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PREFACE

organized into two successive chapters, with the simpler notions of related rates and
extrema on closed bounded intervals (Chapter 4) followed by the more general
discussions on increasing and decreasing functions, relative extrema, asymptotes,
and graphing techniques (Chapter 5). The applications of the definite integral are
split into two chapters as well (Chapters 7, 8), although the rationale for this is
simply to break up what otherwise would be a long and less than coherent chapter.
The unit on infinite series (Chapters 12—14) may be postponed without conse-
quence.

ANTIDERIVATIVES, INTEGRALS, AND DIFFERENTIAL EQUATIONS: The organiza-
tion of Chapters 5 and 6 reflects a concern I have held for some time, that the
definite integral is often presented to students almost simultaneously with the notion
of an antiderivative and the statement of the Fundamental Theorem of Calculus. As
a result, students can leave their first calculus course thinking of a definite integral
only as a difference between two values of an antiderivative that, coincidentally,
might also be identified with the area of a certain planar region. I have addressed
this concern in two ways. First, antiderivatives are introduced as one of the applica-
tions of the derivative, followed by a section on separable differential equations.
This serves to introduce and apply the notion of antidifferentiation as a topic that is
independent of the definite integral. Second, the definite integral is introduced as
the limit of approximating sums, which result from a discussion of approximating
planar regions by rectangles. This approach should help the student to grasp more
quickly the notion of approximate integration (including the role computers can
play), as well as making the development of the various applications of the integral
more accessible. Further topics on differential equations appear in optional sections
at the ends of chapters throughout the text, rather than in a single final chapter, in
the hope that they will be included at points in the development where they occur
naturally.

EXERCISES: More than 6,000 exercises are included, ranging from drill to chal-
lenging in type, and including many applied exercises from a broad range of disci-
plines. The extensive review exercises at the end of each chapter reflect the range of
topics included in that chapter.

While many theorems, particularly those with instructive proofs, can and
should be presented and proved, the time available to most of us for this task is not
sufficient to allow a careful treatment of the least upper bound axiom, uniform
continuity, differentiability of power series, or several other topics where state-
ments of fact must simply be made. Honesty about these omissions, together with
the right picture here and a good heuristic discussion there, can result in a presenta-
tion that is both factual and effective, and one that allows us to succeed in sharing
with students the excitement of the triumphs of this classic subject.

ACKNOWLEDGMENTS: Many individuals played instrumental roles in the develop-

ment of this text. It is my pleasure to acknowledge some of these here.
Twenty-seven teachers of the calculus scrutinized one or more drafts of the

manuscript, both on matters of content and to identify errors. These were

Paul Baum, Brown University

David Bellamy, University of Delaware
George Blakley, Texas A&M University
Jan List Boal, Georgia State University



PREFACE

This text is intended for use in a traditional three-semester or four-quarter sequence
of courses on the calculus, populated principally by mathematics, science and engi-
neering students. It reflects my own philosophy that freshman calculus should be
taught so as to produce skilled practitioners who have some real feeling for the
mathematical issues underlying the techniques they have acquired. It was written in
order to provide students of widely varying interests and abilities with a highly
readable exposition of the principal results, including ample motivation, numerous
well-articulated examples, a rich discussion of applications, and a nontrivial de-
scription and use of numerical techniques. In particular, I have tried to indicate, in
an unobtrusive manner, how computers can be used both to illustrate the theory and
to provide approximate solutions to problems for which more elegant techniques
break down.

LEVEL AND RIGOR: Nearly all topics in the traditional calculus curriculum are
treated. However, the discussion is informal, and geometric arguments are used
wherever possible. I do not prove that a continuous function assumes its extreme
values on a closed bounded interval. Limits are first presented quite informally in
the context of the tangent line problem. The more formal 6-€ definition appears
briefly at the end of Chapter 2, along with formal proofs of several limit theorems.
When the topic of limits appears later in the chapters on infinite series, it is treated
more formally, reflecting the increased maturity of the reader. The notion of differ-
entiability for a function of several variables is discussed following the development
of partial differentiation and the gradient, and the theorems of Green and Stokes, as
well as the Divergence Theorem, are fully discussed.

