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PREFACE

This issue of Lecture Notes in Computer Science contains the proceedings of an international
workshop on "Experiences with,Distributed Systems” held September 28 - 30, 1987, at the
University of Kaiserslautern. The workshop was jointly sponsored and organized by the
Sonderforschungsbereich 124 "VSLI-Entwurfsmethoden und Parallelitdt” and the European
Network Center (ENC) of the IBM Corporation, Heidelberg.

The objective of the workshop was to bring together researchers who had gathered substantial
experience with the implementation of distributed systems. The emphasis was put on the exchange
of (good and bad) experiences with existing concepts in distributed system design rather than
presenting new ideas.

Participation in the workshop was by invitation only. The presentations can be roughly categorized
as

- reports on a specific project or

- reports on experiences with a certain topic accumulated through several projects.

Experience reports on the following projects were presented:
- Amoeba (J. Mullender)
- CONIC (N. Dulay, J. Kramer, J. Magee, M. Sloman)
- DAC (U. Hollberg, B. Mattes, A. Schill, H. Schmutz,
B. Schoner, R. Staroste, W.Stoll)
- INCAS (J. Nehmer)
- POOL (L. Gerlach, K. Malowaniec, H. Scheidig, R. Spurk)
- PEACE (W. Schroder)
- HCS (J. Zahorjan)

The following general topics were treated in other lectures:
- Fault tolerance (S.K. Shrivastava, L. Mancini, B. Randell)
- Design principles for distributed languages and systems
(R. Schlichting, G. Andrews, N. Hutchinson, R. Olsson,
L. Peterson, A. Barak, Y. Komatzky)‘
- Distributed databases (T. Hirder, K. Meyer-Wegener, A. Sikeler,
P. Christmann, S. Pappe, W. Lamersdorf, W. Effelsberg)

Kaiserslautern, March 1988 J. Nehmer
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On the Adequate Support of Communication Interfaces in Distributed
Systems

Prof. Dr. J. Nehmer
Universitdt Kaiserslautern, Fachbereich Informatik
Erwin-Schrodinger-Str., 6750 Kaiserslautern

Abstract

Existing experimental distributed systems usually support a single mechanism for message-based
communication. It is argued that different needs at the operating system level and at the application
level make it highly desirable to support several, possibly incompatible communication interfaces in
the same distributed system.The resulting problems are investigated and appropriate architectural
solutions are proposed. As an example we demonstrate how the two different distributed languages
LADY and CSSA with their distinct communication models are implemented in the INCAS project
and discuss some problems encountered during the system design.
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1. Introduction

Existing research projects on distributed systems are usually based on a single communication model
for structuring distributed programs. The communication model is supported at run time by a kernel
which offers a suitable set of communication primitives implementing the model. These primitives
are made accessible to users either by the provision of library interface packages as in Demos-MP
[MIL87], Locus [WALS83], Amoeba [MULS84], and the V-kernel [CHE84] or by a distributed
programming language as for example in Eden [BLA8S, ALM85], Cedar [SWI85], Argus [LIS83],
SR [ANDS82], NIL [STR85], Linda [CARS8S5], and Lynx [SCO88].

This approach is based on the assumption that the distributed operating system and the various
distributed applications running on top of the kernel can make efficient use of the same
communication mechanism. According to our opinion based on experiences within the INCAS
project this assumption is generally not true.

Distributed operating systems and distributed applications usually have specific communication
requirements which might not be compatible with each other. Careful design considerations
concerning the support of the various communication interfaces in distributed systems are necessary
in order to avoid system misconceptions leading to severe performance degradations and / or loss of
desired functionality.

Relative little attention has been spent by researchers to address this issue. Scott [SCO86] discusses
in his paper the related problem of appropriate support of high-level distributed programming
languages by distributed operating system kernels. By three implementations of the language Lynx
[SCO87] on different distributed operating system kernels he could show that simple communication
primitives provided by the kernel are best. However, the interface problem between distributed
applications and the distributed operating system is not addressed in the paper. In Accent [RASS81,
FIT86] the support of multiple distributed programming languages was an explicit design goal but
restricted to RPC-based communication models.

This paper is organized as follows: In section two we classify the communication interfaces in
distributed systems. In section three we provide a framework for architectural solutions based on
varying communication requirements for distributed operating systems and distributed applications.
In section four it is discussed how two rather different communication models at the distributed OS
level and the application level are realized in the INCAS project based on the two different languages
LADY and CSSA. Section five gives an overview of the problems encountered during the system
design of INCAS. The final section six discusses the possible lessons to be learned and summarizes

our conclusions.



