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Foreword

Structure and abstraction are the essence of good computer science. Parallel computing
has the pursuit of absolute performance as its raison d’etre. In what are still, from any
sensible perspective, the early days of parallelism, there has been an understandable ten-
dency to ignore issues of higher-level principle, particularly in the area of programming
model and language design, in the rush for the improved speed-up curve. This book is
representative of a research area of growing interest which seeks to impose structural
discipline on the parallel programmer’s task, offering in return conceptual abstraction
and its concomitant simplicity, portability and predictability, while remaining sensitive
to the need for good performance.

The key observation is that real parallel programs are rarely random collections of
processes interacting in unpredictable ways, but are in fact well structured in concept
@if not in concrete presentation) and adhere to a small collection of more or less regular
operational patterns. The challenge is then to embed our understanding of these patterns
into the design of programming systems, both at the level of language constructs and in
the implementation process.

The book is not simply a research monograph, destined for the library shelves or the
desks of a few closely related researchers. Care has been taken to place the ideas within
the wider field of parallel computing, making it an appropriate vehicle through which
to introduce the subject to aspiring postgraduates and even appropriately focused senior
undergraduates. The opening chapters are a properly contextualised manifesto for the
Structured approach and one might go so far as to suggest that this is the perspective from
which parallelism ought to be taught in general. Certainly, there is plenty of food for
thought here for anyone who is serious about the development of parallel programming
as a well-founded discipline.

It is apt that such a book should emanate from Pisa. Susanna and her colleagues are
eminent in the field and their efforts in addressing underlying issues, building concrete
implementations and introducing the methodology to industrial partners are praiseworthy.

It is a pleasure to be able to offer these few words of introduction to what should
become recognised as one of the foundational texts in the area.

MURRAY COLE
Edinburgh
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Preface

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to”, said the Cat.
“I don’t much care where—" said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—so long as I get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long
enough.” L. CARROLL

Parallelism has always been considered important, but in the past decade interest in it has
grown enormously. The reason for this growth is that parallel and distributed architectures
have become readily available as commercial products and parallelism promises to allow
the solution of challenging frontier problems. However, from the very beginning the
main limit on parallelism has been the ability to write parallel programs at a reasonable
cost. Coordinating and managing execution of parallel tasks is too difficult to be left
as the responsibility of the programmer. If parallelism is to have an impact in the real
world, parallel machines need to be programmed using high-level languages and most
of the parallel machine complexity must be implicitly dealt with by compilers.

There is currently a wide variety of ways in which parallel software is developed, but
there is no widely accepted software development methodology able to free programmers
from parallelism complexity and at the same time able to achieve high degrees of
performance on different architectures.

The key problem when developing such a methodology is the intrinsic difficulty of
the problems to be solved automatically by the language compiler/support. Data decom-
position, process mapping, task scheduling and grain optimization have a tremendous
Impact on the actual performance achieved on a parallel architecture. Moreover, the
performance achieved by different solutions to these problems needs to be predicted
1o take sensible optimization decisions in the compiling process. Unfortunately, for
general parallel program structures the decomposition mapping and scheduling problems
are intractable and such that the performance of a given solution cannot be estimated
accurately.

The purpose of this book is to show how notoriously difficult problems such as
mapping/scheduling can be made tractable by restricting the structure of parallel programs
and to propose a methodology for the design of parallel software which is high-level,
Portable and able to achieve high performance figures.

The methodology uses a small number of parallel forms as building blocks for par-

xiii
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allel applications and allows the coding of parallel programs in a high-level machine-
independent notation which can be automatically reorganized by the compiler. The
parallel forms are provided as primitive constructs of a structured parallel language and
are the only way in which the application parallel structure can be expressed. The class
of applications which can be coded in this way is extremely large, and includes many data
parallel and task parallel examples, or applications exploiting a mixture of the two. The
restriction imposed by the language allows an innovative organization of the compiler
to be adopted, which results in a number of benefits. In particular, machine-dependent
problems can be solved effectively and performance prediction can be achieved at all
decision levels.

