Structured
- Development
of Paralle
2rograms

L nd it cak b

¥ (e first 0 e D x it da 4 ch)
, md the mlumcdmtc ST e gtli;ompulau
o i , ub thi
s,enemtmg the coording¥
rot set and a third stags
ihe last stage and the pig

) is a predeﬁned hbrar
o)

%’2
Taylor &Francis

Publishers since 1798

‘W%o[\é

\A//

/

Structured Development
of
Parallel Programs

50019037

Taylor &Francis
Publishers since 1798

UK
USA

Taylor & Francis Ltd, § Gunpowder Square, London EC4A 3DE
Taylor & Francis Inc., 1900 Frost Road, Suite 101, Bristol, PA 19007

Copyright (© Susanna Pelagatti 1998

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, electrostatic, magnetic
tape, mechanical photocopying, recording or otherwise, without the prior permission of
the copyright owner.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
ISBN 0-7484-0655-7

Library of Congress Cataloging-in-Publication Data are available

Cover design by Youngs Design in Production
Typeset in Times 10/12pt by Focal Image Ltd, London, UK
Printed by T.J. International Ltd, Padstow, UK

Structured Development
of
Parallel Programs

To Maria Teresa and Pier Luigi

oI, FESEHEPDRIE VA . www. ertongbook. com

Foreword

Structure and abstraction are the essence of good computer science. Parallel computing
has the pursuit of absolute performance as its raison d’etre. In what are still, from any
sensible perspective, the early days of parallelism, there has been an understandable ten-
dency to ignore issues of higher-level principle, particularly in the area of programming
model and language design, in the rush for the improved speed-up curve. This book is
representative of a research area of growing interest which seeks to impose structural
discipline on the parallel programmer’s task, offering in return conceptual abstraction
and its concomitant simplicity, portability and predictability, while remaining sensitive
to the need for good performance.

The key observation is that real parallel programs are rarely random collections of
processes interacting in unpredictable ways, but are in fact well structured in concept
@if not in concrete presentation) and adhere to a small collection of more or less regular
operational patterns. The challenge is then to embed our understanding of these patterns
into the design of programming systems, both at the level of language constructs and in
the implementation process.

The book is not simply a research monograph, destined for the library shelves or the
desks of a few closely related researchers. Care has been taken to place the ideas within
the wider field of parallel computing, making it an appropriate vehicle through which
to introduce the subject to aspiring postgraduates and even appropriately focused senior
undergraduates. The opening chapters are a properly contextualised manifesto for the
Structured approach and one might go so far as to suggest that this is the perspective from
which parallelism ought to be taught in general. Certainly, there is plenty of food for
thought here for anyone who is serious about the development of parallel programming
as a well-founded discipline.

It is apt that such a book should emanate from Pisa. Susanna and her colleagues are
eminent in the field and their efforts in addressing underlying issues, building concrete
implementations and introducing the methodology to industrial partners are praiseworthy.

It is a pleasure to be able to offer these few words of introduction to what should
become recognised as one of the foundational texts in the area.

MURRAY COLE
Edinburgh

xi

Preface

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to”, said the Cat.
“I don’t much care where—" said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—so long as I get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long
enough.” L. CARROLL

Parallelism has always been considered important, but in the past decade interest in it has
grown enormously. The reason for this growth is that parallel and distributed architectures
have become readily available as commercial products and parallelism promises to allow
the solution of challenging frontier problems. However, from the very beginning the
main limit on parallelism has been the ability to write parallel programs at a reasonable
cost. Coordinating and managing execution of parallel tasks is too difficult to be left
as the responsibility of the programmer. If parallelism is to have an impact in the real
world, parallel machines need to be programmed using high-level languages and most
of the parallel machine complexity must be implicitly dealt with by compilers.

There is currently a wide variety of ways in which parallel software is developed, but
there is no widely accepted software development methodology able to free programmers
from parallelism complexity and at the same time able to achieve high degrees of
performance on different architectures.

The key problem when developing such a methodology is the intrinsic difficulty of
the problems to be solved automatically by the language compiler/support. Data decom-
position, process mapping, task scheduling and grain optimization have a tremendous
Impact on the actual performance achieved on a parallel architecture. Moreover, the
performance achieved by different solutions to these problems needs to be predicted
1o take sensible optimization decisions in the compiling process. Unfortunately, for
general parallel program structures the decomposition mapping and scheduling problems
are intractable and such that the performance of a given solution cannot be estimated
accurately.

The purpose of this book is to show how notoriously difficult problems such as
mapping/scheduling can be made tractable by restricting the structure of parallel programs
and to propose a methodology for the design of parallel software which is high-level,
Portable and able to achieve high performance figures.