2. The communication interfaces in distributed systems

Let us take a deeper insight into the different types of communication interfaces we are generally
faced with in distributed systems. It is assumed that the distributed operating system and the
distributed applications consist of multiple communicating modules called operating system modules
(OSM’s) and application program modules (APM's).

From Fig. 1 we can identify three interface types:
A : interface between different APM's

B : interface between APM's and OSM's

C: interface between different OSM's

APM 4+— APM

OSM 4——-|— OSM

Fig. 1 Interface types between application program modules (APM's) and operating system modules
(OSM's)

All three interface types will result in specific requirements on the underlying communication model
supporting controlled communication between modules of a given type. The potential of modules
operating as active and independent units on different processing nodes offers a broad variety of
possible assessments for communication interfaces. At present no consensus on a consistent and
comprehensive classification has been reached in the research community. Useful attempts as the
basis for further discussion have been contributed by Shatz [SHA84], Jul [JUL8S], and Liskov
[LIS85]. For the following discussions we will use a classification scheme for communication
models which takes into account the three design parameters

* synchrony

* communication pattern

* reliability



The parameter 'synchrony' may obtain the values 'synchronous' and 'asynchronous'. The parameter
'communication pattern’ may obtain the values 'notification' and 'service'. Notification-based
communication patterns support a one-way communication as used in producer-consumer type
relations between communicating modules. Service-based communication supports the request /reply
paradigm as needed for client/server systems. The reliability parameter may take the values 'don't
care', 'at-least-once', 'at-most-once', 'all-or-nothing', and 'exactly once'.

While it is difficult to recommend certain structures for the application-dependent interface type A it
seems more promising to define precise requirements for the interface types B and C because they are
devoted to the well known scope of operating systems. However, this assumption is in contradiction
to the reached consensus on adequate structuring models for distributed operating systems. Different
structuring philosophies (process/message paradigm as opposed to object/atomic action paradigm)
and the taste of designers for what is felt to be important have led to rather incompatible proposals for
communication models at the distributed operating system level. See for example the different views
taken in the languages SR [ANDS2], NIL [STR85], EPL [BLAS85] and LADY[NEH87] which
emphasize operating /communication systems as the application scope.

In order to simplify the discussion we make the reasonable assumption that the communication
mechanism provided for the interaction between APM's and OSM's (interface type B) is a subset of
the mechanism provided for communication within the operating system itself (interface type C), i.e.
B<C. Traditionally, the communication at the interface type B is restricted to a synchronous, service-
oriented call. RPC-like mechanisms [BIR8S5] are a sufficient realization basis. The requirement stated
above means that any communication model at the interface type C includes the support of a
synchronous, service directed call. Within the distributed operating and the distributed applications
system it might be necessary to provide additional communication primitives for the easy realization
of pipelined and multicast/broadcast communication structures.

3. A discussion of systematic architectural alternatives

We now discuss various alternatives for the communication interface types A, B, and C with respect
to the architectural support needed. As the general architectural model we base our considerations on
the distributed kernel approach. We assume that a distributed kernel provides the functional support
for the creation/termination of communicating modules (processes, process groups) and the
system-wide communication between them. Operating system services and application programs are
both organized as modules running above the kernel.



Alternative 1 : A=B=C

In our first alternative the three interface types A-C are assumed to be identical of some type F. In
practice, this approach would lead to a communication model (and a supporting language) which
primarily regards communication requirements at the distributed OS level and simply forces
applications to use the same model even if inadequate for the intended application scope. Most
existing research projects on distributed systems take this view as pointed out in the introduction.
Fig. 2 shows the resulting system architecture. It is sufficient to provide a distributed kernel with
communication primitives supporting directly the functionality F. All modules of type APM or OSM
will use these primitives for communication across the identical interfaces A, B and C. Although this
approach greatly simplifies the design of distributed systems it might put unacceptable limitations on
the distributed applications.

Alternative 2 : Ac C

In this alternative it is assumed that applications are written in a language which relies on a subset of
the communication mechanisms as provided for the communication between OSM's. The required
architectural support is basically the same as depicted by Fig. 2 if one replaces the function set F at
the kernel interface by C. The overall judgement of this alternative is the same as for alternative 1.

