Classical
Electromagnetic

Theory

Nunzio Trall

Professor of Physics -
C. W. Post College
Long Island University

McGraw-Hill Book Company, Inc.
New York
! San Francisco
Toronto
London



Classical

Electromagnetic

Theory

Copyright © 1963 by the McGraw-Hill Book Company, Inc. All Rights
Reserved. Printed in the United States of America. This book, or

parts thereof, may not be reproduced in any form without permission
of the publishers. Library of Congress Catalog Card Number 62-20730

65135



Preface

This book is based on the author’s lecture notes for a graduate course
in electricity and magnetism which he gave at Hofstra College in the
years 1954 to 1961. It is intended to serve as a textbook explaining the
physical concepts of electricity and magnetism, describing the mathe-
matical formalism, and presenting examples of both the ideas and methods
involved.

An effort was made to keep the book self-contained. For this reason
much of the material usually covered in an advanced undergraduate
course in electrostatics has been included. Chapter 1 deals with the
fundamentals of vector and tensor analysis. The reader is assumed to
have no more mathematical background than that provided by under-
graduate courses in advanced calculus and ordinary differential equations.
More sophisticated mathematical methods are developed in the text as
required. In this way it is hoped that the text will also prove suitable
for both the ambitious undergraduate senior and the inadequately pre-
pared graduate student.

As stated above, Chap. 1 treats the elements of vector and tensor
analysis. The next five chapters deal with the fundamental ideas of
electrostatics. Chapter 7 treats the special theory of relativity. Its
main purpose is to lay the foundation for an introduction to the concept
of the magnetic field in such a manner as to stress its origin in the motion
of charges. The properties of the magnetic field are treated in Chap. 8.
Chapter 9 deals with the derivation of Maxwell’s equations and the
wave equations. Chapters 10 to 13 are concerned with the propagation
of plane, spherical, and cylindrical electromagnetic waves. Cavity
resonators and wave guides are treated in Chaps. 14 and 15, respectively.
Chapter 16 deals with the Lagrangian and Hamiltonian formulation of
the electromagnetic field. Electron theory is treated in Chap. 17.

Rationalized mks units are used throughout the text. Tables for the
conversion of units and equations to other unit systems are given in
Appendixes IV and V.

Problems are listed at the end of each chapter. They are sometimes
used to treat material omitted from the text because of space limitations.
References are also listed at the end of each chapter.

vil



viii PREFACE

The author wishes to express his gratitude to Mrs. Claudia Quickel,
who typed the manuscript. He is indebted to his former students and
his colleagues for encouragement and suggestions. He is especially
indebted to Professor Lawrence A. Wills of the City College of New York
for his careful perusal and criticism of the manuscript.

The author welcomes all suggestions for the improvement of the text.

Nunzio Trallz
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CHAPTER 1

Scalars, Vectors, and Tensors

1-1. INTRODUCTION

In this chapter are presented those elements of vector and tensor
analysis which will be found useful in the development of the subject
matter in the remaining chapters of the text. No attempt at mathe-
matical rigor has been made. It is hoped that the presentation will serve
as a refreshing review for those who have already studied vector and
tensor analysis and as a pleasant introduction for the novice.

1-2. VECTORS

A vector is a physical quantity which possesses both a magnitude and a
direction. Such a quantity can be described mathematically by means
of a representative in a cartesian coordinate system. In each cartesian
coordinate system there is a unique representative of the vector.

To be specific, let A denote a vector. In the OXYZ cartesian coordi-

nate system its representative is the line segment A with components
A A, A, Inanother coordinate system, say O’X’'Y’Z’, the representa-

tive of A is A’ with components A, A A, The components of A

and f_l" are related by

A; = a,;Az + azyAy + a:qu
A, = ay Az + ay A, + a4, (1-1)
Al = a,.A. + a, A, + a. A,

and A, = a4, + a4, + a..A, :
Ay = a, A, + a, A, + a,A, (1-2)
A, = a4, + a4, + a.A,

where the a’s are direction cosines. For example, a, is the cosine of the
angle between O’X’ and QY.
The transformation laws (1-1) and (1-2) define a vector quantity.

That is, if the representative of a physical quantity in any cartesian
1



2 CLASSICAL ELECTROMAGNETIC THEORY

coordinate system has three components and these components trans-
form according to the laws (1-1) and (1-2), the physical quantity is a
vector.

