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Preface

In this monograph we present some results and problems in the modern theory
of best approximation, i.e., in which the methods of functional analysis are applied
in a consequent manner. This modern theory constitutes both a unified foundation
for the classical theory of best approximation (which treats the problems with the
methods of the theory of functions) and a powerful tool for obtaining new results.
Within the general framework of normed linear spaces the problem of best
approximation amounts to the minimization of a distance, which permits us to use
geometric intuition (but rigorous analytic proofs), and the connections of the
phenomena become clearer and the arguments simpler than those of the classical
theory of best approximation in the various particular concrete function spaces.
We hope that this has been proved convincingly enough in the monograph [168]
(which was the first of this kind in the literature) and in the lecture notes [175], and
will be proved again in the present monograph (see, for example, § 1, the remarks
made after Theorem 1.8, or § 3, the remark to Theorem 3.5).

Naturally, the interaction between the theory of best approximation and func-
tional analysis works also in the other direction, for example, problems of best
approximation in normed linear spaces have led to the discovery of the theorem
on extremal extension of extremal functionals, of the concrete representations for
the extremal points of the unit cell in certain conjugate spaces, of new results on
semi-continuity of set-valued mappings, etc. However, we shall not consider this
side of their interaction in the present monograph.

Since June 1966, when the Romanian version of the monograph [168] went to
print, the theory of best approximation in normed linear spaces has developed
rapidly. However, except for the expository paper, covering the period up to 1967,
of A. L. Garkavi [67], the only attempt for a comprehensive survey material was
made in [175]. The latter constitutes also the basis for the present monograph.
which, though self-contained, may be regarded as an up-to-date complement to
[168]and [175] ; we have essentially conserved the structure of [175], but improved
the parts which overlap with [175] and added much new material, part of which
appeared after [175] went to print (the bibliography of [175] contained only 99
items).

We note also the appearance. since 1970, of the lecture notes of A. L. Brown [34],
P. D. Morris [132] and R. B. Holmes [82] and of the book of P. J. Laurent [118],
which treat some topics in the theory of best approximatron in normed linear
spaces and optimization in locally convex spaces [118], [82] : let us also mention
the lecture notes of F. Deutsch (Theory of Approximation in Normed Linear Spaces,
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Fall 1972), which we received when the present work was completed. We take the
liberty of suggesting that it would be more appropriate toreplace “‘Approximation”
by “Best Approximation’ in the titles of all these works with the exception of [82] ;
indeed, since these works (except for part of [118]) are actually concerned with the
theory of best approximation, which is only a part of approximation theory, their
present titles might mislead the reader to expect more topics to be covered. Let us
note that the use of the word “‘best’” in the titles of [168], [67], [175], [82] and of
the present monograph, which serves also for the delimitation of their scope
(namely, to emphasize that some other important parts of approximation theory
are not considered), is not a lack of modesty, but a universally accepted classical
term for approximation problems related to nearest points ; this is the term which is
used also in the texts of the abovementioned works of Brown, Morris, Laurent and
Deutsch.

In order to be able to enter more deeply into the problems, without increasing
the size of the present monograph, we have restricted ourselves to consider only five
basic topics in the theory of best approximation, shown in the titles of the five
sections. Thus, various problems of best approximation treated in [168] (for
example, the distance functionals, metric projections onto sequences of subspaces,
deviations of sets from linear subspaces, finite-dimensional diameters and secants,
Chebyshev centers, etc.) and not treated in [168] (for example, methods of computa-
tion of elements of best approximation, applications to extremal problems of the
theory of analytic functions, etc.) have been deliberately omitted. On the other
hand, [168] contained only a few isolated results on metric projections (for example,
we did not include in [168] some of the results of [166], [122], [32]), since their theory
was only beginning to develop at that time, but in [175] and in the present mono-
graph the largest section is devoted to metric projections (see §4). Also, [168]
contained only a short appendix on best approximation by elements of nonlinear
sets, since this topic was beyond the scope of [168], but in the present monograph
these problems, although treated briefly, occupy the second largest section (see§ 5).

