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Introduction

Let X be a smooth projective variety over an algebraically closed field k. The
easiest examples of zero-dimensional subschemes of X are the sets of n distinct
points on X. These have of course length n, where the length of a zero-dimensional
subscheme Z is dimyH°(Z,0z). On the other hand these points can also partially
coincide and then the scheme structure becomes important. For instance subschemes
of length 2 are either two distinct points or can be viewed as pairs (p,t), where p is
a point of X and t is a tangent direction to X at p.

The main theme of this book is the study of the Hilbert scheme X[ :=
Hilb™(X) of subschemes of length n of X; this is a projective scheme parametrizing
zero-dimensional subschemes of length n on X. For n = 1,2 the Hilbert scheme
X[ is easy to describe; X[V is just X itself and X can be obtained by blowing
up X x X along the diagonal and taking the quotient by the obvious involution,
induced by exchanging factors in X x X.

We will often be interested in the case where X[™ is smooth; this happens
precisely if n < 3 or dim X < 2. If X is a curve, X" coincides with the n'*
symmetric power of X, X(™): more generally, the natural set-theoretic map X (3] =
X (") associating to each subscheme its support (with multiplicities) gives a natural
desingularization of X(*) whenever X[ is smooth.

The case dim X = 2 is particularly important as this desingularization turns
out to be crepant; that is, the canonical bundle on X" is the pullback of the
dualizing sheaf or X (™ (in particular X(®) has Gorenstein singularities). In this
case, X[" is an interesting 2n-dimensional smooth variety in its own right. For
instance, Beauville [Beauville (1),(2),(3)] used the Hilbert scheme of a K3-surface
to construct examples of higher-dimensional symplectic manifolds.

One of the main aims of the book is to understand the cohomology and Chow
rings of Hilbert schemes of zero-dimensional subschemes. In chapter 2 we compute
Betti numbers of Hilbert schemes and related varieties in a rather general context
using the Weil conjectures; in chapter 3 and 4 the attention is focussed on easier
and more special cases, in which one can also understand the ring structure of Chow
and cohomology rings and give some enumerative applications. »

In chapter 1 we recall some fundamental facts, that will be used in the rest
of the book. First in section 1.1, we give the definition and the most important
properties of X[™: then in section 1.2 we explain the Weil conjectures in the form in
which we are later going to use them in order to compute Betti numbers of Hilbert
schemes, and finally in section 1.3 we introduce the punctual Hilbert scheme, which
parametrizes subschemes concentrated in a point of a smooth variety. We hope that
the non-expert reader will find in particular sections 1.1 and 1.2 useful as a quick
reference.

In chapter 2 we compute the Betti numbers of S["l for S a surface, and of
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KA,_; for A an abelian surface, using the Weil conjectures. Here KA,_; is a
symplectic manifold, defined as the kernel of the map Al"l — A given by composing
the natural map A"} — A(™ with the sum A(™ — A; it was introduced by Beauville
[Beauville (1),(2),(3)].

We obtain quite simple power series expressions for the Betti numbers of all
the SI" in terms of the Betti numbers of S. Similar results hold for the KA, _,.
The formulas specialize to particularly simple expressions for the Euler numbers of
S and KA,_;. It is noteworthy that the Euler numbers can also be identified
as the coefficients in the g-development of certain modular functions and coincide
with the predictions of the orbifold Euler number formula about the Euler numbers
of crepant resolutions of orbifolds conjectured by the physicists. The formulas for
the Betti numbers of the S and K A,,_; lead to the conjecture of similar formulas
for the Hodge numbers. These have in the meantime been proven in a joint work
with Wolfgang Soergel [Gottsche-Soergel (1)]. One sees that also the signatures
of S" and KA,_; can be expressed in terms of the g-development of modular
functions. The formulas for the Hodge numbers of SI"l have also recently been
obtained independently by Cheah [Cheah (1)] using a different technique.

Computing the Betti numbers of X[" can be viewed as a first step towards
understanding the cohomology ring. A detailed knowledge of this ring or of the Chow
ring of X[ would be very useful, for instance in classical problems in enumerative
geometry or in computing Donaldson polynomials for the surface X.

In section 2.5 various triangle varieties are introduced; by triangle variety we
mean a variety parametrizing length 3 subschemes together with some additional
structure. We then compute the Betti numbers of X[3 and of these triangle varieties
for X smooth of arbitrary dimension, again by using the Weil conjectures.