The methodology uses a small number of parallel forms as building blocks for par-

xiii

Xiv STRUCTURED DEVELOPMENT OF PARALLEL PROGRAMS

allel applications and allows the coding of parallel programs in a high-level machine-
independent notation which can be automatically reorganized by the compiler. The
parallel forms are provided as primitive constructs of a structured parallel language and
are the only way in which the application parallel structure can be expressed. The class
of applications which can be coded in this way is extremely large, and includes many data
parallel and task parallel examples, or applications exploiting a mixture of the two. The
restriction imposed by the language allows an innovative organization of the compiler
to be adopted, which results in a number of benefits. In particular, machine-dependent
problems can be solved effectively and performance prediction can be achieved at all
decision levels.

The book is organized as follows. It first analyzes the existing systems for parallel
software production, present in the literature, and outlines the intrinsic limitations of these
different approaches. Then, it details an innovative methodology for the development
of parallel programs which provides the programmer with a small set of parallel forms
(skeletons) as building blocks for parallel applications. Finally, it describes P3L, a
structured parallel programming language based on skeletons, discusses the organization
of the P3L compiler, and gives examples of structured parallel program development.

The book is targeted at researchers, both in academic institutions and in progressive
commercial companies, and at aspiring research students in the area of parallel and
distributed processing.

A number of people have made important contributions to the development of the
ideas, methodology and tools discussed in this book. I owe much to Bruno Bacci,
Marco Danelutto, Salvatore Orlando and Marco Vanneschi for their extensive work
on the P3L project, first at the Hewlett Packard Pisa Science Center and then at the
Department of Computer Science of the University of Pisa. In particular, Bruno Bacci
and Salvatore Orlando also developed most of the first prototype compiler of P3L.
Marco Danelutto proofread part of the book and provided some of the examples in
Chapter 10. Special thanks go to Milon Mackey, who developed the initial front-end
and participated enthusiastically in the P3L project in his spare time. Fabio Piazzai,
Fabrizio Pasqualetti, Francesco Chiaravalloti, Barbara Cantalupo and Nicola Guerrini
contributed to the template development for both the Meiko CS1 and the PVM versions
of the compiler. A number of undergraduate students participated in the project to build a
set of applications using the P3L compiler: Domenica Barresi, Giacomo Giunti, Stefano
Milana, Paolo Pesciullesi, Paola Criscione, Gianni De Giorgi, Antonio Biso, Alessia
Conserva, Stefano Bordin, Davide Pasetto and Maria Gabriella Brodi. Roberto Ravazzolo
and Alessandro Riaudo implemented the OCR application discussed in Chapter 10. I
would like to thank Peter Thanish for the many helpful suggestions on the material and
the presentation of Chapter 4. Very special thanks go to Paul Kelly, who is definitely
responsible for convincing me to write this book. I am grateful to Murray Cole, whose
suggestions greatly contributed to the improvement of the manuscript and to David
Skillicorn for his encouragement.

Finally, I am indebted to Bruno, who participated in the book in more ways than I
can mention.

SUSANNA PELAGATTI
University of Pisa

Pisa, Italy
susanna@di.unipi.it

Contents

Foreword
Preface

Introduction

1.1

Effective sequential programming

1.2 Defining a suitable methodology for parallel programming

1.3

Overview of the book

Problems and models in parallel computation

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

Solving a problem in parallel
A SIMPIEEXAMPIE s o 5 x5 5 5 5 & 5 505 A i
Spectrum of solutions in the literature
Implicitly parallel models
Completely abstract models
High-level partly abstract models
Low-level partly abstract models.
Machine-dependent models
Discussing the different classes: the whole picture

10 SUMIMATY = ¢ ¢ 5 5 5 505 5.5 5 & 5 Goinradiori & o

Basic parallel paradigms

3.1
3.2
3.3
34
3.5

Parallelizing the computation of a function
Stream parallelism
Data parallelism
Composition of the basic paradigms
Summary

Mapping and scheduling in graph-based systems

4.1
42
43
44

Introduction: the mapping terminology
Modeling the mapping problem
Solving the mapping problem
The survey

page xi
Xiii

nN AN ==

12
19
21
23
24
26
28
28
32

33
33
34
39
46
48

49
49
51
59
60

vii

viii

STRUCTURED DEVELOPMENT OF PARALLEL PROGRAMS

4.5 Directed Acyclic Graph modelso
4.6 Synchronous Phase modelso
4.7 Heuristic models using cost functionso
4.8 Heuristic models constraining the feasible mappings
4.9 An automatic mapping tool
410 SUMMATY . . o v v oovovvom e e s mm s

Template-based systems

5.1 Graph-based and template-based systems
52 Basic structure of a template-based system e
53 Cole’s Algorithmic Skeletonso
5.4 Darlington et al. skeleton libraryo
5.5 Skeleton COMPOSIION . . .+« « v v v v e
56 TheSCLapproacho s
5.7 Summary and other recent skeleton proposals

A structured methodology for parallel programming

6.1 Setting the motivations for structured parallel programming
6.2 A methodology based on structured parallel programming
03 SUMIELY . . - o5 o 500w oo s s o HO0Gibe Soiim v .