Furthermore, in order to limit the size of the present monograph, we have
included here only a few short proofs (some of them being very simple and some,
which are less elementary, being particularly interesting), but for all results we give
references. Also, we do not present all known applications of the general theory in
concrete spaces, but only some examples of some more important ones. Finally,
we tried to reduce the overlapping with [168] to the very minimum necessary for
self-containedness and thus we often refer to [168] for complementary results and
bibliography. In the bibliography of the present monograph we wanted to
emphasize those works which have appeared after [168] went to print and some
earlier papers which have been omitted from [168] ; therefore, sometimes we give
here some results (and their authors’ names) only with reference to the biblio-
graphy of [168]. In exchange for these limitations, we have tried to give the up-to-
date stand and literature of the problems treated herein.

We hope that the present monograph will be useful for a large circle of readers,
including those who are not specialists in these problems and those specialists who
work in the theory of best approximation with the classical function-theoretic
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methods or using the methods of functional analysis. Also, for specialists in
functional analysis, in particular, in the geometry of normed linear spaces, this
monograph may offer a new field of applications.

The reader is assumed to know some elements of functional analysis and inte-
gration theory, but we recall (giving also a reference to a treatise), whenever
necessary, the notions and results which we use.

We acknowledge with pleasure that we benefited from attending the seminar
lectures of Dr. G. Godini (at the Institute of Mathematics of the Academy,
Bucharest, in 1971-1973) and from our visits at the universities of Bonn (1971.
1972)and Grenoble (1972), where we had useful discussions with Dr. W. Pollul and
Professors J. Blatter and P.-J. Laurent on some problems treated in this mono-
graph. Finally, we wish to express our thanks to Professor R. S. Varga for the
invitation to write this monograph and to present it at the National Science
Foundation Regional Conference on Theory of Best Approximation and
Functional Analysis at- Kent State University, June 11-June 15.

IVAN SINGER
Bucharest

June 1, 1973
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The Theory of Best Approximation and
Functional Analysis

Ivan Singer

1. Characterizations of elements of best approximation.

(a) Throughout the sequel, without any special mention, we shall denote by p
the distance in a metric space E and, in particular, if E is a normed linear space,
p will denote the distance in E induced by the norm, i.e.,

(ll) P(X,Y)Z ||x'",VH, X,yEE.

DEerINITION 1.1. Let E be a metric space, G a set in E and x € E. An element
go € G is called an-element of best approximation of x (by the elements of the set G)
if we have

(1.2) p(x.g,) = inf p(x, g),
geG

ie.,if g, is “‘nearest” to x among the elements of G ; we shall denote by Z;(x) the
set of all such elements g, i.e.,

(1.3) Ps(x) = {go € Glp(x, go) = in£ p(x, g}
ge

It is natural to consider first the problem of characterization of elements of best
approximation, i.e., the problem of finding necessary and sufficient conditions in
order that g, € Z4(x), since these results will be applied to solve the other problems
on best approximation (for example, those of existence and uniqueness of elements
of best approximation, etc.). Also, the characterization theorems in concrete
spaces (see, for example, the “alternation theorem” 1.13 below) are convenient
tools for verifying whether or not a given g, satisfies g, € %;(x), since they are
easier to use than (1.2).

Since we have obviously

x for xegG,

(14) Z4(x) ={® for xeG\G,

it will be sufficient to characterize the element of best approximation of the elements
x € EN\G. In order to exclude the case when such elements do not exist, in the
sequel we shall assume, without any special mention, that G # E.

1
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Unless otherwise stated, the field of scalars for all (general or concrete) normed
linear spaces considered in the sequel can be either the field of complex numbers
or the field of real numbers.

