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PREFACE

The favorable reception of the First Edition of this volume
appears to have sustained the authors’ belief in the need of a
book on mathematics beyond the calculus, written from the
point of view of the student of applied science. The chief
purpose of the book is to help to bridge the gap which separates
many engineers from mathematics by giving them a bird’s-eye
view of those mathematical topics which are indispensable in
the study of the physical sciences.

It has been a common complaint of engineers and physicists
that the usual courses in advanced calculus and differential
equations place insufficient emphasis on the art of formulating
physical problems in mathematical terms. There may also be a
measure of truth in the criticism that many students with pro-
nounced utilitarian leanings are obliged to depend on books
that are more distinguished for rigor than for robust uses of
mathematics.

This book is an cutgrowth of a course of lectures offered by
one of the authors to students having a working knowledge of the
elementary calculus. The keynote of the course is the practical
utility of mathematies, and considerable effort has been made to
select those topics which are of most frequent and immediate use
in applied sciences and which can be given in a course of one
hundred lectures. The illustrative material has been chosen for
its value in emphasizing the underlying principles rather than
for its direct application to specific problems that may confront
a practicing engineer.

In preparing the revision the authors have been greatly aided
by the reactions and suggestions of the users of this book in both
academic and engineering circles. A considerable portion
of the material contained in the First Edition has been rear-
ranged and supplemented by further illustrative examples, proofs,
and problems. The number of problems has been more than
doubled. It was decided to omit the discussion of improper
integrals and to absorb the chapter on Elliptie Integrals into

v



vi PREFACE

much enlarged chapters on Infinite Series and Differential
Equations. A new chapter on Complex Variable incorporates
some of the material that was formerly contained in the chapter
on Conformal Representation. The original plan of making
each chapter as nearly as possible an independent unit, in order
to provide some flexibility and to enhance the availability of the
book for reference purposes, has been retained.

I.S. 8.
E.S.S.
MapisoN, WISCONSIN,
September, 1941,
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HIGHER MATHEMATICS
FOR ENGINEERS AND
PHYSICISTS

CHAPTER 1
INFINITE SERIES

It is diffieult to conceive of a single mathematical topic that
occupies a more prominent place in applied mathematies than
the subject of infinite series. Students of applied sciences meet
infinite series in most of the formulas they use, and it is quite
essential that they acquire an intelligent understanding of the
concepts underlying the subject.

The first section of this chapter is intended to bring into
sharper focus some of the basie (and hence more difficult) notions
with which the reader became acquainted in the first course in
calculus. It is followed by ten sections that are devoted to a
treatment of the algebra and ealculus of series and that represent
the minimum theoretical background necessary for an intelligent
use of series. Some of the practical uses of infinite series are
indicated briefly in the remainder of the chapter and more fully
in Chaps. II, VII, and VIII.

1. Fundamental Concepts. Familiarity with the concepts
discussed in this section is essential to an understanding of the
contents of this chapter.

FuNcTioN. The variable y is said to be a function of the variable
z if to every value of x under consideration there corresponds al least
one value of y.

If z is the variable to which values are assigned at will, then
it is called the i¢ndependent variable. If the values of the variable

y are determined by the assignment of values to the independent
: 1



2 MATHEMATICS FOR ENGINEERS AND PHYSICISTS {1

variable z, then y is called the dependent vartable. The functional
dependence of ¥ upon z is usually denoted by the equation*

y = f(z).

Unless a statement to the contrary is made, it will be supposed
in this book that the variable z is permitted to assume real
values only and that the corresponding values of ¥ are also real.
In this event the function f(z) is called a real function of the real
variable x. 1t will be observed that

(1-1) y=Vz
does not represent a real function of « for all real values of z, for
the values of ¥y become imaginary if z is negative. In order that
the symbol f(z) define a real function of z, it may be necessary to
restrict the range of values that # may assume. Thus, (1-1)
defines a real function of z only if £ = 0. On the other hand,
y = Vz? — 1 defines a real function of z only if || = 1.
SEQUENCEs AND Limits. Let some process of construction
vield a succession of values

T1, Ta, Ty, * * * , Ty * " ",

where it is assumed that every z: is followed by other terms.
Such a succession of terms is called an infinite sequence. Exam-
ples of sequences are

(@) 1, 2,3, -+, Ny~ 0,
1 1 1 — 1 « v — n—1 1 PRI
b) ¥ 7% 1 , (—1) o’ ,

(© 0’2;0;27"';1-"(—1)";""

Sequences will be considered here only in connection with the
theorems on infinite series,t and for this purpose it is necessary
to have a definition of the limit of a sequence.

DeriviTION. The sequence i, X, * * * , Tn, * * * 18 Said to -
converge to the constant L as a limit if for any preassigned positive
number €, however small, one can find a positive integer p such that

ltn — L| < e SJor all n > p.

* Other letters are often used. In particular, if more than one funection
enters into the discussion, the functions may be denoted by f: (z), fa(x), ete.;
by f(z), g(x), ete.; by F(z), G(z), ete.

t For a somewhat more extensive treatment, see I S. Sokolnikoff,
Advanced Calculus, pp. 3-21.