P3L, a structured parallel programming language

71 P3L overview . . . SIOUGERGINOL ASREINL S0 o e
B TR MR wsrs 5 5 o i 20 A s @Bk GTILAPEL B SRR
7.3 The sequential CONSIUCt oo
7.4 The farm CONSITUCE . . « . o v v v v v v e oo e e e e e
7.5 The pipe CONSIIUCE o o oo v v v v o e e
76 TheloOpCOMSHUCE v oo ol o oo v v ol oo oW e v e
77 The map CONSIIUCE v oo v v
7.8 The reduce CONSIIUCE . . . o o o v v v v e oo e e e
79 The COMP CONSLIUC . . .+« o v v v o e e e e e
7.10 Iterating data-parallel computations
7.11 Functional semantics of the parallel constructs
TA2 SURMBATY -« v« o « v v mon e 505005 sepaihouid iz il

The P3L compiler

81 The abstract machine ¢ o o o o oo e ca e e e e
8.2 Prototypes and ongoing Work ee s e e
8.3 Implementation templates 2. s Tt 0
8.4 The structure of the compiler -« o oo oo e
8.5 Basic data structures: . & bseas lepai G RIRIEREDS DU v
8.6 Libraries. -+ s aodoseTRIEE SERIREIE S ot .
8.7 TFront-end oo SOSISEEERREENE 001 20 ...
8.8 Middle-endo o EEEEERMIRETE 00 0.
89 Back-endo oS- . 0L L.
8.10 A simple compilation example SRR L.
8.11 Summary «+ oo <o S - . - . . . - .-

61

66
68
70
72

73
73
74
71
79
83
84
89

91
91
93
103

105
105
106
107
108
109
110
112
115
116
119
120
121

123
123
124
124
125
126
128
131
133
139
141
145

CONTENTS ix

9 Template development 147
9.1 Issuesin template design 147
9.2 A map template for full topology 149
9.3 A map template for mesh topology 153
94 Summary 157

10 Structured parallel programs in P3L 159
10.1 Parallel program development in P3L 159
10.2 Matrix multiplication 161
10.3 A case study: Optical Character Recognition 167
104 Summary 172

11 Conclusions 175
11.1 Assessing the methodology 175
11.2 Structured parallel programming: background 176
11.3 P3L development 177
11.4 Current status of research 178

References 179

List of Tables

Miscellaneous mathematical notations used within the book..
Symbols used within the book (except Chapter 4).
Parameters of the MP cost model.
Cost of each operation on the dmDLX machine.
Characteristics of the parallel computational model classes.
Summary of the parameters used in the mapping survey.
Parameters used in the map templates.
Performance formulae of the map template for full topology.
Performance formulae of the map template for mesh topology.

15
18
29
52
150
153
156

XV

34

35
36

8.7

5.1
6.1

List of Illustrations

e dag of a parallel algorithm for computing the inner product of two
ectors @ andiESESIoht elements each.
A process network implementing the algorithm of Figure 2.1 onto the
abstract MP architecture (process graphs I'; and I';). Distribution phase
fa) and binamsEESEE computation (b).
Completion time T5(p, n) of I'; for n = 10000, 40000, 100000 and different
BUmberSIOINERINRERRINIE e L o i e e e e
Absolute speedup of T>(p, n) for different numbers of processes: S2 is
the real speedup and S2wd is the speedup achieved without paying the
KlistribUESRN e L. Ll e e el e
A possiDiSSEEERENs on dmMDLX. L. L
The I'; process graph: scattering the input data (a) and gathering the partial
sums (D/NEEEENNENNEE . . | | . | L L el e s
Exploiting optimized collective operations on dmDLX: Sc2 is the speedup
achieved by I'; using point-to-point communications and Sc3 is the speedup
achieved by I'; employing collective operations.
A process graph T', exploiting farm parallelism in the implementation of
M. I . s e v e e e e e
A process graph I', implementing M according to the pipeline paradigm.
A process graph I'y; implementing M according to the stream-iterative
paradigm. Ty emulates the unbounded pipeline typical of the stream-
iterative paradigm with a static chain of processes.
A process graph I', implementing M according to the basic data-parallel
pArcCEEIRNR e (L L R L Rl
An optimized process graph for the Map&Reduce paradigm.
A process graph I'. for implementing the composed data-parallel paradigm.
The workers communicate using a completely interconnected channel struc-
ture. The picture illustrates the communication channels between Wo and
the rest of the workers. Each worker employs a similar set of channels. .
A process graph for fine grain matrix multiplication. The algorithm exploits
the basic data-parallel paradigm both for the computation of each element
of C (inner product) and between all the elements of C.
A possible implementation template for the PIPE skeleton.
The construct tree of the example function composition.