The Weil conjectures are a powerful tool whose use is not as widely spread
as it could be; we hope that the applications given in chapter 2 will convince the
reader that they are not only important theoretically, but also quite useful in many
concrete cases.

Chapters 3 and 4 are more classical in nature and approach then chapter 2.
Chapter 3 uses Hilbert schemes of zero-dimensional subschemes to construct and
study varieties of higher order data of subvarieties of smooth varieties. Varieties of
higher order data are needed to give precise solutions to classical problems in enu-
merative algebraic geometry concerning contacts of families of subvarieties of pro-
jective space. The case that the subvarieties are curves has already been studied for
a while in the literature [Roberts-Speiser (1),(2),(3)], [Collino (1)], [Colley-Kennedy
(1)]. We will deal with subvarieties of arbitrary dimension and construct varieties
of second and third order data. As a first application we compute formulas for the
numbers of higher order contacts of a smooth projective variety with linear subvari-
eties in the ambient projective space. For a different and more general construction,
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which is however also more difficult to treat, as well as for examples of the type of
problem that can be dealt with, we also refer the reader to [Arrondo-Sols-Speiser
(V).

The last chapter is the most elementary and classical of the book. We describe
the Chow ring of the relative Hilbert scheme of three points of a P? bundle. The
main example one has in mind is the tautological P?-bundle over the Grassmannian
of two-planes in P™. In this case it turns out hat our variety is a blow up of (P" )31
This fact has been used in [Rossellé (2)] to determine the Chow ring of (P?)Fl.
The techniques we use are mostly elementary, for instance a study of the relative
Hilbert scheme of finite length subschemes in a P!-bundle; I do however hope that
the reader will find them useful in applications.

For a more detailed description of their contents the reader can consult the
introductions of the chapters.

The various chapters are reasonably independent from each other; chapters 2,
3 and 4 are independent of each other, chapter 2 uses all of chapter 1, chapter 3
uses only the sections 1.1 and 1.3 of chapter 1 and chapter 4 uses only section 1.1.

To read this book the reader only needs to know the basics of algebraic ge-
ometry. For instance the knowledge of [Hartshorne (1)], is certainly enough, but
also that of [Eisenbud-Harris (1)] suffices for reading most parts of the book. At
some points a certain familiarity with the functor of points (like in the last chapter
of [Eisenbud-Harris (1)]) will be useful. Of course we expect the reader to accept
some results without proof, like the existence of the Hilbert scheme and obviously
the Weil conjectures.

The book should therefore be of interest not only to experts but also to graduate
students and researchers in algebraic geometry not familiar with Hilbert schemes of

points.
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1. Fundamental facts

In this work we want to study the Hilbert scheme X" of subschemes of length
n on a smooth variety. For this we have to review some concepts and results. In
[Grothendieck (1)] the Hilbert scheme was defined and its existence proven. We re-
peat the definition in paragraph 1.1 and list some results about X[, X[l is related
to the symmetric power X (") via the Hilbert-Chow morphism w, : XLZL — X,
We will use it to define a stratification of X[". In chapter 2 we want to compute the
Betti numbers of Hilbert schemes and varieties that can be constructed from them
by counting their points over finite fields and applying the Weil conjectures. There-
fore we give a review of the Weil conjectures in 1.2. Then we count the points of the
symmetric powers X (*) of a variety X, because we will use this result in chapter 2.
In 1.3 we study the punctual Hilbert scheme Hilb"(k[[z,...,z4]]), parametrizing
subschemes of length n of a smooth d-dimensional variety concentrated in a fixed
point. In particular we give the stratification of Iarrobino by the Hilbert function

of ideals.

1.1. The Hilbert scheme

Let T be a locally noetherian scheme, X a quasiprojective scheme over T and
L a very ample invertible sheaf on X over T.

Definition 1.1.1. [Grothendieck (1)] Let Hilo(X/T) be the contravariant functor
from the category Schlng of locally noetherian T-schemes to the category Ens of
sets, which for locally noetherian T-schemes U,V and a morphism ¢ : V — U is

given by
Hilb(X/T)(U) = { Z € X x7 U closed subscheme, flat over U}
Hilb(X/T)(p) : Hilb(X/T)U)—Hib(X/T)V);Z — Z xy V.

Let U be a locally noetherian T-scheme, Z C X x7 U a subscheme, flat over U. Let

p:Z — X, q:Z — U be the projections and u € U. We put Z, = ¢~ !(u). The
Hilbert polynomial of Z in u is

Pu(Z)(m) := x(Oz,(m)) = x(Oz, ®o, P"(L™)).

