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PREFACE

The theory of solitons is attractive; it is wide and deep,
and it is intrinsically beautiful. It is related to even more areas of
mathematics and has even more applications to the physical sciences than
the many which are indicated in this book. It has an interesting history
and a promising future. Indeed, the work of Kruskal and his associates
which gave us the inverse scattering transform is a major achievement of
twentieth-century mathematics. Their work was stimulated by a physical
problem and is also a classic example of how computational results may
lead to the development of new mathematics, just as observational and
experimental results have done since the time of Archimedes.

This book originated from lectures given to classes of math-
ematics honours students at the University of Bristol in their final year.
The aim was to make the essence of the method of inverse scattering under-—
standable as easily as possible, rather than to expound the analysis
rigorously or to describe the applications in detail. The present version
of my lecture notes has a similar aim. It is intended for senior students
and for graduate students, phyicists, chemists and engineers as well as
mathematicians. The book will also help specialists in these and other
subjects who wish to become acquainted with the theory of solitomns, but
does not go as far as the rapidly advancing frontier of research. The
fundamentals are introduced from the point of view of a course of advanced
calculus or the mathematical methods of physics. Some knowledge of the
elements of the theories of linear waves, partial differential equations,
Fourier integrals, the calculus of variations, Sturm-Liouville theory and
the hypergeometric function, but little more, is assumed. Also some
familiarity with the elements of the theories of water waves, continuous
groups, elliptic functions, one-dimensional wave mechanics and Hilbert
spaces will be useful, but is not essential. References are given to help

those readers who have not learnt these topics. The diverse applications



viii

of the theory of solitons are only mentioned briefly in the main text and
in the problems.

Simplicity and concrete applications are emphasized in order
to make the material easily.assimilable. The more difficult sections,
paragraphs and problems are preceded by asterisks; it is suggested that
they are omitted on a first reading of the book. Further reading is
recommended to cover results which are only quoted here and to offer more
detailed treatments. The equations are numbered in each section separate-
ly. An equation within the same section is referred to simply by its
number; in a different section by its section and equation numbers; and
in a different chapter by its chapter, section and equation numbers. The
sections and figures are numbered in each chapter separately and are
referred to similarly.

I am grateful to Miss Sarah Trickett for computing the solut-
ions of the Korteweg-de Vries equation used to draft Figures 4.6, 4.7 and
4,8; to Drs A. Davey, D.H. Griffel, R.S. Johnson, I.M. Moroz and A.R.
Paterson for criticisms of an earlier draft of this book; to Mrs. Tina
Harrison for drawing the figures; and to Mrs Nancy Thorp for typing the
text — its quality is immediately evident to the reader although my last-
minute changes may not be.

P.G. Drazin

Bristol
February 1983



Preface

Chapter

Chapter

Chapter

Chapter

CONTENTS

1 THE KORTEWEG-DE VRIES EQUATION

1. The discovery of solitary waves

2. Fundamental ideas

3. The discovery of soliton interactions

4. Applications of the KdV equation

Problems

2 CNOIDAL WAVES

1. Wave solutions of the KdV solution

2. Solitary waves

3. General waves of permanent form

4. Description of waves in terms of elliptic functions
5. Infinitesimal waves

6. Solitary waves again

Problems

3 CONSERVATION LAWS
1. Fundamental ideas
2. Gardner's transformation

Problems

4 THE INITTAL-VALUE PROBLEM FOR THE KORTEWEG-DE VRIES
EQUATION

The problem
Sketch of the method of inverse scattering
The scattering problem

The evolution equation

v B~ W oD

Solution of the scattering problem for t > O

vii

o 0 N B

13
13
14
18
20
21
23

32
34
37

40
41
42
45
48



6. The inverse scattering problem

7. Qualitative character of the solution
8. Example: the delta-function potential
9. Example: g(x) = - 2sech?x

10. Example: g(x) = - 6sech?x

11. Examples: sech-squared potentials

12. Examples: some numerical results

13. Reflectionless potentials

Problems

Chapter 5 THE LAX METHOD

1. Description of the method in terms of operators
Problems
Chapter 6 THE SINE-GORDON EQUATION
1. Introduction
2. Waves and solitons
3. Some other simple explicit solutions
4. The interaction of two solitons
5. A breather
6. The method of inverse scattering
Problems

Chapter 7 BACKLUND TRANSFORMATIONS

Le
2,
3

Introduction
The sine-Gordon equation

The KdV equation

Problems

Chapter 8 EPILOGUE

L

Appendix

Epilogue

A DERIVATION OF THE INTEGRAL EQUATION FOR INVERSE
SCATTERING

Bibliography and author index

Motion picture index

Subject index

50
51
53
56
59
62
63
67
71

79
83

87
89
93
94
98
99
101

108
111
113
118

121

125

128
133
134



CHAPTER 1 THE KORTEWEG-DE VRIES EQUATION

1 The discovery of solitary waves

This book is an introduction to the theory of solitons and to
the applications of the theory. Solitons are a special kind of localized
wave, an essentially nonlinear kind. We shall define them at the end of
this chapter, describing their discovery by Zabusky & Kruskal (1965). A
solitary wave is the first and most celebrated example of a soliton to
have been discovered, although more than 150 years elapsed after the dis-
covery before a solitary wave was recognized as an example of a-solitonm.
To lead to the definition of a soliton, it is helpful to study solitary
waves on shallow water. We shall describe briefly in this section the
properties of these waves, and then revise the elements of the theory of
linear and nonlinear waves in order to build a foundation of the theory of
solitons. Let us begin at the beginning, and relate a little history.