Before proceeding further, it is convenient to introduce a more concise
notation. Denote the OX axis by 0X,, the OY axis by 0X,, and the
OZ axis by 0X; with a like notation in the primed coordinate system.
Then a., is denoted by aii, az by @is, a.. by ais etc., and Eqgs. (1-1)

and (1-2) can be written
3

Al= Y a;4; i=1,2,3 (1-1a)
=1
J3

A= ) azd]  i=1,23 (1-2a)
i=1

The notation can be further simplified to

A{ = azA; (1-1b)
' A; = aj.-A,f (1-2b)
where it is to be understood that, whenever a literal suffix or index
appears twice in a term, that term is to be summed for values of the suffix

3
1, 2, 3. Hence, since j appears twice, the summation Z is indicated.
i=1

Furthermore, since a repeated index, often called a dummy index, indi-
cates summation, another letter can be substituted for it at will.
Substitution for A4; in (1-1b) by means of (1-2b) yields

A = a;aAy

while substitution for 4] in (1-2b) by means of (1-1b) yields
A = auai A

Hence the direction cosines satisfy the relations

QijQr; = Ok (1-3)
and ;A = ik (1'4)

where 8;; is known as the Kronecker delta and has the values

O = 1 when: =k
0 when 7 = k

It

Another much-used notation is the matrix notation. In this notation
Eq. (1-1a) or (1-1b) is written

!

A, a;; aiz agi\ [4,
7

Az = | Q21 Q22 Q23 Ag (1-16)
’

A d31 Q32 Q33 A,
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The 3 X 3 array
Q11 Q12 Qi3
a = | Q1 Q22 Q23 (1-5)
a31 Q32 Qs

is known as a 3 X 3 matriz or as a square matrix of order 32. The
quantities a;; are called the elements of the matrix. The quantity

Ay
A =4, (1-6)
=7\

is called a 3-column or a 3 X 1 matrix. Its elements A; are the com-

ponents of A, the representative of the vector A in the 0X;X.X; coordi-
nate system. The multiplication of a 3-column by a 3 X 3 matrix
from the left is defined by Eqgs. (1-1a) and (1-1¢).

In this matrix notation Eqs. (1-1a) and (1-2a) can be written

A’ =ad (1-1d)
4 =d4 - (1-2¢)

where the matrix
@11 Q21 Q31
a = | a;s as as (1-7)
Q13 Q23 (33

which is formed from the matrix a by interchanging rows and columns,

is known as the transpose of the matrix a.
The relations (1-3) and (1-4) can then be writtent

aalT =1 (1-3a)
da = 1 (1-40)
ain Q12 O3 Q11 a21 Az 1 00
or Qo1 Q22 Qa3 Q12 Qo2 Q32 ) = O 1 0 (l-éb)
Q31 Q32 Q33 a1z Q23 Qsg 0 0 1
ayy Gz A3 Q11 Q12 Q13 1 00
<(112 Q2 Q32 Qa1 Az @y |={0 1 0 (1-4d)
Q13 Q23 Qgz3 Q31 Q32 Qg 0 0 1

t Any matrix b which satisfies the relations ab = ba = 1 is called the reciprocal of
the matrix a and denoted by a,~1 Then, accordmg to (l 3a) and (1-4a), a" =a”

Such a matrix whose transpose is equal to its reciprocal is known as an orthogonal
matrix.
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Equations (1-3) and (1-3b) or (1-4) and (1-4b) define the multiplication
of two matrices. The matrix

100
1={0 1 0 (1-8)
00 1

is known as the unit matriz. Its elements are the Kronecker deltas §;;.

In recapitulation, if the representative of a physical quantity in any
cartesian coordinate system has three components and these components
transform according to the laws (1-1) and (1-2), the physical quantity
is a vector. In what follows we shall usually consider the representation
of a vector A in only a single coordinate system. In such a case we shall
not distinguish between the vector A and its representative and use the
notation A for both. Furthermore, we shall refer to the components
of the representative as the components of A.

Consider two vectors A and B whose representatives in a given coordi-

nate system, A and B, have components 4., A;, A; and B,, B, By,

respectively. The vector A 4+ B has for representative 4 + B with
components 4, + By, A, + B, A; + B;, while the vector B + A has

for representative E + Z with components B; + A,, By + 4,, B; + A..

Since the A; and B; are numbers, B; + A; = A; + B;. Hence
B+A=4+B

and B+ A = A + B. This result expresses the commutative law of

vector addition; namely, the sum of two vectors is independent of the

order of addition.
In a like manner, it can be shown that

A+B+C=A+B)+C=A+B+C) =B+ C+A4)
so that
A+B+C=A+B)+C=A+B+C)=B+ (C+A)

which expresses the associative law of vector addition.