12

13

16

16

18

18

19

35

37

38

40
42

43

46
75
95

XVii

xviii
6.2
6.3
6.4
6.5
6.6
6.7
11
72
13

7.4

7.5

7.6

7.7

7.8

719

7.10

7.11

7.12

713
7.14

7.15
8.1
8.2
8.3

8.4
8.5
8.6

8.7

STRUCTURED DEVELOPMENT OF PARALLEL PROGRAMS

A flat implementation template for the FARM construct on the MP model.
The temporal behavior of the flat template.,
A composed implementation template for the PIPE construct.
The implementation generated for the construct tree in Figure 6.1.. . . .
An absolute optimizaflanEE =2 L L . oo e s e s e e
A timed optimizationrule. L.
A sequential module computing a function f on a stream of input data and
producing a streamiefaresalss i N | oo co T 0L g s
Declaration of a sequential module accepting in input an integer vector and
computing the sum of all the vector elements.
A parallel module exploiting farm parallelism in the computation of the sum
of the elements of a Stream Of VECIOIS: ' &« w.si o ov 4w o o o o oos o ol
Declaration of a parallel module exploiting pipeline parallelism between
two stages. The first stage computes the sum of the elements of an integer
vector and the second stage computes the square root of the result.
Declaration of a parallel module exploiting the stream-iterative paradigm in
the computation of A™. This is expressed by a definite loop..
An indefinite loop instance computing a? until it exceeds a threshold N.
The corresponding module accepts a stream of integer values and exploits
stream-iterative parallelism.
Definition of a parallel module exploiting basic data parallelism in matrix-
by-matrix multiplication. 0oL
Different overlapping multicast: a column slice of a (a); a square slice of
b (b)'and a group of colimnsof c'(¢). . . .7.0 .. ., 8
Definition of a data-parallel module computing a single iteration of the game
OB L o Y . . e e inige ibies B o m e s s A e s g e G B
Reducing a vector and a matrix with binary user-defined operators. f is a
binary operator working on integers and f_vect is a binary associative and
commutative operator working on vectors.
A parallel module summing all the rows of a matrix in parallel. The parallel
evaluation of all the reductions is achieved by nesting map and reduce.

A parallel module computing the inner product according to the Map&
Reduce patadipin, ™. 25 . 0 8 2 e e A L
A module computing A* with two data-parallel multiplications in cascade.
A module computing A™ where m = 2" according to the composed data-
parallel paradigmy, - . . o . 5L Lo osan SRSty L U
Definition of a parallel module computing the game of life.
Ouihine ofthe P31 compiler. .. . B Sl e e i L
A ‘pipe-flatteniing “optimization. . ", .. L SSEE SR L L U L L .
Transformation of two pipeline stages to a notable Map&Reduce composi-
(i10) eI D i e
Transformation of a simple sequential module by the front-end.
Construct tree Prolog facts for a simple P3L program.
Labeling of a simple construct tree: name and kind of nodes (a) and an
eval&map labeling achieving the minimum service time (b).
A reduction process involving the farm construct. (a) Abstract process graph
structure defined by the labeling of Figure 8.6b. (b) Abstract process graph
structure after the first reduction step. -

96
98

101
102
102
106
107

108

109

110

111

113

114

115

116

117

118
118

119
120
125
130

130
131
133

135

137

8.8

8.9

8.10
8.11
8.12
8.13
8.14

8.15
8.16

817
9.1

90

Y3
10.1
10.2
10.3
10.4
10.5

10.6
10.7
10.8
10.9

10.10
10.11

LIST OF ILLUSTRATIONS

A reduction process involving the farm construct. (a) Abstract process graph
using only 4 nodes (after the second reduction step). Further reductions with
a constraint of having at most 3 processes: the farm construct is collapsed
to a single sequential node (c) and the corresponding process graph uses 2
BEIES (D). . o o . conalelistie e ier BEIEE e edin R TR R S el
The abstract process graph corresponding to the labeled tree of Figure 8.6.
Each node is identified by a unique name (a number from O to 5 inside the
node) and is labeled with the information needed to generate the correct
process template instance.
A C function computing the color of a complex point (zr,zi)..
A P3L program computing the Mandelbrot set.
Definition of the main pipeline for the Mandelbrot P3L program.