§1 INFINITE SERIES 3

For convenience, this definition is frequently written in the
compact form
lim z, = L,

n—r %

and L is called the limst of the sequence. If a variable r takes
on these successive values 1, Z3, * * * , Zn, * * * , then z is said
to approach L as a limit. It follows from this definition that,
of the sequences given above, (b) converges to the limit 0, whereas
(a) and (c) are not convergent.
As an illustration, let the variable z assume the set of values
z; = 0.1, z2 = 0.11, zzs = 0.111, - + -,

It is easily seen that
1

m z, = 33
n—r = " 9,

that is, corresponding to any e > 0, one can find a positive
integer » such that

_ 1
|L_xnl—lg xn|<e

for all values of n gredter than p. Observe that

111 1 1 __1
9 "™ T 90 9 2T 900 A

Hence, for any e that is chosen, it is necessary to demand that n
be large enough so that

1 1
§ — Tn = m <e
The inequality is equivalent to
9-10" > lx
. €
and, taking logarithms to the base 10,*

log9 + n >Iog1e

or
n> — (log9+loge = — log 9e.

* From the definition of the logarithm, it follows that, if 4 > B, then
log A > log B.
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Thus, if p is chosen as any integer greater than |— log 9¢/, the
inequality

‘é — Tn < €
will be satisfied for all values of n greater than p.
INFINITE SERIES. Let ug, ug, us, * * - be an infinite sequence

of real functions of a real variable z. Then the symbol
(1-2) 3, ua(e) = wi®) + wal@) + -+ - +uald) + - -
n=1 ’ :

is called an 'inﬁni'te sertes.
If, in (1-2), z is assigned some fixed value, say = = o, there
results the series of constants

(1-3) i wn(Zo)-
n=1

Denote by s.(z¢) the nth partial sum, that is, the sum of the
first n terms, of the series (1-3) so that

s,.(xo) = ul(wo) + uz(wo) e un(xo)-
As n increases indefinitely, the sequence of constants
81(%a), 82(20)y * * * , 8a(@0), *

either will converge to a finite limit S or it will not converge to
such a limit. If

lim s.(zy) = 8,

n—r *®
the series (1-2) is said to converge to the value S for z = zo.*
If the series (1-2) converges for every value of z in some intervalt
(a, b), then the series is said to bé convergent in the interval (a, b).

As an example, consider the series

(1-4) 1+x+w2+.-.+mn—-l+....
If + = 14, (1-4) becomes

1 |
Lbg it o hgmt e,

* This limit 8 is usually called the sum of the series (1-3).
t This' means that x can assume any real vilue between ¢ and b and that
a and b can be thought of as the end points of an interval of the z-axis.
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which is convergent to the value 2. In order to establish this
fact, note that

1,1 1
. sn =1+ 2 + 1 + -+ gn—1
is a geometric progression of ratio }4, so that
1
Sy = Lo z =2 — 1 .
L | — 1 - on—1
2

Hence, the absolute value of the difference between 2 and s.
is 1/2** which can be made arbitrarily small by choosing n
sufficiently large.

On the other hand, if z = —1, the series (1-4) becomes

Lo 14114 (=)t -,

which does not converge; for s;, = 0 and sz.—1 = 1 for any choice
of n and, therefore, lim s, does not exist. Moreover, if z = 2,

n—>

the series (1-4) becomes
14+24+44 - F214 -

so that s, increases indefinitely with n and lim s, does not exist.

n— 0
If an infinite series does not converge for a certain value of z,
it is said to diverge or be divergent for that value of z. It will
be shown later that the series (1-4) is convergent for —1 <2 < 1
and divergent for all other values of .

The definition of the limit, as given above, assumes that the
value of the limit S is known. Frequently it is possible to infer
the existence of 8 without actually knowing its value. The
following example will serve to illustrate this point.

Example. Consider the series

1 1 1
S=1+2—!+3—!+ +;L_!+ ey,
and compare the sum of its first n terms
1
n!

1 1
Sn=14gi+g+ -+

with the sum of the geometrical progression
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1 1 1
Sa=1lts+amt+ ' +zms

1
=2—_2ﬁ'

The corresponding terms of S. are never less than those of s.; but, no
matter how large n be taken, S, is less than 2. Consequently, s. < 2;
and since the successive values of s, form an increasing sequence of
numbers, the sum of the first series must be greater than 1 and less than
or equal to 2. A geometrical interpretation of this statement may help
to fix the idea. If the successive values of s.,

81=1,
1
1+2—!z1.5,

82

11
85 = 1+ 57 + 37 = 1.667,

1 1 1
84 1+ﬂ+§‘!+a—!=l.708,
| 1 1 1
85=1+m+§]+a+3—!=1.717,

are plotted as points on a straight line (Fig. 1), the points representing

the sequence s1, 82, © * - , 84, * - - always move to the right but never
Ss
52 y
7
s —— |
0 i 15 1667 2
Fia. 1.

progress as far as the point 2. It is intuitively clear that there must be
some point s, either lying to the left of 2 or else coinciding with it, which
the numbers s, approach as a limit. In this case the numerical value
of the limit has not been ascertained, but its existence was established
with the aid of what is known as the fundamental principle.

