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Preface

A course in computer programming provides the typical student’s first exposure to
the field of computer science. Most of the students in such a course will have
had previous exposure to computers, in the form of games and other personal
computer applications, but it is not until they write their own programs that they
begin to appreciate how these applications work. After gaining a certain level
of facility as programmers (presumably with the help of a good course in data
structures and algorithms), the natural next step is to wonder how programming
languages work. This book provides an explanation.

In the conventional “systems” curriculum, the material beyond data struc-
tures (and possibly computer organization) is compartmentalized by subarea,
with courses in programming languages, compilers, computer architecture, op-
erating systems, database management systems, and possibly software engineer-
ing, graphics, or user interface systems. One problem with this approach is that
many of the most interesting things in computer science occur at the boundaries
between these subareas. The RISC revolution, for example, has forged an in-
timate alliance between computer architecture and compiler construction. The
advent of microkernels has blurred the boundary between the operating system
kernel and the language run-time library. The spread of Java-based systems has
similarly blurred the boundary between the compiler and the run-time library.
Aggressive memory systems for supercomputers are redefining the relative roles
of the operating system, the compiler, and the hardware. And programming
language design has always been heavily influenced by implementation issues.
Increasingly both educators and researchers are recognizing the need to focus on
these interactions.

Another problem with the compartmentalized curriculum is that it offers
more courses than the typical undergraduate can afford to take. A student
who wants to gain a solid background in theory, artificial intelligence, numerical
methods, or various allied fields cannot afford to take five upper-level courses in
systems. Rather than give the student an in-depth look at two or three relatively
narrow subareas, I believe it makes sense to provide an integrated look at the
most fundamental material across subareas.
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At its core, Programming Language Pragmatics is a book about how program-
ming languages work. It is in some sense a mixture of traditional texts in pro-
gramming languages and compilers, with just enough assembly-level architec-
ture to accommodate the student who has not yet had a course in computer
organization. It is not a language survey text: rather than enumerate the de-
tails of many different languages, it focuses on concepts that underlie all of the
languages the student is likely to encounter, illustrating those concepts with ex-
amples from various languages. It is also not a compiler construction text: rather
than explain how to build a compiler (a task few programmers will ever need to
tackle in its entirety, though they may use front-end techniques in other tools), it
explains how a compiler works, what it does to a source program, and why. Lan-
guage design and implementation are thus explored together, with an emphasis
on the ways in which they interact. When discussing iteration (Section 6.5.1),
we can see how semantic issues (what is the scope of an index variable? what
happens if the body of a loop tries to modify the index or loop bounds?) have
interacted with pragmatic issues (how many branch instructions must we exe-
cute in each iteration of the loop? how do we avoid arithmetic overflow when
updating the index?) to shape the evolution of loop constructs. When discussing
object-oriented programming, we can see how the tension between semantic el-
egance and implementation speed has shaped the design of languages such as
Smalltalk, Eiffel, C++, and Java.

In the typical undergraduate curriculum, this book is intended for the pro-
gramming languages course. It has a bit less survey-style detail than certain other
texts, but it covers the same breadth of languages and concepts, and includes
much more information on implementation issues. Students with a strong in-
terest in language design should be encouraged to take additional courses in
such areas as formal semantics, type theory, or object-oriented design. Simi-
larly, students with a strong interest in language implementation should take a
subsequent course in compiler construction. With this book as background, the
compiler course will be able to devote much more time than is usually possible
to code generation and optimization, where most of the interesting work these
days is taking place.

At the University of Rochester, the material in this book has been used for over
a decade to teach a course entitled “Software Systems.” The course draws a mix-
ture of mid- to upper-level undergraduates and first-year graduate students. The
book should also be of value to professional programmers and other practition-
ers who simply wish to gain a better understanding of what’s going on “under the
hood” in their favorite programming language. By integrating the discussion of
syntactic, semantic, and pragmatic (implementation) issues, the book attempts
to provide a more complete and balanced treatment of language design than is
possible in most texts. The hope is that students will come to understand why
language features were designed the way they were, and that as programmers
they will be able to choose an appropriate language for a given application, learn
new languages easily, and make clear and efficient use of any given language.

In most chapters the concluding section returns to the theme of design and
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implementation, highlighting interactions between the two that appeared in pre-
ceding sections. In addition, Appendix B contains a summary list of interactions,
with references to the sections in which they are discussed. These interactions are
grouped into several categories, including language features that most designers
now believe were mistakes, at least in part because of implementation difficul-
ties; potentially useful features omitted from some languages because of concern
that they might be too difficult or slow to implement; and language features
introduced at least in part to facilitate efficient or elegant implementations.