P,(Z)(m) is a polynomial in m and independent of u € U, if U is connected. For
every polynomial P € Q[z] let Hilb¥(X/T) be the subfunctor of Hilb(X/T) defined
by

HilbP (X/TY(U) = { ZCcXxr U Z is flat over U and }

closed subscheme | P,(Z)= P forallueU
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Theorem 1.1.2 [Grothendieck (1)]. Let X be projective over T. Then for every
polynomial P € Q[z] the functor Hilb"(X/T) is representable by a projective T-
scheme HilbP (X/T). Hilb(X/T) is represented by

Hilb(X/T):= |J Hilb"(X/T).
PeQz]

For an open subscheme Y C X the functor 'Hile(Y/T) 18 represented by an open
subscheme

HilbP(Y/T) c Hilb?(X/T).

Definition 1.1.3. Hilb(X/T) is the Hilbert scheme of X over T. If T is spec(k)
for a field k, we will write Hilb(X) instead of Hilb(X/T) and Hilb”(X) instead
of Hilb?(X/T). If P is the constant polynomial P = n, then Hilb™(X/T) is the
relative Hilbert scheme of subschemes of length n on X over T. If T is the spectrum
of a field, we will write X[™ for Hilb™(X) = Hilb™(X/spec(k)). X[ is the Hilbert
scheme of subschemes of length n on X.

If U is a locally noetherian T-scheme, then Hilb"(X/T)(U) is the set
{ closed subschemes Z C X x7 U | Z is flat of degree n over U}.

In particular we can identify the set X(")(k) of k-valued points of X[ with the set
of closed zero-dimensional subschemes of length n of X which are defined over k.
In the simplest case such a subscheme is just a set of n distinct points of X with
the reduced induced structure. The length of a zero-dimensional subscheme Z C X
is dimyH°(Z,0z). The fact that Hilb"(X/T') represents the functor Hilb"(X/T)

means that there is a universal subscheme
Zo(X/T) C X xp Hilb"(X/T),

which is flat of degree n over Hilb"™(X/T') and fulfills the following universal property:
for every locally noetherian T-scheme U and every subscheme Z C X xp U which
is flat of degree n over U there is a unique morphism

fz: U —s Hilb™(X/T)

such that
Z = (1x xr fz) ' (Z.(X/T)).

For T = spec(k) we will again write Z,(X) instead of Z,(X/T).
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Remark 1.1.4. It is easy to see from the definitions that Z,(X/T') represents the
functor Z,(X/T) from the category of locally noetherian schemes to the category

of sets which is given by

Z closed subschemes of X x1 U,
Z(X/TY)U) | (Z,0) flat of degree n over U, ;
o : U — Z a section of the projection Z — U

Za(X/T)(®) : Za(X/T)(U) — Za(X/T)(V);
(Z,0) — (Z xy V,0.9)
(U, V locally noetherian schemes ® : V.— U).

For the rest of section 1.1 let X be a smooth projective variety over the field

Definition 1.1.5. Let G(n) be the symmetric group in n letters acting on X"
by permuting the factors. The geometric quotient X (™) := X™/G(n) exists and is
called the n-fold symmetric power of X. Let

&,: X" — X

be the quotient map.

X ™ parametrizes effective zero-cycles of degree n on X, i.e. formal linear
combinations ) n;[z;] of points z; in X with coefficients n; € IV fulfilling 3" n, = n.
X (") has a natural stratification into locally closed subschemes:

Definition 1.1.6. Let v = (ny,...,n,) be a partition of n. Let
Ap, 1= {(a:,,...,zm) ’ Iy =29 =... =x,,.,} cX™

be the diagonal and
Xy =[] An c J[x™=x"
=1 =1

Then we set

XM= a,(xm)

and - -
X0 =X\ | X

u>v

Here p > v means that u is a coarser partition then v.
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The geometric points of XM are

X(M(k) = { Z nilz;] € X(™(k) | the points z; are pairwise distinct }

The X{™ form a stratification of X(™) into locally closed subschemes, i.e they are
locally closed subschemes, and every point of X(™ lies in a unique X (™ The
relation between X"l and X (™ is given by:

Theorem 1.1.7 [Mumford-Fogarty (1) 5.4]. There is a canonical morphism (the
Hilbert Chow morphism)
WDy 3 § 4 — X("),

red

which as a map of points 1s given by

Z — Z len(Z,)[z].

zeX

(n] .

