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EEEN PREFACE

In 1997 T completed my book Trellis Coding, which contained a single chapter
on turbo coding. Since then, turbo coding and its associated iterative decoding
method, the turbo principle, has swept through the communications society like
a wildfire and established itself as the error coding method of choice. Its ease of
implementation and its phenomenal performance, which in many cases pushes
right up to Shannon’s theoretical limits, lets one speculate that turbo coding is the
right way to encode and decode digital data. Any potentially new method would
have to measure itself against turbo coding and thus have virtually no chance of
providing further gains. In recent years the implementation of turbo codes has
also made great strides, and practically any decoding speeds can now be achieved
by suitable parallelization of the decoding algorithms, leaving data storage and
memory access as the limiting functions. Storage, however, is always necessary
according to the requirements of Shannon’s theory to process large blocks of
data in order to approach a channel’s capacity limit.

The turbo principle has found application even outside the narrow field of
error control coding, in multiple access channel communications, in signalling
over channels with intersymbol or interchannel interference, and, more recently,
in source coding. In all these applications the principle has established itself
quickly as a very powerful processing method, leading to the design of receivers
which are far superior to conventional methods.

Since the publication of Trellis Coding, it has become evident that turbo coding
had to be given central treatment, and Lance Pérez and I have embarked on
writing up the material on turbo coding to fit together with the already existing
material on trellis coding. Some of the less central parts of the old book have
been discarded, the remainder has been updated and prepared to match the new
chapters on turbo coding. Trellis and Turbo Coding is the result and reflects the
fact that these two methods closely operate together. Most turbo codes use small
trellis codes as their constituent building blocks. What we have learned from the
last decade of intensive research is that we only want to use trellis codes with
small state-space complexities, and if stronger codes are needed, to wire up trellis
codes into concatenated turbo systems.

The first part of the book follows largely the original material in Trellis Cod-
ing, enhanced with many updates. It not only covers independent trellis coding
methods, such as trellis coded modulation and its use in voiceband modems,
but also lays the foundation for the component decoding methodology for turbo
coded systems. The second part is completely new and deals with all major forms

xiii



xiv PREFACE

of turbo coding, viz. parallel and serial concatenated systems, low-density parity
check coding, and iterative decoding of product codes. These methods and the
material on trellis coding comprise the majority of channel coding strategies in
use today, and likely for a long time to come.

Since turbo coding has achieved theoretical limits with manageable effort, any
possible future advances are necessarily very limited, and we will undoubtedly
see a migration of research and development from designing codes to building
codecs. In that sense we believe that the topic of error control coding has reached
a level of maturity and completion which will elevate it from a research domain
to a classic theory. We hope that this book covers this theory in a comprehensive
and accessible manner, and that the reader will experience the same awe and
fascination that we felt researching the material for it.
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I CHAPTER 1

Introduction

1.1 MODERN DIGITAL COMMUNICATIONS

With the advent of high-speed logic circuits and very large-scale integration
(VLSI), data processing and storage equipment has inexorably moved towards
employing digital techniques. In digital systems, data is encoded into strings of
zeros and ones, corresponding to the on and off states of semiconductor switches.
This has brought about fundamental changes in how information is processed.
Real-world data is typically in analog form; this is the only way we can perceive
it with our senses. This analog information needs to be encoded into a digital
representation—for example, into a string of ones and zeros. The conversion
from analog to digital and back are processes that have become ubiquitous, as,
for example, in the digital encoding of speech.

Digital information is treated differently in communications than analog infor-
mation. Signal estimation becomes signal detection; that is, a communications
receiver need not look for an analog signal and make a “best” estimate, it only
needs to make a decision between a finite number of discrete signals, say a one
or a zero in the most basic case. Digital signals are more reliable in a noisy
communications environment. They can usually be detected perfectly, as long as
the noise levels are below a certain threshold. This allows us to restore digital
data, and, through error-correcting techniques, even correct errors made during
transmission. Digital data can easily be encoded in such a way as to introduce
dependency among a large number of symbols, thus enabling a receiver to make
a more accurate detection of the symbols. This is called error control coding.

The digitization of data is convenient for a number of other reasons too. The
design of signal processing algorithms for digital data seems much easier than
designing analog signal processing algorithms. The abundance of such digital
algorithms, including error control and correction techniques, combined with
their ease of implementation in very large-scale integrated (VLSI) circuits, has
led to many successful applications of error control coding in practice.