The book is organized as follows. It first analyzes the existing systems for parallel
software production, present in the literature, and outlines the intrinsic limitations of these
different approaches. Then, it details an innovative methodology for the development
of parallel programs which provides the programmer with a small set of parallel forms
(skeletons) as building blocks for parallel applications. Finally, it describes P3L, a
structured parallel programming language based on skeletons, discusses the organization
of the P3L compiler, and gives examples of structured parallel program development.

The book is targeted at researchers, both in academic institutions and in progressive
commercial companies, and at aspiring research students in the area of parallel and
distributed processing.

A number of people have made important contributions to the development of the
ideas, methodology and tools discussed in this book. I owe much to Bruno Bacci,
Marco Danelutto, Salvatore Orlando and Marco Vanneschi for their extensive work
on the P3L project, first at the Hewlett Packard Pisa Science Center and then at the
Department of Computer Science of the University of Pisa. In particular, Bruno Bacci
and Salvatore Orlando also developed most of the first prototype compiler of P3L.
Marco Danelutto proofread part of the book and provided some of the examples in
Chapter 10. Special thanks go to Milon Mackey, who developed the initial front-end
and participated enthusiastically in the P3L project in his spare time. Fabio Piazzai,
Fabrizio Pasqualetti, Francesco Chiaravalloti, Barbara Cantalupo and Nicola Guerrini
contributed to the template development for both the Meiko CS1 and the PVM versions
of the compiler. A number of undergraduate students participated in the project to build a
set of applications using the P3L compiler: Domenica Barresi, Giacomo Giunti, Stefano
Milana, Paolo Pesciullesi, Paola Criscione, Gianni De Giorgi, Antonio Biso, Alessia
Conserva, Stefano Bordin, Davide Pasetto and Maria Gabriella Brodi. Roberto Ravazzolo
and Alessandro Riaudo implemented the OCR application discussed in Chapter 10. I
would like to thank Peter Thanish for the many helpful suggestions on the material and
the presentation of Chapter 4. Very special thanks go to Paul Kelly, who is definitely
responsible for convincing me to write this book. I am grateful to Murray Cole, whose
suggestions greatly contributed to the improvement of the manuscript and to David
Skillicorn for his encouragement.

Finally, I am indebted to Bruno, who participated in the book in more ways than I
can mention.

SUSANNA PELAGATTI
University of Pisa

Pisa, Italy
susanna@di.unipi.it
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CHAPTER ONE

Introduction

The main obstacle to the widespread diffusion of parallel computing is its complexity
and the cost of the associated software development process.

What is really needed is a general purpose methodology for the development of parallel

programs and their support able to ensure:

programmability, it should be possible to write and modify parallel programs easily,
and to prove their correctness against specifications;

portability, the programs written should be portable across a broad range of archi-
tectures,

performance, the support should be able to translate a program for different target
architectures achieving good performance figures and optimized resource utilization.

In this book, we first analyze the main problems to be solved to achieve these goals, and
then propose a methodology that seems able to overcome most of the problems outlined.

1.1 EFFECTIVE SEQUENTIAL PROGRAMMING

A brief analysis of the way in which programmability, portability and performance have
been achieved in imperative sequential programming may be useful to illustrate the main
issues to be addressed.

In the sequential world, the above-mentioned goals have been achieved by providing

a high-level language in which a programmer can easily express sequential algo-
rithms, without dealing with machine-dependent features,

a performance calculus, which can be used to predict the performance of a sequential
algorithm (program),

efficient compiling tools, able to translate and optimize the source code automatically
(and effectively) against the target architecture.

Given a problem P to be solved, the programmer first analyzes P in order to find a
“good” sequential algorithm A to solve it. The choice of Ap is guided by a performance
Calculus allowing the programmer to optimize the al gorithm structure without specifically
taking into account the target machine features. Then, the algorithm is coded in a suitable
language and is optimized and translated by the compiler according to the underlying
architecture (e.g. superscalar, vector, VLIW). If the underlying architecture changes, it
18 sufficient to re-compile the program for the new target and all the advantages are
maintained.