So the above stratification of X (™) induces a stratification of X,eat

Definition 1.1.8. For every partition v of n let
X = W ().

Then the X ,[,"] form a stratification of X E:L into locally closed subschemes.

For v = (ny,...,n,) the geometric points of X" are just the unions of sub-
schemes Z4,...,Z,, where each Z; is a subscheme of length n; of X concentrated in
a point z; and the z; are distinct.



1.2. The Weil conjectures

We will use the Weil conjectures to compute the Betti numbers of Hilbert
schemes. They have been used before to compute Betti numbers of algebraic vari-
eties, at least since in [Harder-Narasimhan (1)] they were applied for moduli spaces

of vector bundles on smooth curves.

Let X be a projective scheme over a finite field IFy, let Fq be an algebraic
closure of IF; and X=X X, FF,. The geometric Frobenius

Fx: X — X

is the morphism of X to itself which as a map of points is the identity and the map
a — a? on the structure sheaf Ox. The geometric Frobenius of X over F,is

F,:=Fx x Lﬁ“,,'

The action of F, on the geometric points X (IF,) is the inverse of the action of the
Frobenius of JF';. As this is a topological generator of the Galois group Gal(F,, IF,),
a point z € X(IF,) is defined over JF, if and only if z = F,(z). For a prime [ which
does not divide g let H'(X, Q) be the i*" l-adic cohomology group of X and

bi(X) := dimq,(H (X, Q)),
p(f, Z) 1= Z bg(f)zi,
e(X) =Y (-1)'b:(X).

b;(X) is independent of I. We will denote the action of F7 on H™(X,Q) by
F;|H,(Y Q) The zeta-function of X over IF is the power series

BolXCA) 1= exp (Z IX(Fqn)|%>.

n>0

Here |M| denotes the number of elements in a finite set M.

Let X be a smooth projective variety over the complex numbers C. Then X
is already defined over a finitely generated extension ring R of Z, i.e. there is a
variety X defined over R such that Xg xg C = X. For every prime ideal p of R
let X, := Xp xg R/p. There is a nonempty open subset U C spec(R) such that
X, is smooth for all p € U, and the l-adic Betti-numbers of X, coincide with those
of X for all primes ! different from the characteristic of A/p (cf. [Kirwan (1) 15.],
[Bialynicki-Birula, Sommese (1) 2.]. If m C R is a maximal ideal lying in U for
which R/m is a finite field JF; of characteristic p # I, we call X,, a good reduction
of X modulo ¢.
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Theorem 1.2.1. (Weil conjectures [Deligne (1)], c¢f. [Milne (1)], [Mazur (1)])
(1) Z4(X,t) 13 a rational function

2d
Zy(X,t) = [] @u(x, )™

r=0
with Q(X, 1) = det(1 — tF} | e x.qn):
(2) Q(X,1) € Z[t].

(8) The eigenvalues a; , of F;IHr(Y Q) have the absolute value |a;,| = q"/* with
respect to any embedding into the complez numbers.

(4) Zo(X,1/q%) = £¢° X241 7 (X, 1),

(5) If X 13 a good reduction of a smooth projective variety Y over C, then we have

bi(Y) = bi(X) = deg(Qi(X,1)).

Remark 1.2.2. Let F(t,31,...,3m) € Q[t,51,...,3m] be a polynomial. Let X and
S be smooth projective varieties over IF'y such that

| X(Fgn)| = F(q",|S(Fqn)l,- .-, |S(Fgnm)])
holds for all n € IN. Then we have
p(X,—2) = F(2%,p(S, -2),...,p(S,—z™)).
If X and S are good reductions of smooth varieties Y and U over C, we have:

p(Y, _z) = F(227P(U7 —z);.. ’p(U’ _Zm))'

Proof: Let aj,...,a, be pairwise distinct complex numbers and hy,...,h, € Q.
We put
8
tn
Z((ai, hi)i) == hial | — ).
(k) =exp (32 (Smer ) T)

Then we have 3

Z((ai, hi)i) = H(l —a;)"h,

1=1
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So we can read off the set of pairs {(ai,h1),...(as,hs)} from the function
Z((ai,hi)i). For each ¢ € C let r(c) := 2log,(|c[). By theorem 1.2.1 we have:
for a smooth projective variety W over IF, there are distinct complex numbers
(Bi)i=; € C and integers (I;)!_; € Z such that