1-8. VECTOR COMPONENTS

If we restrict ourselves to orthogonal coordinate systems, the com-
ponent of a vector in a given direction is simply the projection of the
vector along a line in that direction. The magnitude of the component
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is equal to the magnitude of the vector multiplied by the cosine of the
angle between the vector and the given direction.
The component of A along the z; axis, for example, is 4; where

A, = |A| cos (A,z,) = A cos (A,z)1) (1-9)
where A=Al =~+VA2+ A2+ A (1-10)

denotes the magnitude of A, (A,z;) is the positive angle between A and

the z, axis, and
cos (A,z)) = ijf (1-11)
If iy, i;, and i; denote unit vectors along the z,, z,, and z; axes, respec-
tively, then

A = Aii, + A.i: + Asis (1-12)
The component of A in any arbitrary direction s is

A, = A cos (A;s)
or, using (1-12),

A, lA.)_i;l Cos (il,S) + IAzizl cos (iz,S) + |A3i3| Ccos (is,S)

= A cos (z1,8) + A:cos (z2,8) + A;cos (z3,8) (1-13)

1-4. THE SCALAR PRODUCT

It was demonstrated in the preceding section that the direction
cosines of any vector A are given by A,/A, A,/A, A;/A. Let the
direction cosines of any other vector B be B,/B, By/B, B;/B. Then the
cosine of the angle between A and B, § = (A,B), is given by (see any text
on analytic geometry)

_ A1 Bl A2 Bz Aa Ba
S0=FBTABTAB
Therefore ABcos § = A\B, + A;B; + A3B; (1-14)

The quantity AB cos 6 is known as the scalar product of the vectors
A and B and is denoted by A - B. Because of this notation the scalar
product is also known as the dot product.

It follows from (1-14) that

A-B=B-A = ABcos (AB) (1-15)

which shows that the scalar product obeys the commutative law of
multiplication.
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Application of (1-15) to the unit vectors i;, i, and i3 yields

il'ilziz'i2=i3'i3=l
il'i2=i2°i1=i2'i3=i3'i2=i3'i1=i1'i3=0

It is left as an exercise for the reader to verify that
(C+D):B=C:-B+D:B

which states that the distributive law holds for the scalar product.

The scalar product of two vectors is an example of the physical quantity
called a scalar. By definition, a scalar quantity is one whose representa-
tive in any cartesian coordinate system is a single number which remains
invariant in a transformation of coordinates. In order to verify that
the scalar product is, indeed, a scalar quantity, consider two vectors
A and B whose representatives in two cartesian coordinate systems are

A, B and A’, B’, respectively. Then, using (1-2a),

X . E = Z A,’B,v = z (2 a,~.;A§) (; ak,-B,i)
1 1 J
= Z (z a,-.-ak.-) A;B,’c = E 5,kA;B,"
Ik % 7.k

=Y AB =4 B
J

Thus, the scalar product of two vectors remains invariant in the trans-
formation of coordinates and, therefore, is a scalar quantity,

1-6. THE VECTOR PRODUCT

The vector product of any two vectors A and B is denoted by A x B.
Because of this notation it is also known as the cross product. By
definition, it is a vector perpendicular to the plane of the vectors A and B
whose magnitude is equal to the product of the magnitudes of A and B by
the sine of the angle between them and whose direction is that of the
advance of a right-hand screw rotating from the first vector to the second
through the smaller angle between their positive directions. Thus

|A X B| = ABsin (A,B) (1-17)
and AxB=—-BxA (1-18)

Equation (1-18) illustrates the failure of the commutative law of multi-
plication in the case of the vector product.
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Application of the definition of the vector product to the unit vectors
iy, 15, and i; yields

I Xiz= —i,Xi; =13 fpXxXizg=—igxia=1
5 5, : : : 5 p e (1-19)
XL = —11X13=1 iy Xi; =ia Xiy =i3Xizg=0
It is left as an exercise for the reader to verify that
(C+D)xB=CxB+DxB

which states that the distributive law holds for the vector product.
It then follows, using (1-19), that ,

A X B = (Alil + A2i2 + Asia) X (Blil + Bgiz + Bgig)
= il(AzBs - AaBz) + iz(AaBl = AlBa) + ia(Ale - AzB1)

which can be expressed in the more compact determinant form
ip iy i3
AxB=|A4, A, A4, (1-20)
B: B, B;

It is interesting to note that the failure of the commutative law of
multiplication in the case of the vector product now appears as a conse-
quence of the fact that interchanging two rows of a determinant changes
its sign. The vanishing of the vector product of two vectors in the same
direction now appears as a consequence of the fact that a determinant
vanishes if one of its rows is a multiple of another.