(b) The first main theorem of characterization of elements of best approximation
by elements of linear subspaces in normed linear spaces is the following (see [168,
p. 18]):

THEOREM 1.1. Let E be a normed linear space. G a linear subspace of E, x € ENG
and g, € G. We have g, € Ps(x) if and only if there exists an f € E* such that

(1.5) I =1,
(1.6) f(g) = 0. geG,

(1.7) J(x — go) = |lx — goli-

Werecall that E* denotes the conjugate space of E, i.e., the space of all continuous
linear functionals on E, endowed with the usual vector operations and with the

norm | f| =sup .. |f(x)

lixll=1

To prove Theorem 1.1, assume that g, € 2;(x). Then, since x € E\.G. we have
p(x,G) = ||[x — goll > 0 and hence, by a corollary of the Hahn-Banach theorem
(see, for example, [55, p. 64, Lemuna 12]), there exists an f; € E* such that || f |
= 1/||x — goll, fo(g) = 0 (g € G),and fy(x) = 1. Then the functional f = |x — g, fo
€ E* satisfies (1.51(1.7). Conversely, if there is an fe E* satisfying (1.3}(1.7),
then for any g € G we have

Ix — goll = 1f(x = goll = If(x — g < SN IIx — gll = itx — gl

and hence g, € Z,(x), which completes the proof.

Itiseasyto see that Theorem 1.1 admits the following geometrical interpretation :
We have g, € P 5(x) if and only if there exists a closed hyperplane G' in E (i.e., a closed
linear subspace G’ such that dim E/G" = 1) containing G, which supports the celi
S(x, [Ix — goll) = {v€Elly — goll < lix — gollt (ie., p(G", S(x, [|x — goll)) = Gand
G' nInt S(x, [x — gol) = @).

Any functional f e E* satisfying (1.5) and (1.7) is called a “‘maximal functional™

of the element x — g, (because we have |[x — goll = sup g |H(Xx — go)l). The
[lhll =1

usefulness of Theorem 1.1 for applications in various concrete normed linear
spacesisdue to thefact that for these spaces the general form of maximal functionals
ofthe elements of the space is well known and simple (see, for example, [154],[198]).

We recall that an element x of a closed convex set A in a topological linear space
L is called an extremal point of A if the relations y, ze A, 0 < A < 1, x = 4y
+ (1 — A)z imply v = z = x. The second main theorem of characterization of
elements of best approximation by elements of linear subspaces in normed linear
spaces is the following (see [168, p. 62]). B

THEOREM 1.2. Let E be a normed linear space, G a linear subspcce of E, x € ENG
and g, € G. We have g, € 2 ;(x) if and only if for every g € G there exists an extremal
point f® of the unit cell Sg. = { fe E*| || f|| < 1} such that

(1.8) Ref*(g — go) = 0,
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(1.9) SEHx — go) = lIx — goll.

For a geometrical interpretation of Theorem 1.2 see [168, p. 75]1. Theorem 1.2 is
also convenient for applications in the usual concrete spaces because for these
spaces the general form of the extremal points of Sj. is well known and simple.

It is easy to see that the sufficiency part of Theorem 1.2 remains valid for an
arbitrary set G in E. Indeed, if the condition is satisfied, then for every ge G we
have

x — goll = Ref®(x — g¢) < Ref8(x — g) < |f*(x — g)l -
<UfE x =gl = lIx — gl

whence g, € Z;(x). which proves the assertion. The problem of characterizing
those sets G — E for which the condition in Theorem 1.2 is also necessary, is
important in nonlinear approximation (see § 5).

Since best approximation amounts, by definition, to the minimization of the
convex functional ¢ = ¢, on the linear subspace & of a normed linear space E,
where

(1.10) o(y) = llx — yli, yeE.

there naturally arises the problem of obtaining characterizations of the elements
of best approximation g, € Z4(x) with the aid of differential calculus. The main
difficulty is that in general the norm in E is not necessarily Gateaux differentiable
at each nonzero point of E. Nevertheless, it is known (see, for example, [SS. p. 445,
Lemma 1]) that the limits

x + ty] — |
(1.11) 2x,y) = lim X E 0 = Axl x.veE.

1~0+* t

always exist and one can use them to give the following characterizations of
elements of best approximation (see [168, pp. 88-90]). B

THEOREM 1.3. Let E be a normed linear space, G a linear subspace of E, x€e E\G
and g, € G. We have g, € P 4(x) if and only if

(1.12) (x — go,8) 2 0. geG.

Ifthe norm in E is Gateaux differentiable at x — g,. this condition is equivalent to
the following :

(1.13) (x — g0.8) =0, geaG.