W) = Y167

for all n € IN. Furthermore we have r(f3;) € Z>o and

(=D*oe(W)= >

r(Bi)=k

for all k € Z . Let p1,...,6: € C, l1,...,ly € Z be the corresponding numbers
for S. Then we have for all n € IN:

X (F )| = F(q",-Zhﬁ?»---lefﬂ?"")~
i=1 =1

Let é1,...,6, be the distinct complex numbers which appear as monomials in ¢ and

the 7; in
t t
F(q,z iy ss Y l.-ﬁ.-"‘).
=1 i=1

Then there are rational numbers ny,...,n, such that
T
[ X(Fon)l =) niél
=1

for all n € IN and
(X)) = 3 n,

r(6;)=Fk

for all k € Z>,. We see from the definitions that Er(6;)=k n; is the coefficient of
Z% in F(22,p(S,-2),...,p(S,—2z™)). @

We finish by showing how to compute the number of points of the symmetric
power X(" for a variety X over IF ¢- The geometric Frobenius F' := F, acts on

X(")(Fq) by
F(Zni[xi]) = ,Zn.-[F(xa)],

and X("(IF,) is the set of effective zero-cycles of degree n on X which are invariant

under the action of F.
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Definition 1.2.3. A zero-cycle of the form

T

Z[F'(az)] with € X(F 4 )\ UX

i=0 ilr
is called a primitive zero-cycle of degree r on X over IF;. The set of primitive
zero-cycles of degree r on X over IF'; will be denoted by P.(X, IF,).

Remark 1.2.4.

(1) Eachelement £ € X(")(IF,) has a unique representation as a linear combination
of distinct primitive zero-cycles over IF'y with positive integer coefficients.

) IX(Fgn)l =) - |P(X,F,)|

rln
(3) = XM
n>0

i.e. Zy(X,t) is the generating function for the numbers of effective zero-cycles

of X over IF,.

Proof: (1) Let £ = Z;] nizi] € X(")(Fq), where z,,...,z, are distinct elements
of X(F,). For all j let ¢; := En»j[z,‘] € X("(IF,). Then we have £ = ZJ- &j, and
it suffices to prove the result for the £;. So we can assume that £ is of the form
€ = 3°I_,[xi] with pairwise distinct z; € X(IF,). As we have F(£) = ¢, there is a
permutation o of {1,...,7} with F(z;) = 24(;) for alli. Let My,... , M, C {1,...,r}
be the distinct orbits under the action of 0. Then we set
=Y [a)
i€ M,
for y =1,...s. Then ¢ = E;:] n; is the unique representation of { as a sum of

primitive zero-cycles.

(2) follows immediately from the definitions. From (1) we have

S IXOF I = [[(1 - )1 F)

n>0 r>1
N ST by
r>1 m2>1
e (3 (TP | &
n=0 \ r|n
= Z,(X,1).

So (3) holds. ©



1.3. The punctual Hilbert scheme

Let R := k[[z1,...,z4]] be the field of formal power series in d variables over a
field k. Let m = (z1,...,24) be the maximal ideal of R.

Definition 1.3.1. Let I C R be an ideal of colength n. The Hilbert function T(I)
of I is the sequence T(I) = (ti(I))i>o of non-negative integers given by

t; = dimy(m'/(I N m' + m'*?)).

If T = (t;)i>o0 is a sequence of non-negative integers, of which only finitely many do
not vanish, we put |T'| = Y_ t;. The initial degree do of T is the smallest 7 such that
t < (d+:—1)_

Let R; := m'/m'*t! and [; := (m' N I)/(m**! N I). Then R, is the space of
forms of degree 7 in R and I; the space of initial forms of I (i.e. the forms of minimal

degree among elements of I) of degree 7, and we have:

t,'(I) = dimk(R,-/I,).

Let I C R be an ideal of colength n and T = (t;);>o the Hilbert function of .

Lemma 1.3.2.

(1)
dim(m’/INm’) =) "t

2]
holds for all j > 0. In particular we have |T| = n.
(2) I >Dm™.

Proof: Let Z := R/I, and Z; the image of m* under the projection R — Z. Then

2z =o.

i>0

we have

As 7 is finite dimensional, there exists an ¢ with Z;, = 0. For such an ¢y we have
I D m'. There is an isomorphism

Zj=w’/(m' N I) = &2 Ri/I;
of k-vector spaces, and R;/I; = 0 holds for ¢ > 5. If we choose 7y to be minimal,

then R;/I; # 0 holds for i < ig. So we get (1). If t; = 0 for some j, then I D m’.
Thus (2) follows from |T| =n. o