Because the vector product of two vectors differs from the vectors
which we have considered thus far in one important respect, it is some-

times called a pseudovector. Consider two vectors A and B. Let 4
and B denote their representatives in one cartesian coordinate system
and A’ and l_?; their répresentatives in another system. Then, using
(1-1a) and (1-2a),
(A X B); = A;B3 — A3B, = E (ajzars — ajaakz)A,l-Blﬁ
3k

E (ajaars — @js0u2)(A[By — ArB;)

i>k

= + ) a3(A’ X B);
i .

Thus, in general

(A4 X B) = + 2 ai(4" X BY);
) .
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The plus and minus signs arise from the sign of the determinant of the
matrix of the direction cosines [cf. Eq. (1-5)]. The plus sign holds if
the coordinate systems are both right-handed or both left-handed; the
minus sign holds if one is right-handed and the other left-handed.
Clearly, the representatives of vectors and pseudovectors obey different
laws for transformations between right-handed and left-handed systems.
The inversion z; = —=z;, Z, = —2, T3 = —x3 is an example of such
transformations. It can be used in a simple method for distinguishing
between vectors and pseudovectors. Consider any vector A. Let its

representative in a given cartesian coordinate system be A with com-
ponents (41,4.,4;). In the inverse coordinate system its representative

is A’ with components (— A,,— 4., — A;). The components of the repre-
sentative of a vector change sign in an inversion of coordinates. Consider
now two vectors A and B. Let their representatives in the given coordi-

nate system and the inverse coordinate system be Z, B and Z’, §’,
respectively. Then
(A’ X B"), = A3B; — A;B; = A;B; — A3;B, = (A X B),

with similar expressions for the other two components. Thus, the
components of the representative of a vector product do not change
sign on an inversion of coordinates.

1-6. THE TRIPLE SCALAR PRODUCT

Consider three arbitrary vectors A, B, and C. By definition, the triple
scalar product is A+ B x C. Application of the results of the last two
sections then yields

A, A, A;
A-BxC=|B, B, B; (1-21)
C, C: Cj

It follows at once on interchanging the position of the rows of the determi-
nant that

A-BXC=B:-CxA=C-AxB (1-22)

There is then no ambiguity in writing the triple scalar product as ABC;
i.e., the positions of the dot and cross are immaterial, and the three
factors can be permuted cyclically without changing the product.

It should be noted that, while the scalar product of two vectors has
the same representative in all cartesian coordinate systems, the repre-
sentative of the triple scalar product (which is the scalar product of a



SCALARS, VECTORS, AND TENSORS 9

vector and a pseudovector) changes sign in transformations between
right-handed and left-handed coordinate systems. For this reason the
triple scalar product is sometimes called a pseudoscalar.

1-7. THE TRIPLE VECTOR PRODUCT

This product is defined as A x (B x C), where the parentheses indicate
that one first performs the vector product of B with C and then the vector
product of A with the resulting vector. In general

AxB)xC=*Ax (BxC)

i.e., the triple vector product does not obey the associative law.

Let F=A X (BXxC). Then from the definition of vector prod-
uct, F is perpendicular to (B % C) and must lie in the plane of B and C.
Consequently

F =B 4 6C (1-23)

where « and B8 are scalar multipliers to be determined. The scalar
product of A and F yields

A-F=aA-B+pA-C=0
o B8

or A.C- A-B (1-24)
since F is perpendicular to A. Then
a=n(A-C) and B= —n(A-B) (1-25)
where n is some constant scalar to be determined.
Substitution of (1-25) into (1-23) yields
F = n[(A-C)B — (A - B)C] (1-26)

the z, component of which is
Fi=n[(4.C1 + A:Cy + AsCs)By — (A1By1 + A:B: + A3B;5)Cy]  (1-27)
The z, component of F = A x (B x C) is given by

Fi=A4,(BxC); — 4;(B x C),
= Az(BICz el BzCl) - Aa(Bacl - BICS)
(4:.C1 + A2Cy + A3C3)By — (A1B: + AsB: + A3B;)Cy (1-28)

Comparison of Eqs. (1-27) and (1-28) shows that n = 1 and, conse-
quently, that

Ax(BxC)=(A-C)B— (A-B)C (1-29)
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1-8. THE GRADIENT