STRATEGY/SOLUTION FORMAT IN EXAMPLES: An unusually large number of ex-
amples (more than 700) has been included. In many of these, especially in the early
parts of the text, the solutions have been written in a two-column format, with one
of the columns labelled ‘‘strategy.’” In this column the student will find, in very
abbreviated form, a description of the principal steps involved in the fuller solution.
Here I have attempted to help students identify the more general aspects of the
particular solution, and to develop problem-solving strategies of their own.

orGANIZATION: The order of topics is consistent with those of most popular texts.
The trigonometric functions are introduced as part of the review material in Chap-
ter 1, and are used frequently throughout the text. Applications of the derivative are

\'
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Professor Paul Baum checked both the final manuscript and the exercise solu-
tions for accuracy, and prepared the solutions manual. Professors Barry Granoff, of
Boston University, and Richard Porter, of Northeastern University, read the entire
text in galley form, rechecking all examples, exercises, and mathematical content.
Professor Granoff also reviewed the artwork as it came from the artist, and scruti-
nized all page proofs. Each of these individuals worked meticulously to ensure the
accuracy of the text. Whatever errors might remain are, of course, the sole responsi-
bility of the author. Any comments on correcting or improving the text will be
gratefully acknowledged.

At Boston University I am indebted to Tom Orowan for typing near-perfect
drafts of the manuscript, and to Lisa Doherty for managing the flow of materials
between Boston and Philadelphia. The BASIC programs included in the appendix
were used by students on the University’s IBM 3081 based time-sharing system, as
well as on the author’s personal computer. The computer-generated graphs of quad-
ric surfaces were produced by the Graphics Laboratory of the University’s Aca-
demic Computing Center.

Forewarned about hazards in dealings with publishers, I was delighted to
experience a warm, professional, and highly supportive relationship with each of
several key individuals at Saunders College Publishing: Mathematics Editor Leslie
Hawke, Developmental Editor Jay Freedman, Project Editor Sally Kusch, and Pub-
lisher Don Jackson. Their commitment to excellence was a strong guiding force
throughout the development of this text.

The historical notes, which provide an important human contrast, were writ-
ten by Professor Duane Deal of Ball State University.

On a more general and personal level, the writing of this text was supported
by three very special groups of people. First, my students at Boston University, who
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have encouraged this project and helped sharpen my thinking about teaching and the
calculus for the past decade. Second, my colleagues in the faculty and administra-
tion of Boston University, who really do believe in the importance of effective
teaching. And, most importantly, my family, who understood my need to write this
book and shared fully and willingly in the sacrifices that were required. To all I am
truly grateful.

Dennis D. Berkey
Boston, Massachusetts
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Newton and Leibniz—The Unification of Calculus

More than once in history, a significant mathematical development
has been independently discovered by two mathematicians widely
separated by geography and having no contact with one another.
Perhaps the greatest of these discoveries was that of the calculus.
Isaac Newton (1642—-1727) in England, and Gottfried Wilhelm
Leibniz (1646-1716) in Germany, were completely unaware of
each other’s work. Newton actually developed his version of cal-
culus some ten years before Leibniz, but Newton was generally
reluctant to publish his results, and Leibniz presented his own
version to the world about twenty years before Newton’s first pub-
lication. These time differences ultimately resulted in an extended
controversy between English and Continental mathematicians con-
cerning priority and the possibility of plagiarism. To their credit,
however, Newton and Leibniz did not attack one another.

Isaac Newton was still an undergraduate at Cambridge Univer-
sity when he essentially created differential calculus, or fluxions as
he named derivatives. When bubonic plague swept over England
in 1665-66, the university was closed for nearly two years, and
Newton spent the time at his home. In this fruitful period, he
developed differential and integral calculus, made the first obser-
vations that culminated in his theory of gravitation, made his first
experiments in optics and the theory of color, and stated the bino-
mial theorem for general exponents.