Some chapters (2, 4, 5, 9, and 13) have a heavier emphasis than others on
implementation issues. These can be reordered to a certain extent with respect
to the more design-oriented chapters, but it is important that Chapter 5 or its
equivalent be covered before Chapters 6, 7, or 8. Many readers will already be
familiar with some or all of the material in Chapter 5, most likely from a course
on computer organization. In this case the chapter can easily be skipped. Be
warned, however, that later chapters assume an understanding of the assembly-
level architecture of modern (i.e., RISC) microprocessors. Some readers may
also be familiar with some of the material in Chapter 2, perhaps from a course
on automata theory. Much of this chapter can then be read quickly, pausing
perhaps to dwell on such practical issues as recovery from syntax errors.

For self-study, or for a full-year course, I recommend working through the
book from start to finish. In the one-semester course at Rochester, we also cover
most of the book, but at a somewhat shallower level. The lectures focus on the
instructor’s choice of material from the following chapters and sections: 1, 2.1
through 2.2.3, 3, 4, 6, 7, 8, 9.1 through 9.3, and 10 through 12. Students are asked
to read all of this material except for those sections marked with an asterisk. They
are also asked to skim Chapter 5; most have already taken a course in computer
organization.

For a more traditional programming languages course, one would leave out
Section 2.2 and Chapters 4, 5, and 9, and deemphasize the implementation-
oriented material in the remaining chapters, devoting the extra time to more
careful examination of semantic issues and to alternative programming para-
digms (e.g., the foundational material in Chapter 11). For a school on the
quarter system, one appealing option is to offer an introductory one-quarter
course and two optional follow-on courses. The introductory quarter might
cover these chapters and sections: 1, 2.1 through 2.2.3, 3, 6, 7, and 8.1 through
8.4. A language-oriented follow-on quarter might cover Sections 8.5 through
8.6, Chapters 10 through 12, and possibly supplementary material on formal se-
mantics, type systems, or other related topics. A compiler-oriented follow-on
quarter might cover Sections 2.2.4 through 2.3, and Chapters 4, 5 (if necessary),
9, and 13, and possibly supplementary material on automatic code generation,
aggressive code improvement, programming tools, and so on. One possible ob-
jection to this organization is that it leaves object orientation and functional and
logic programming out of the introductory quarter. An alternative would be
to start with a broader and more exclusively design-oriented view, moving Sec-
tions 1.4 through 1.6 and 2.2.1 through 2.2.3 into the compiler-oriented quarter,
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deemphasizing the implementation-oriented material in Chapters 6 through 8,
and adding Sections 10.1 through 10.4, 10.6, and the nonfoundational material
in Chapter 11.

T'assume that the typical reader already has significant experience with at least
one high-level imperative programming language. Exactly which language it is
shouldn’t matter. Examples are drawn from a wide variety of languages, but
always with enough comments and other discussion that readers not familiar
with the language should be able to understand them easily. Algorithms, when
needed, are presented in an informal pseudocode that should be self-explanatory.
Real programming language code is set in this font (Computer
Modern) . Pseudocode is set in this font (UniversLight).

Each of the chapters ends with review questions and a set of more challenging
exercises. Particularly valuable are those exercises that direct students toward
languages or techniques that they are unlikely to have encountered elsewhere,
or to encounter elsewhere soon. I recommend programming assignments in
C++ or Java; Scheme, ML, or Haskell; and Prolog. An assignment in exception
handling is also a good idea; it may be written in Ada, C++, Java, ML, or Modula-
3. If concurrency is covered, an assignment should be given in SR, Java, Ada, or
Modula-3, depending on local interest. Sources for language implementations
are noted in Appendix A.

In addition to these smaller projects (or in place of them if desired), instruc-
tors may wish to have students work on a language implementation. Since build-
ing even the smallest compiler from scratch is a full-semester job, students at
Rochester have been given the source for a working compiler and asked to make
modifications. For many, this is their first experience reading, understanding,
and modifying a large existing program—a valuable exercise in and of itself.
The Rochester PL/0 compiler translates a simple language due to Wirth [Wir76,
pp. 307-347] into MIPS I assembly language, widely considered the “friendli-
est” of the commercial RISC instruction sets. An excellent MIPS interpreter
(“SPIM”) is available from the Computer Science Department at the University
of Wisconsin (www.cs.wisc.edu/~larus/spim.html). Source for the compiler itself
is available from Rochester (ftp://ftp.cs.rochester.edu/pub/packages/plzero/). It is
written in C++, with carefully separated phases and extensive documentation.

About the Cover

The triangular icon on the cover is meant to symbolize the syntactic, seman-
tic, and pragmatic facets of programming language design, each of which finds
meaning in the context of the other two. This book aims to pay equal attention
to all three facets; it takes its name from the one that tends to receive the least
attention in other language texts.
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