The logical structure of the Mandelbrot program.
The abstract process graph generated for a Meiko CS1 with 40 nodes
@vailable. e e e
Options of the current p31 Unix command.
Experimental results. The service time 7; for Mandelbrot set computa-
tion with 300x300 points with resolution 300 (Ts300(p)) and 400x400
points with resolution 500 (Ts400(p)) (left) and the corresponding speedups
IR s 100, s) sleni b B Rleend bdne e B b B BEE DR oo e e, s
The abstract process graph generated for PVM.
The distribution and collection interactions between the workers of the map
template on the abstract machine.
The process graph of the square template (a) and the worker numbering
(L:p)(B). . o o e
A scattering strategy taking O (m) communication steps.
Developing and tuning a parallel program with P3L.
A P3L program computing matrix multiplication. All the columns of the
result matrix C are computed in parallel MM_1).
Service time (left) and absolute speedup (right) of the matrix multiplication
module MM_1 on MeikoCS1. 07 ...,
Service time (left) and absolute speedup (right) of the matrix multiplication
module computing all the elements in parallel (MM_2) on Meiko CS1. . .
Service time (left) and absolute speedup (right) for MM_1 on a Cray T3D
L et SRR LR e R B LT
A P3L program computing matrix multiplication on a stream of pairs of
matrices (sMM). The parallel algorithm exploits farm parallelism between
the computation of different matrix products and uses the module mul of
MM_1 to exploit map parallelism in a single matrix product.
Predicted and measured service time values for sMM on the Meiko CSI.
Each curve fixes the number of workers in the outer farm template and
Balicsithe workers in the inner Map: -« v o o v o v o 6 5w oo w0 o s
Estimated and measured service times for sMM on Cray T3D and MPI. Each
curve fixes the number of workers of the inner map (4,6,8,16) and varies
the number of workers in the farm template.
Service time of the intermediate implementations of SMM generated by the
LR algorithm for a Cray T3D with 128 nodes.
The parallel structure of the first solution (OCR_1).
P3L coding for the first solution OCR_1.

XiX

138

139
140
140
141
142

143
144

144
145

151
154
155
160
162
162

163
163
164
165
166
166

167
168

XX STRUCTURED DEVELOPMENT OF PARALLEL PROGRAMS

10.12 A solution exploiting map parallelism (a) and its refinement O0CR_2 (b) taking
pape umbatance MOMSERRE ') 0 Gy oo s 169

10.13 The OCR_3 solution exploiting geometric data parallelism. 169
10.14 Parallel implementation of the segmentation stage emulating the Di-
vide&Conquer paradigm with a nesting of map and loop. 170

CHAPTER ONE

Introduction

The main obstacle to the widespread diffusion of parallel computing is its complexity
and the cost of the associated software development process.

What is really needed is a general purpose methodology for the development of parallel

programs and their support able to ensure:

programmability, it should be possible to write and modify parallel programs easily,
and to prove their correctness against specifications;

portability, the programs written should be portable across a broad range of archi-
tectures,

performance, the support should be able to translate a program for different target
architectures achieving good performance figures and optimized resource utilization.

In this book, we first analyze the main problems to be solved to achieve these goals, and
then propose a methodology that seems able to overcome most of the problems outlined.

1.1 EFFECTIVE SEQUENTIAL PROGRAMMING

A brief analysis of the way in which programmability, portability and performance have
been achieved in imperative sequential programming may be useful to illustrate the main
issues to be addressed.

In the sequential world, the above-mentioned goals have been achieved by providing

a high-level language in which a programmer can easily express sequential algo-
rithms, without dealing with machine-dependent features,

a performance calculus, which can be used to predict the performance of a sequential
algorithm (program),

efficient compiling tools, able to translate and optimize the source code automatically
(and effectively) against the target architecture.

Given a problem P to be solved, the programmer first analyzes P in order to find a
“good” sequential algorithm A to solve it. The choice of Ap is guided by a performance
Calculus allowing the programmer to optimize the al gorithm structure without specifically
taking into account the target machine features. Then, the algorithm is coded in a suitable
language and is optimized and translated by the compiler according to the underlying
architecture (e.g. superscalar, vector, VLIW). If the underlying architecture changes, it
18 sufficient to re-compile the program for the new target and all the advantages are
maintained.