Let us observe that Theorem 1.1 can be also expressed as follows: g, € 2 4(x) if
and onlyif Oe{ f|; € G*|fe Sg, f(x — go) = lIx — goll}. We have also the follow-
ing characterization theorem [171].

THEOREM 1.4. Let E be a normed linear space. G a linear subspace of E, x€ ENG
and g, € G. We have g, € #,(x) if and only if 0 belongs to the a(G*, G)-closure of the

v
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convex hull of the set

(1.14) A= {f(x —go)flc€ G*|[€ E(Sk), | f(x — go)l = lIx — goll}.

Theorems 1.1-1.4 above can be also expressed, more concisely, as formulae for
2s(x), namely as

(1.15) Ps(x) = {go€ Gl |x — goll = ;n?;{ |f(x — goll}s
Iri=1
(1.16) Ps(x) = {go€ Gl min Ref(g — go) £ 0(geG)},
[e&(SE®)
S(x—go) =|x—goll
(1.17) Ps(x) = {go€Glt(x — go,8) Z 0(ge G)},
(1.18) Po(x) = {goe Gl0eco A},

respectively, where we use the notation
(1.19) G' = {feE*|f(g) = 0(geG)},

&(S.) for the set of all extremal points of Sg., and co for the weak* closed convex
hull, and where max, min stand for such sup, inf which are attained. Note also the
obvious relations

(1.20) Pg(x) = G n S(x, p(x,G)) = G n Fr S(x, p(x, G)),

which are wseful for geometrical interpretations. Finally, let us give a characteriza-
tion tiicorem (which we shall express concisely as formulae for () and 2 4(x)),
which will be useful in the study of existence and uniqueness problems (§§ 2-3) and
of the set-valued metric projection operators (§ 4).

THEOREM 1.5. Let E be a normed linear space.

(i) If T is a a(E*, E)-closed linear subspace of E* and fe E*\T', then

(1.21) Pr(f)=f— {heE* hlr, = flr., Il = I flc I},
where
(1.22) I' ={xeElyx)=0(yel)].

(i) If G is a closed linear subspace of E and x € EN\G, then
(1.23) Pe(x) = x — {y € E| k()lgr = k(X)lg s, [yl = Ix(x)gsl},

where k denotes the canonical isometrical embedding of E into E**, that is,

(1.24) (kN (f) = f(x), xeE,fe E*.

Part (i) has been given in [174, formula (25)7]. Here is a slightly more direct
proof, using an argument of R. R. Phelps [145] : If y, € 2{(f), thenfor h = [ — y,,
the element f — h is in the right-hand side of (1.21), since by the Hahn-Banach
theorem

I /lr = min [ f—yl =min|f—y|

ye(Ty)?t yel
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(we have (I))* = I, since I" is o(E*, E)-closed). Conversely, if 7, = f — h is in the
right-hand side of (1.21), then y, = f— he(I,)* = I' and, by the preceding
formula for | f|r [, we have yo€ Z(f). To see part (i), let g, € Zg(x). Then for
v =X — g, the element x — y is in the right-hand side of (1.23), by virtue of
(1.15). Conversely, if g, = x — yis in the right-hand side of (1.23), then, since G is
closed,wehaveg, = x — ye(G*), = G = Gandhence,againby(1.15),g, € Z4(x),
which proves part (ii). Note that Theorem 1.5 implies that

K(Po(x) < k(x) = {@e E**| Dlg. = k(x)lg+, @ = [x(x)lgl}

(1.25)
= ‘?G 1 .L(K(X)).

For a characterization of elements of best approximation in terms of fixed
points of a set-valued mapping, see § 5, Proposition 5.1.

(c) Let us give now examples of applications of some of the above theorems in
concrete spaces.

