Questions 97

Exercises 98

Bibliographic Notes 102

Chapter 3 Names, Scopes, and Bindings 105

3.1
32

B:3

34

35
36

37
3.8
39
3.10

The Notion of Binding Time 106

Object Lifetime and Storage Management 108
3.2.1 Stack-Based Allocation |11

322 Heap-Based Allocation |13

323 Garbage Collection 114

Scope Rules 115

3.3.1 Static Scope 116

332 Dynamic Scope 129

333 Symbol Tables 132

3.34 Association Lists and Central Reference Tables
The Binding of Referencing Environments 139
34.1 Subroutine Closures 141

34.2 First- and Second-Class Subroutines 143
Overloading and Related Concepts 144
Naming-Related Pitfalls in Language Design 149
3.6.1 ScopeRules 149

3.6.2* Separate Compilation 151

Summary and Concluding Remarks 155
Review Questions 157

Exercises 158

Bibliographic Notes 162

Chapter 4 Semantic Analysis 165

4.1
4.2
4.3

The Role of the Semantic Analyzer 166
Attribute Grammars 168
Attribute Flow 170

137

44
4.5%

4.6
4.7
4.8
4.9
4.10

Contents

Action Routines 179

Space Management for Attributes 180
45.1 Bottom-Up Evaluation 18]

452 Top-Down Evaluation 186
Annotating a Syntax Tree 191

Summary and Concluding Remarks 197
Review Questions 198

Exercises 199

Bibliographic Notes 202

Chapter 5 Assembly-Level Computer Architecture 203

5.
52
53

54

55

5.6

5:7
58
59
5.10

Workstation Macro-Architecture 204

The Memory Hierarchy 207

Data Representation 209

53.1 Integer Arithmetic 211

5.3.2 Floating-Point Arithmetic 212
Instruction Set Architecture 214

54.1 Addressing Modes 215

542 Conditional Branches 217

The Evolution of Processor Architecture 218
5.5.1 Two Example Architectures: The 680x0 and MIPS 220
55.2 Pseudoassembler Notation 225
Compiling for Modern Processors 227

5.6.1 Keeping the Pipeline Full 227

5.6.2 Register Allocation 234

Summary and Concluding Remarks 242
Review Questions 243

Exercises 244

Bibliographic Notes 247

Chapter 6 Control Flow 249

6.1

6.2
6.3

Expression Evaluation 250

6.1.1 Precedence and Associativity 25|
6.1.2 Assignments 254

6.1.3 Ordering Within Expressions 262
6.1.4 Short-Circuit Evaluation 265
Structured and Unstructured Flow 267
Sequencing 270

ix

Contents

64 Selection 271
64.1 Short-Circuited Conditions 272
6.4.2 Case/Switch Statements 275
65 lIteration 280
6.5.1 Enumeration-Controlled Loops 280
6.5.2 Combination Loops 286
6.5.3* lterators 287
6.54 Logically Controlled Loops 294
6.6 Recursion 297
6.6.1 lteration and Recursion 297
6.6.2 Applicative- and Normal-Order Evaluation 301
6.7% Nondeterminacy 303
6.8 Summary and Concluding Remarks 308
6.9 Review Questions 310
6.10 Exercises 311
6.11 Bibliographic Notes 316

Chapter 7 Data Types 319

7.1 Type Systems 320
7.1.1 The Definition of Types 322
7.1.2 The Classification of Types 323
7.2 Type Checking 330
7.2.1 Type Equivalence 330
722 Type Conversion and Casts 334
7.2.3 Type Compatibility and Coercion 337
724 Type Inference 34|
7.2.5*% The ML Type System 344
7.3 Records (Structures) and Variants (Unions) 351
7.3.1 Syntax and Operations 35|
7.32 Memory Layout and Its Impact 353
7.3.3* With Statements 355
7.34 Variant Records 358
74 Arrays 365
7.4.1 Syntax and Operations 365
742 Dimensions, Bounds, and Allocation 369
743 Memory Layout 373
75 Strings 379
76 Sets 38l