Let a scalar ¢ be associated with every point (z1,z2,z;) of space in
such a way"that ¢(x1,72,23) is a continuous and differentiable function
of position. In the transition from the point (zi,z2,z;) to the point
(zy + dzi, 2 + dxs, T3 + dzx;) the scalar ¢ undergoes a change

dé = "¢d1+ d2+a¢ds (1-30)

corresponding to the change
ds = dz11; + dz2 1y + dzsis (1-31)

in the position vector s.
The right-hand member of Eq. (1-30) may be considered as the scalar
product of ds with the vector

9¢

grad-¢ = — 11 + i, + oz iy {1-32)
Z3
where grad ¢ is read ‘“‘gradient of ¢.”” Thus
d¢ = grad ¢ - ds (1-33)

Since the scalar product of grad ¢ and ds is zero when ds lies in the
surface ¢ = constant, it follows that grad ¢ is perpendicular ‘to this
surface. Such a surface for which ¢ is a constant is known as an equi-
potential surface.

The directional derivative of the scalar ¢ in any direction s is

d¢ _ grad ¢ - ds

as s = grad ¢ - i, (1-34)

where i, is a unit vector in the direction of s. Clearly, the maximum
value of d¢/ds is |grad ¢|. Thus grad ¢ represents in magnitude and
direction the greatest space rate of change of ¢.

1-9. CONSERVATIVE VECTOR FIELD

By definition, a conservative vector field is a vector field for which
the line integral of the vector about any closed path is zero. Thus, if
the vector be denoted by F,

$F-ds =0 (1-35)

where ds is an element of the path and the symbol ¢ indicates a line
integral about a closed path.
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A necessary and sufficient condition for a conservative vector field
is that the vector be expressible as the gradient of a scalar. This fact

can be demonstrated as follows: Let F = — grad ¢. Then
fabF-ds = — fabgrad ¢ ds
b
= — [lds = 6(@) — 6) (1-36)

From (1-36) it is evident that the line integral of the gradient of a scalar
between any two points @ and b is independent of the path of integration,
depending solely on the value of the scalar at the initial and final points.
Hence ¢ grad ¢ - ds = 0. '

According to (1-36) the value of the scalar ¢ at any point b in terms
of its value at any point a is

40) = (a) — ['F-ds (1-37)

where the path of integration is entirely arbitrary. Now let the coordi-
nates of the point a be (z1,72,25) and those of b be (z1 4+ dzi, x2 + dxs,
z3 + dz;). Then

¢(b) — ¢(a) = d¢ = grad ¢ - ds
where ds = dr;i; + dz2is + dx; i3, and (1-37) becomes
grad ¢ +ds = —F - ds

provided that F is at least piece-wise continuous. Since ds is arbitrary,
it follows that F = — grad ¢.

1-10. DIVERGENCE OF A VECTOR

It was seen in Sec. 1-8 that

4)

grad ¢ = 22 i + -2 + ks 1 (1-32)

It is now convenient to rewrite the expression as
grad ¢ = ( i + 12 + ) ol

where the quantity in the parentheses is a vector operator known as the
del operator and denoted by V. Consequently,

grad ¢ = V¢
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Application of the rule of scalar multiplication to the vectors

V—a 11+ 12+

and F = Fﬂl + lez + F;;ls

in the order V - F yields a scalar known as the divergence of F and written
as

V-F=divF— F1+ F2+ (1-38)

The above treatment has been purely formal. The physical sig-
nificance of the divergence of any vector will become apparent in the
consideration of Gauss’ theorem (Sec. 1-15).

Note that, since the vector V is an operator

V-F<F.V=F o+ P +F,,£ (1-39)
3
The application of the rule of scalar multiplication to the vectors V and F

in the order F - V yields a new scalar operator.

1-11. CURL OF A VECTOk

It was seen in the preceding section that the scalar product Vv - F
of the del operator V and any vector F gave rise to the scalar-point
function called the divergence of the vector F. Similarly, the vector
product of V and F in the order V x F gives rise to a vector-point func-
tion known as the curl of the vector F and written

. (0 a . ad d
ll(a—nga—b?;Fz)—'-h(a—x;Fl_EFs)

. [ 9 a
+13(£1‘F2 - é‘x—zFl)

VXF =curl F

iy i is

=9 9 9 (1-40)
dr; 0dz; 0z3
F, F, F;

Note that, since the vector V is an operator, VX F = —F x V,
which is another vector operator.

The vanishing of the curl of a vector at all points in space is a necessary
condition which any vector F must satisfy if it is derivable from a poten-
tial. Thus, if F = — grad ¢, then curl F = 0. The proof is as follows:
Since F = — grad ¢,

/F-ds= —/grad¢-ds