We shall use the word “‘compact™ in the sense of N. Bourbaki, i.e., bicompact
Hausdorfl. For a compact space Q we shall denote by C(Q), respectively Cx(Q),
the space of all complex or real. respectively of all real. continuous functions on Q,
endowed with the usual vector operations and with the norm || x|| = max,,|x(q)|.
Using the general form of maximal functionals of the elements of Cg(Q), from
Theorem 1.1 we obtain (see [168, p. 33])

THEOREM 1.6. Let E = Cg(Q) (Q compact), G a linear subspace of E, xe E \G and
20€ G. We have g, € Pg(x) if and only if there exist two disjoint closed subsets
Y. Y. of Q and a Radon measure ju on Q, such that

(1.26) ul(Q) = 1,
(127) fegm) du(q) = 0, g€G,
(1.28) nz0onY,, usO0onY, and Y U Y, > S,
(1.29) x(q) — go(q) ={ I ~gl for ge Y;"j
— llx — goll for qeYg,

where S(u) denotes the carrier of the measure .

One can also give a characterization theorem in the spaces E = C(Q) (see 168,
p. 29]). Theorem 1.6, which appeared in [165], has constituted the first theorem of
characterization in E = Cg(Q)(evenin E = Cg([a, b])) of elements of best approxi-
mation by elements of linear subspaces G of arbitrary dimension. From Theorem 1.6
one obtains easily, for example, the following result of E. W. Cheney and A. A.
Goldstein (see [168, p. 44]) : Let L be a real topological linear space, Q a compact
subset of L,E = Cx(Q), G = L*|y, x€ ENG and gy = ®y|g € G, where ®ye L*. We
have g, € 2 4(x) if and only if 0 € co B, where

B = {geQlx(q) — go(q) = IIx — goll} v — {g€QIx(q) — go(q) = — IIx — goll},

and where co stands stands for “‘convex hull”.
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For a positive measure space (7. v) (we shall not specify the a-field of subsets of
T on which the measure v is defined ; this will cause no confusion)andfor1 < p <
(respectively, p = ) we shall denote by LP(T, v) the space of all equivalence classes
of functions with v-integrable pth power (respectively of v-measurable and
v-essentially bounded functions on T'), endowed with the usual vector operations
and with the norm |x| = ([ |x()I” dv(t)}''? (respectively, | x|| = ess sup,.; |x(1)]):
for simplicity. we use here the same notation for a function and for its equivalence
class in LP. Again the subscript R will mean, both here and for the spaces occurring
in the sequel, that we restrict ourselves to real scalars. For a function"x’ on T we
shall use the notation

(1.30) Z(x') = {te T|x'(t) = 0}.

Using the general form of maximal functionals of the elements of L(T,v), we
obtain from Theorem [.1 the following theorem (see [168, p. 46]), which was
obtained initially by B. R. Kripke and T. J. Rivlin [110] with different (function-
theoretic) methods and with the above functional analytic methods in [167].

THEOREM 1.7. Let E = L'(T, v) (where (T. v) is a positive measure space), G a linear
subspace of E. x € EN\G and g, € G. We have g, € 2 (x) if and only if

(1.31) | g(r) sign [x(r) — go(1)] dv(r)} < J‘ g(r)] dv(t), geg.
Z(x —go)

T\ Z(x —go)

We recall that for a complex number a # 0, by definition sign a = ¢ '~
= 4/|a| and that sign 0 = 0.

For E = L*(T.v)with | < p < 5 and for an abstract inner product space H we
obtain from Theorem 1.1 the following well-known results (see [168, pp. 56-57]).

THEOREM 1.8. (1) Let E = LP(T,v) (with (T.v) a positive measure space and
| < p < x),G alinear subspace of E. x€ ENG and g, € G. We have g, € P (x) if
and only if

(1.32) g(n)lx(t) — go(IP~ ' sign [x(t) — go(0)] dv(t) = 0, ge (.
ST

(i1) Let E = H be an inner product space, G a linear subspace of E, x € EN\G and
go€G. We have g, e 2 (x)if and only if

(1.33) (g, x — g0 =0, gel,

where (x, v) denotes the scalar product in E = H.

Some applications of Theorem 1.1 in other concrete spaces are given in [168].