Error control coding was first applied in deep-space communications where we
are confronted with low-power communications channels with virtually unlimited

Trellis and Turbo Coding, by Christian B. Schlegel and Lance C. Pérez
ISBN 0-471-22755-2  (© 2004 Institute of Electrical and Electronics Engineers



2 INTRODUCTION

bandwidth. On these data links, convolutional codes (Chapter 4) are used with
sequential and Viterbi decoding (Chapter 7), and the future will see the appli-
cation of turbo coding (Chapter 10). The next successful application of error
control coding was to storage devices, most notably the compact disk player,
which employs powerful Reed—Solomon codes [19] to handle the raw error
probability from the optical readout device which is too large for high-fidelity
sound reproduction without error correction. Another hurdle taken was the suc-
cessful application of error control to bandwidth-limited telephone channels,
where trellis-coded modulation (Chapter 3) was used to produce impressive
improvements and push transmission rates right up toward the theoretical limit
of the channel. Nowadays coding is routinely applied to satellite communications
[39, 46], teletext broadcasting, computer storage devices, logic circuits, semicon-
ductor memory systems, magnetic recording systems, audio—video systems, and
modern mobile communications systems like the pan-European TDMA digital
telephony standard GSM [33], IS 95 [44], CDMA2000, and IMT2000, all new
digital cellular standards using spread-spectrum techniques.

1.2 THE RISE OF DIGITAL COMMUNICATIONS

Aside from the technological advantages the digital processing has over analog,
there are also very good theoretical reasons to limit attention to the process-
ing of digital signals. Modern digital communication theory started in 1928
with Nyquist’s seminal work on telegraph transmission theory [34]. The mes-
sage from Nyquist’s theory is that finite bandwidth implies discrete time. That
is, a signal whose bandwidth is limited can always be represented by sample
values taken at discrete time intervals. The sampling theorem of this theory
then asserts that the band-limited signal can always be reconstructed exactly
from these discrete-time samples.! These discrete samples need to be processed
by a receiver since they contain all the necessary information of the entire
waveform.

The second pillar to establish the supremacy of digital information processing
came precisely from Shannon’s 1948 theory. Shannon’s theory essentially estab-
lishes that the discrete-time samples that are used to represent a band-limited
signal could be adequately described by a finite number of amplitude samples,
the number of which depended on the level of the channel noise. These two the-
ories combined state that a finite number of levels taken at discrete-time intervals
were completely sufficient to characterize any band-limited signal in the presence
of noise—that is, on any communications system.

I'Since it is not shown elsewhere in this book, we present Nyquist’s sampling theorem here. It is given
by the following exact series expansion of the function s(¢), which is band-limited to [—1/2T, 1/2T |:
& T sin(x)
s(1) = s 'Tsinc(—t—'T): sinc(x) = .
s(1) Z s(iT) T( iT) nc(x)

i=—00




COMMUNICATIONS SYSTEMS 3

With these results, technology has moved toward completely digital communi-
cations systems, with error control coding being the key to realize the sufficiency
of discrete amplitude levels. We will study Shannon’s theorem in more detail in
Section 1.5.

1.3 COMMUNICATIONS SYSTEMS

Figure 1.1 shows the basic configuration of a point-to-point digital communica-
tions link. The data to be transmitted over this link can come from some analog
source, in which case it must first be converted into digital format (digitized),
or it can be a digital information source. If this data is a speech signal, for
example, the digitizer is a speech codec [20]. Usually the digital data is source-
encoded to remove unnecessary redundancy from it; that is, the source data is
compressed [12]. This source encoding has the effect that the digital data which
enter the encoder has statistics which resemble that of a random symbol source
with maximum entropy; that is, all the different digital symbols occur with equal
likelihood and are statistically independent. The channel encoder operates on this
compressed data, and introduces controlled redundancy for transmission over the

Digital data

Source
compression

Digitizer [«— Analog information

Synchronization

FEC block U

E Waveform :
T Encoder/Modulator Demodulator/Decoder
! channel

Error
AR )
Q detection
. . D/A ]
Analog information ~~e—] A Source d?
conversion compression

Digital sink

Figure 1.1 System diagram of a complete point-to-point communication system for dig-
ital data. The forward error control (FEC) block is the topic of this book.