Stated in precise form the principle reads as follows: If an infinite
set of numbers 81,82, * * * , 8, * * * forms an increasing sequence (that is,
SN > 8., when N > n) and is such that every s. is less than some fized
number M (that is, s, < M for all values of n), then s, approaches a limit
s that is not greater than M (thatis, lim s, = s < M). The formulation

n—r
of the principle for a decreasing sequence of numbers s, 85, * * *,
Sn, * * * , which are always greater than a certain fixed number m, will
be left to the reader.

2. Series of Constants. The definition of the convergence of
- a series of functions evidently depends on a study of the behavior
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of series of constants. The reader has had some acquaintance
with such series in his earlier study of mathematics, but it seems
desirable to provide a summary of some essential theorems that
will be needed later in this chapter. The following important
theorem gives the necessary and sufficient condition for the
convergence of an infinite series of constants:

TueoReM. The infinile series of constants X un converges if

n=1

and only if there exists a positive integer n such that for all positive
tntegral values of p

$a+p = Su| = [thnr1 + tUnya + - 0 F uUnp| < o¢
where ¢ ts any preassigned positive constant.

The necessity of the condition can be proved immediately by recalling
the definition of convergence. Thus, assume that the series converges,
and let its sum be S, so that

lim s, =8
n—

and also, for any fixed value of p,

lim 8. = 8.

n— o
Hence,
Hm (8aip — 8n) = Hm (U1 + Unge + * * * + Unyp) = 0,
n— ® n— w

which is another way of saying that

[un+1 + Ung2r+ 00+ un+pl <e

for a sufficiently large value of n.
The proof of the sufficiency of the condition requires a fair degree
of mathematical maturity and will not be given here.*

This theorem is of great theoretical importance in a variety of
investigations, but it is seldom used in any practical problem
requiring the testing of a given series. A number of tests for
convergence, applicable to special types of series, will be given in
the following sections.

It may be remarked that a sufficient condition that a series
diverge is that the terms u, do not approach zero as a limit when
n increases indefinitely. Thus the necessary condition for con-
vergence of a series is that lim u, = 0, but this condition is not

n—

* See SOKOLNIKOFF, I. 8., Advanced Calculus, pp. 11-13,
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sufficient ; that is, there are series for which lim 4. = 0 but which

n—>
are not convergent. A classical example illustrating this case
is the harmonic series

._I_...,

3=

1 1

in which 8, increases without limit. as n increases.

Despite the fact that a proof of the divergence of the harmonic
series is given in every good course in elementary caleulus, it will
be recalled here because of its importance in subsequent con-
siderations. Since

1 1 1 1

| 1
afitantzT Tt " m Ty

it is possible, beginning with any term of the series, to add a
definite number of terms and obtain a sum greater than 1s.
Ifn =2

1,1_1
371”9
n = 4,
1,1,1, 1_1
5Tty Tg> 2
n =8,
1, 1 1 _1
§+"1—6+ '+-1—6>§,
n = 16,
1,1 1 _1
wtet T tx:e

Thus it is possible to group the terms of the harmonic series

1+%+G+&>+@+é+%+@+-~

in such a way that the sum of the terms in each parenthesis
exceeds 14; and, since the series

I+g+a+gt -

1s obviously divergent, the harmonic series is divergent also.
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3. Series of Positive Terms. This section is concerned with
series of the type

SDta=atat - Fat -,
n=1

where the @, are positive constants. It is evident from the
definition of convergence and from the fundamental principle
(see Sec. 1) that the convergence of a series of positive constants
will be established if it is possible to demonstrate that the partial
sums s, remain bounded. This means that there exists some
positive number M such that s, < M for all values of n.
The proof of the following important test is based on such a
demonstration.

CompaRIsON TEsT. Let I a, be a series of positive lerms,

n=1

and let X b, be a series of positive terms that 18 known fo converge.
n=1

Then the series T an is convergent if there exists an integer p such
n=]

that, for n = p, s =< bn. On the other hand, if T c. s a series of
nesl
positive terms that is known to be divergent and of a. = c, for

n = p, then X a, ts divergent also.
n=1

Since the convergence or divergence of a series evidently is not
affected by the addition or subtraction of a finite number of terms, the
proof will be given on the assumption that p = 1. Let 8. = a1 + a2

+ -+ - 4+ a., and let B denote the sum of the series X b, and B, its
n=1

nth partial sum. Then, since a, < b, for all values of n, it follows that
sn = B, for all values of n. Hence, the s, remain bounded, and the

series % . a,is convergent. On the other hand, if a, = ¢, for all values of
e
7 and if the series Elc,, diverges, then the series 2 a. will diverge also.
n= n=1

There are two series that are frequently used as series for

comparison.
a. The geometric series
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