The above results in concrete spaces illustrate the power of the methods of
functional analysis in the theory of best approximation. Indeed, although Theorem
1.1 in general normed linear spacesis obtained by asimple application of a corollary
of the Hahn-Banach theorem. it gives in various concrete spaces Theorems 1.6- 1.8
and other results as particular cases, simply by using the general form of maximal
functicnals in these spaces. A direct proof of Theorems 1.6-1.8 would require
different methods in each of the concrete spaces involved, apparently having no
connection with each other: however. they all turn out to be particular cases of
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Theorem 1.1, and this unified method of obtaining them is simpler and clearer than
the separate proofs in each concrete space. This unified method is carried out in a
consequent manner for the whole theory of best approximation (e.g., for problems
of uniqueness, etc.), in the monograph [168]. In the sequel we shall only indicate
some examples of applications in concrete spaces (rather than mention all known
applications) of some of the general results on best approximation in arbitrary
normed linear spaces which we shall give. Let us give now an application of
Theorem 1.2.

It is well known (see, for example, [55, p. 441, Lemma 6]) that if E = C(Q), a
functional fe E* is an extremal point of S,. if and only if there exist ag € Q and a
scalar o with x| = 1 such that

(1.34) f(y) = av(q). veE = C(Q).

From Theorem 1.2, using the general form (1.34) of the extremal points of S,.
for E = C(Q),oneobtainsimmediately the following classical theorem of character-
ization of elements of best approximation, due to A. N. Kolmogorov (see [168.
p. 69]). B

THEOREM 1.9. Let E = C(Q) (Q compact), G a linear subspace of E, x € EN\.G and
20 € G. We have g, € Z;(x)ifand only if for every g € G there exists aq = g* € Q such
that

(1.35) Re [x(q) — g0(9)]g(q) = 0.
(1.36) [x(q) — golg) = llx — goll-

For applications of Theorem 1.2 in other concrete spaces. see [168, pp. 75-87].
In E = C(Q), using (1.34), one obtains from Theorem 1.4 a theorem of Y. lkebe
[94].

(d) Now we shall consider the important particular case whendim G = n < > .
re., when G =[x, -+, x,] = the (closed) linear subspace of E spanned by n
linearly independent elements x,, ..., x,. Naturally. the preceding results are
also applicable in this particular case ; however, by using effectively the assumption
dim G = n < oo, we can obtain additional information. For example, using the
classical theorem of Minkowski that the elements of the unit cell

See={feE¥|IfIl =1}

in a finite-dimensional space E* can be expressed as finite convex combinations
of extremal points of S;. and that if G is an arbitrary linear subspace of a normed
linear space E, then every extremal point of the unit cell S;. can be extended to an
extremal point of S;. (see, for example, [168, p. 168]). from Theorem 1.1 we obtain
(see [168, p. 170]):

THEOREM 1.10. Let E be a normed linear space, G = [x,. -+ . x,] an n-dimensional
linear subspace of E, x€ ENG and g, € G. We have g, € #4x) if and only if there
exist h extremal points f,.---  f, of the unit cell S;.. where 1 < h < n+ 1 if the

scalars are real and 1 < h < 2n + | if the scalars are complex and h numbers
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Ayp ooy dy > Owith Y 75 = 1, such that
h
(1.37) Y A;f{g) =0, geG,
Jj=1
) h
(1.38) 2 Afx = go) = IIx — gll.
i=1

In other words, the additional information to Theorem 1.1 which we obtain for
dim G = n < = is that for such subspaces G one can take the functional f of
Theorem 1.1 to be a convex combination f = Z;':, 4ifiof h = n + 1 (respectively
h < 2n + 1) extremal points of the unit cell Sp. = {fe E¥| | f|| < 1}.

Using the mapping ¢ — {¥(x;)}} of G* onto the n-space, from Theorem 1.4 one
obtains [171]:

THEOREM 1.11. Let E be a normed linear space, G = [x,, - - - , x,] an n-dimensional
linear subspace of E, x € EN\\G and g, € G. We have g, € 2 4(x) if and only if 0 belongs
to the convex hull of the following set in the n-dimensional Euclidean space:

(1.39) B, = {{f(x — go)f(x,), - flx — go) [ (x)H S € E(Spa), | (x — go)l
= |x — go'”

(e) Let us give some applications in concrete spaces.