APM/ APM/
OSM OSM

!
Lo - ---— LE

kernel kernel

Fig. 2 Kernel architecture which supports the communication functions F as the only interface
between APM and OSM modules

Alternative 3: Cc A

In this alternative the communication requirements at the distributed OS level are considered a subset
of those provided for applications. The architectural support is identical with alternative 2 if the
function set F is replaced by A in Fig. 2. Although both alternatives 2 and 3 are comparable with
respect to the resulting system architecture there seems to be a substantial difference in practice: the
communication mechanisms of alternative 3 provided by the kernel are modelled primarily with
respect to the scope of the applications under consideration. OS requirements are integrated into the
communication model by appropriate extensions.



It is expected that this approach will yield communication interfaces with a richer set of
communication primitives than obtained by the opposite view taken by alternative 2. The successful
application of this approach dictates, however, that the requirements for the interface types A and C
harmonize.

As an example, let us assume that the intended applications for a distributed system are sufficiently
supported by the functions SEND, RECEIVE, REPLY, COPY_TO and COPY_FROM with the
semantics as defined for the V-kernel [CHE84].

At the distributed OS level the requirements for appropriate communication support might have been
defined by the functions SEND, RECEIVE, REPLY and the additional demand for a multicast
capability. The multicast capability can be achieved by the introduction of process groups and the
additional function GET_REPLY as explained in [CHES85]. Both provisions are natural extensions of
the original model and can easily be integrated into a final set of primitives represented by the
functions SEND, RECEIVE, REPLY, COPY_TO, COPY_FROM and GET_REPLY.

Alternative4 : A= C

So far we have discussed alternatives which lead to kernel architectures directly supporting the
interfaces A, B and C. The notation A#C will be used now to indicate that A and C are not subsets of
each other. This is the most realistic assumption. Two different subcases can be distinguished.

Subcase 4.1: A<--C,

This case is characterized by the fact that C is an adequate basis for the construction of A (expressed
by A <-- C). We generally consider this property being fulfilled if C is more primitive, less restrictive
and less reliable than A. The required architectural support for this subcase is illustrated by Fig. 3.
The kernel offers directly the functionality as required by the distributed operating system (interface
C). The higher level needs of distributed applications are supported by kernel extension packages
(KEP's) which are constructed out of the kernel primitives. Since A is based on C the communication
between APM's and OSM's is performed by the transformation of service requests to OSM's into
corresponding primitives of C. As an example it is conceivable to provide an asynchronous,
notification-oriented and unreliable communication mechanism at interface C while an RPC
mechanism with at-most-once semantics is provided at the interface A. It has been shown by several
implementations that a reliable RPC can be sufficiently built on top of an unreliable asynchronous
message passing mechanism [BIR85].
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Fig. 3 System architecture for hierarchically dependent communication mechanisms at the OS and
application level

Subcase 4.2 : A <it C,

This is the most general case since no assumptions are made about direct relations between A and C
(expressed by A <it C). The only assumption we make is that it is always possible to find a
common primitive communication model S for which it is true that

C <- §
A <- S

i.e. both interfaces C and A can be constructed out of S. The resulting system architecture is shown
in Fig. 4. The distributed OS kernel offers the primitives for the communication model S which is
neither sufficient for describing communication issues at the distributed OS level nor at the application
level nor between them. Hence, it is mandatory to provide different KEP's for the support of OSM's
and APM's on top of the kernel. In order to facilitate communication between APM's and OSM's the

kernel extension packages have to provide the functional support for the interface B in addition to A
or C respectively.
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Fig. 4 System architecture for the support of different communication models at the OS and

application level which are based on the common communication mechanism S

4. Multiple communication interfaces in the INCAS-project: A case study

The INCAS* multicomputer project [NEH87] was started in 1983 with strong emphasis on
methodological aspects in the design of distributed systems. A topic of the project was the support of
program development at the operating system and application level by powerful distributed
programming languages. It is worth to notice that long before the INCAS project was started the two
languages LADY (Language for Distributed Systems) and CSSA (Computing System for Societies of
Agents) had been developed independently by two different research groups for different purposes.

The development of LADY as an implementation language for distributed operating systems was
started in 1980 at the University of Kaiserslautern. A first prototype was operational in 1983 on a
network of TI-990 microcomputers [MAS84]. The development of CSSA dates back to 1977
[BOE77] by a research team at the University of Bonn. The intended application scope was closely
related to concurrent Al algorithms. In 1983 both research teams joined to form the INCAS project at

* (Incremental Architecture for Distributed Systems, funded by the Deutsche
Forschungsgemeinschaft as part of the SFB 124)



the University of Kaiserslautern and decided to build an experimental distributed system supporting
advanced versions of both languages for the design of distributed operating systems and application
programs. The operating system team took the opinion that a sufficient design methodology for
distributed operating systems should not put any constraints on the communication model on which
distributed application languages are based. The implementation of a run time environment for CSSA
by LADY was considered a test case for the suitability of the underlying structuring concepts in
LADY.