Although the binomial theorem for positive integral exponents
had long been known, no one had thought to apply it to negative
and fractional exponents before Newton. His discoveries concern-
ing the infinite series generated by such exponents greatly in-
trigued him, and led to his using infinite series as a basis for ex-
pressing functions for his calculus. From this time on, the use of
infinite processes in mathematics came to be considered legiti-
mate. Newton himself thought infinite series and rates of change to
be inextricably linked, and referred to them together as ‘‘my
method.”’

Newton'’s ideas came from considering a curve as the result of a
continuously moving point. The changing quantity he called a flu-
ent, and its rate of change he named a fluxion (from the Latin
fluere, to flow). The fluxion was thus what we shall refer to as a
derivative, denoted ¥ if y were the original fluent. Similarly, New-
ton saw that the original fluent ye could be thought of as the fluxion
of another function, de51gnated y or y The theory of the integral,
which we shall develop in Unit III, explains Newton’s claim that
the fluent is the integral of the fluxion.

For some twenty years Newton made significant discoveries in
many fields, but then the light of creative genius flickered. He
suffered a long illness that affected his ability and, while he con-
tinued to work, the results were not of the quality of his earlier
period. He served in Parliament and was appointed Warden (and
later Master) of the Mint, in which administrative capacity he
spent his last quarter century checking the quality of the metal in
British coins.

Gottfried Leibniz was the son of a university professor who
died when the boy was only six years old. Young Leibniz had
access to his father’s extensive library and read broadly. A bril-
liant scholar, he received his bachelor’s degree at age 17, and his
doctorate (in law) at 20. He then became a diplomat by profession,
but soon became interested in mathematics as a consuming avoca-
tion. By the time Leibniz was 30 he had invented his calculus,
which is in many ways our calculus. About 1673 he came to the
realization that areas can be calculated by summing *‘infinitely
thin"’ rectangles, and that tangents to curves involve differences in

the x and y coordinates. This led him to suspect that the two pro-
cesses are inverses of one another. In doing these calculations, he
soon found himself immersed in infinite series representing func-
tions, as had Newton some years before. Realizing the power of
his discoveries, Leibniz set to work developing terminology and
notation. He selected the integral sign [ as representing the Latin
word summa, or sum, and the derivative notation %

Leibniz’s, and the world’s, first paper on differential calculus
was published in 1684 with the title (translated) A New Method for
Maxima and Minima, and also for Tangents, which is not Ob-
structed by Irrational Quantities. He gave formulas for differen-
tials of powers, products, and quotients of functions—the same
formulas we learn today. Two years later he published his integral
calculus, in which quadratures, or the calculation of areas, are
shown to be the inverse operation of finding tangents.

Newton and Leibniz both came to realize that the calculus is a
much more general tool than merely a method for finding tangent
lines or areas under curves. It was this generalization that made
them such important people in the development of mathematics.
Others had differentiated before them, had found areas, and had
even realized to some extent the relation between the twa opera-
tions. But these two, independently, unified the calculus and made
it applicable to many fields, and to a much broader range of func-
tions.

Newton was respected and revered in his old age. He was re-
elected President of the Royal Society of London for 25 years, and
was knighted by Queen Anne in 1705. He was buried in Westmin-
ster Abbey with great honor. Leibniz, on the other hand, was ne-
glected and became embittered before his death. Only one person,
his secretary, was in attendance at his funeral.

Newton and Leibniz were both creative mathematicians of the
ﬁrst rank. The genius of neither is dummshed by that of the other

Pronunciation Guide

Isaac Newton (Eye'zak New'ton)

‘ Gottfried Wilhelm Leibniz (Got'freed Vil’helm Libe'nitz)

(Photographs from the David Eugene Smith Papers, Rare Book and Manuscript Li-
brary, Columbia University.)
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