We recall that a system of n functions x,, - - -, x, € C(Q) (Q compact) is called a
Chebyshev system (on Q) if every linear combination ) "_, a;x; # 0 has at most
n — 1 zeros on Q. We have the following characterization theorem of E. Ya.
Remez (see [168, p. 182]).

THEOREM 1.12. Let G = [x,,---,x,] be an n-dimensional linear subspace of
E = Cgr(Q) such that x,, - ,x, form a Chebyshev system and let xe E\G and
g0 € G. We have g, € P4(x) if and only if there exist n + 1 distinct points q,, - -,
G,y € Q such that

(1.40) x(q;) — 8olg;) = (sign %") [x —goll, Jj=1.---.n+1,
where

xy(qy) -+ xl(q,.ﬂ)]
(1.41) A= \,,lq,)x,(q.,”) #0,

x(qy) -+ x(q, 4+ 1) !

and where A, is the cofactor of the element x(g;) in A.

This theorem follows as a particular case both from Theorem 1.6 for
dim G = n < = and from Theorem 1.10 for E = Cgx(Q), using the general form
(1.34) of the extremal points of S,. (naturally, since the scalars are real, we have now
x = +1in(1.34)). In particular, for Q = [a, b] one obtains the following classical
“alternation theorem™ of P. L. Chebyshev-S. N. Bernstein (see [168, p. 184])
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THEOREM 1.13. Let G = [x,, -+-,x,] be an n-dimensional linear subspace of
E = Cqgl(la, b)) such that x,, - - -, x, form a Chebyshev system and let x e EN\.G and
g0 € G.Wehaveg, € Pg(x)ifandonlyifthereexistn + 1pointsq, < q, < - < G,
of [a, b], at which the difference x(q) — go(q) takes the value || x — gl with alter-
nating signs (i.e., with opposite signs at consecutive points q;, 4;,,j = 1, , n).

In E = C(Q), taking into account (1.34), one obtains from Theorem 1.11 a result
of E. W. Cheney [38, p. 73] : the necessity part of this latter result was observed.
essentially, by T. J. Rivlin and H. S. Shapiro (see [168, p. 181]). -

Some other characterizations of elements of best approximation by finite-
dimensional subspaces in various concrete spaces are given in [168, pp. 201-206].

(f) A natural generalization of the problem of characterization of elements of
best approximation is the problem of simultaneous characterization of a set of
elements of best approximation: given E, G = E and x as above and a subset M
of G; what are the necessary and sufficient conditions in order that every element
g, € M be an element of best approximation of x by the elements of G? The answer
is given (see [168, p.23]) by

THEOREM 1.14. Let E be a normed linear space, G a linear subspace of E, x € EN\G
and M = G. We have M < Z(x) if and only if there exists an f € E* satisfying (1.5).
(1.6} and

(1.42) flx — go) = lIx — goll, goe M.

In other words. this says that one can find the functional f'e E* of Theorem 1.1
to be common for all g, M. Theorem 1.14 is an immediate consequence of
Theorem 1.1 and the observation that |x — g,| = [[x — g,| for all pairs
2.2, €M < P2,(x);naturally, the converse is also true, since Theorem 1.1 is even
aparticular case of Theorem 1.14. We shall see in § 3 that Theorem 1.14 has applica-
tions in the study of the uniqueness of elements of best approximation.

(g) Finally, let us mention two other tools for the study of problems of best
approximation in normed linear spaces, which will be useful in the sequel. We
mention them here since they also yield the “‘characterization theorems’’ (1.43) and
(1.45) below.

Firstly, the canonical mapping w,: E — E/G isclearly related to best approxima-
tion, since in a normed linear space E formula (1.3) can also be written in the form

(1.43) Zs(x) = {g0€ Gllx — gol = lwgx)II}.
Another useful tool in the study of best approximation will be the set
(1.44) 2:'0) = {xe E|0e Z4(x)}.

Some authors call the set 2, '(0) the metric complement of G (because of § 2,
Proposition 2.1, § 3. Proposition 3.1 and § 4, Proposition 4.1).
For this set we have, obviously,

(1.45) Py(x) = (x + 25 (0)NG.

Some other properties of the set 2 '(0) are collected in