As the next step we will give a short overview of both languages with special attention to the

communication models.

The implementation strategy for both languages follows the alternative 4.1 as described in the
previous section, i.e. it was assumed that the communication model in CSSA could be easily
constructed out of the primitives of LADY. After having sketched the general implementation strategy
we will discuss some problems encountered during the implementation phase.

4.1 Overview of the language LADY

The LADY language reflects our view of an adequate linguistic support for describing distributed
operating systems. The structuring concepts of LADY are expressed in terms of three language levels

as illustrated in Fig. 5 [WYBS85].

module

team

oo

system

L

Fig. 5 Language levels of LADY
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The fundamental structuring unit of LADY is the team. A team consists of a collection of tightly
coupled processes which communicate via shared memory by using monitor modules or lower level
synchonization primitives such as semaphores. Teams are considered the smallest indivisable
distribution units, i.e. they have to be placed as a whole at one processing node. Several teams
constitute a system.

Systems and teams may be combined into a higher level system. This definition of systems allows
nested system structures of any depth.Teams interact with other teams via message passing. A port
interface encapsulates the internal structure of teams against the external environment. Ports are
typed, i.e. they can only handle messages of a given type. Message types can be defined as arbitrary
structures of fixed length. The port concept in LADY is symmetric as in NIL [STR85] : input ports
define the message interface exported by a team, while output ports define the message interface
imported by a team from its environment. A process can send a message to a destination only if a
connection between the output and a corresponding input port has been established beforehand.

Two types of connections between input and output ports can be defined:

a) logical channels, which provide for a one-to-one link between an output and an input port;

b) logical buses, which provide for a many-to-many link between output an input ports, thereby
offering a multicast communication capability.

Input ports can be associated with a buffer of fixed length at declaration time which allows to store a
maximum number of messages of a given type. The buffer capacity can be specified to be zero.

The semantics of one-to-one communication via logical channels can be described as follows:

a process attempting to send a message to a receiver suspends execution until the message has been
successfully stored at the receiver's site (either in the buffer or in the local working store of the
receiving process in case that buffer capacity zero was specified). Symmetrically a receiving process
is blocked until a message has arrived at the addressed input port and copied into the receiver's local
working store. (A timeout mechanism is also provided for an abnormal termination of a SEND or
RECEIVE operation). If no buffer space has been associated with an input port, the one-to-one
communication is semantically equivalent to the synchronization send [LIS79]. If buffers are
envolved the described semantic falls into the class of asynchronous communication.

Logical buses offer three distinct transmission modes, which differ in their addressing selectivity:

a) a broadcast message which is sent to all input ports connected to this bus;

b) a multicast message which is sent to all input ports at the logical bus which belong to the same
port group (port groups are defined by special port group identifiers)

¢) an individual message sent to a single input port connected to the bus.

The transmission modes are selected by different SEND statements.

Reliability of varying degree can be achieved for multicast/broadcast operations by an additional
function which allows to dynamically define the expected success of a SEND-operation in terms of
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the number of positive acknowledgements from receivers (the default being 0). Notice that
acknowledgement messages are sent automatically by the kernel if not explicitely disabled at the
receiver's site.

More details on the communication model in LADY can be found in [WYB86].

4.2 Overview of the language CSSA

The underlying computational model of the language CSSA is based on the notion of actors called
agents in CSSA originally developed by Hewitt [HEW77]. An agent is an active unit consisting of a
cluster of operations which can be activated by receiving messages from other agents. Messages
arriving at an agent while it is performing an operation are collected in a mailbox associated which
each agent, i.e. messages are processed one at a time.

The message passing scheme in CSSA is asynchronous and notification-oriented. A message may be
issued by the statement

SEND <op-name> <message> TO <target-agent>

which is a non-blocking operation. A multicast send is possible by specifying a set of agents as the
target.

The set is specified by either a list of agent names or by an agent type. In the latter case the set is
defined by all agents instantiated from this type.

A sender can request a reply by specifying
SEND....... REPLY TO <op-name>

The receiving agent responds to such a reply-obligation by issuing a
REPLY <message>

at the end of an operation. The target agent and the operation name are obtained from the message
header of the message being processed. CSSA distinguishes between implicit and explicit message
receipt. Since these differences are irrelevant for the underlying communication model only the
implicit message receipt will be discussed here (the reader is referred to [BEI85] for further details).