The solitary wave, or great wave of translation, was first
observed on the Edinburgh to Glasgow canal in 1834 by J. Scott Russell.
Russell reported his discovery to the British Association in 1844 as

follows:

I believe I shall best introduce this ph @nomenon by
describing the circumstances of my own first acquaintance

with it. I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of horses,

when the boat suddenly stopped — not so the mass of water

in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitationm,
then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and over-
took it still rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty feet long
and a foot to a foot and a half in height. Its height



gradually diminished, and after a chase of one or two miles
I lost it in the windings of the channel.

Russell also did some laboratory experiments, generating solitary waves by
dropping a weight at one end of a water channel (see Fig. 1). He deduced
empirically that the volume of water in the wave is equal to the volume
displaced by the weight and that the steady velocity c¢ of the wave is
given by

c?2 = g(h + a), (1)

where the amplitude a of the wave and the height h of the undisturbed
water are as defined in Fig. 2. Note that a taller solitary wave travels
faster than a smaller one. Russell also made many other observations and
experiments on solitary waves. In particular, he tried to generate waves
of depression by raising the weight from the bottom of the channel
initially. He found, however, that an initial depression becomes a train
of oscillatory waves whose lengt.~ increase and amplitudes decrease with
time (see Fig. 3).
Boussinesq (1871) and Rayleigh (1876) independently assumed

that a solitary wave has a length much greater than the depth of the water

Fig. 1. Russell's solitary wave: a diagram of its
development. (a) The start. (b) Later. (After Russell 1844)
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Fig. 2. The configuration and parameters for description of
a solitary wave.
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and thereby deduced Russell's empirical formula for c¢ from the equations
of motion of an inviscid incompressible fluid. They further showed

essentially that the wave height above the mean level h 1is given by
t(x,t) = a sech?{(x - ct)/b}, (2)
where b2 = 4h?(h + a)/3a for any positive amplitude a.

In 1895 Korteweg and de Vries developed this theory, and found

an equation governing the two-dimensional motion of weakly nonlinear long

waves:
3 E 2,20, L 0%
5t zZVn\®x T3 ox T3¢ 3/’ 3
9x
where o 1is a small but otherwise arbitrary constant, o = % h3 - Th/gp,

and T 1is the surface tension of the liquid of demnsity p. This is
essentially the original form of the Korteweg-de Vries equation; we shall
call it the KdV equation. Note that in the approximations used to derive
this equation one considers long waves propagating in the direction of
increasing x. A similar equation, with -3z/3t instead of 3¢/3t, may

be applied to waves propagating in the opposite direction.

Fig. 3. Russell's observations of oscillating waves:
successive stages of their development. (After Russell 1844.)

(a)

(b)
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(c)

(d)




2 Fundamental ideas
We shall dwell on the mathematical ideas, rather than the
applications to water waves, in this book. First note that by trans-

lations and magnifications of the dependent and independent variables,
u=kgo+k, X=kx+k, T=lktH+ks, (1)

we can write the KdV equation in many equivalent forms by choice of the

constants k to k5:
o

%‘Tl=<1+u)§—;+%, &)
%¥»+ (1 + u) %% + §§% = 0, 3
g—;—Bug—;+z—:=O, )
g%-+ 6u %% + zi% = 0, etc. (5)

(These transformations are examples of Lie groups or continuous groups,
which are the subject of an extensive theory and which have many
applications, notably in physics. For further reading, the book by Bluman
& Cole (1974) is recommended.) We shall usually use equation (4) as the
standard form.

To understand how solitons may persist, take the KdV equation

in the form
3
e v 2o, (6)

and seek the properties of small-amplitude waves. Accordingly, linearize
the equation to get
93-+ 33-+ 935 = 0 (7)
dt  9x %3 *
approximately. For this linearized equation any solution can be re-
presented as a superposition of Fourier components. So we use the method

of normal modes, with independent components u « el(kx-wt). It follows



that
w=k - k3. (8)

This is the dispersion relation which gives the frequency w as a
function of the wavenumber k. From it we deduce the phase velocity,

c=%=l—k2, (9
which gives the velocity of the wave fronts of the sinusoidal mode. We
also deduce the group velocity,

cg=?= 1 - 3k2, (10)
which gives the velocity of a wave packet, i.e. a group of waves with
nearly the same length 2m/k. Note that cg $c<gl, and c = cg =1
for long waves (i.e. for k = 0). Also a short wave has a negative phase
velocity c.

Packets of waves of nearly the same length propagate with the
group velocity, individual components moving through the packet with their
phase velocity. It can in general be shown that the energy of a wave
disturbance is propagated at the group velocity, not the phase velocity.
Long-wave components of a general solution travel faster than the short-
wave components, and thereby the components disperse. Thus the linear
theory predicts the dispersal of any disturbance other than a purely
sinusoidal one. Looking back to the equation, you can see that the
dispersion comes from the term in k3 in the expression for w and
thence from the term 83u/8x® in the KdV equation.

For further reading on group velocity, Lighthill's (1978,
§3.6) book is recommended.

In contrast to dispersion, nonlinearity leads to the concen-
tration of a disturbance. To see this, neglect the term 33u/dx3 1in the

KdV equation above and retain the nonlinear term. Then we have

3u du _
-a—t- + (1 + U) E— 0. (11)
The method of characteristics may be used to show that this equation has

the elementary solution



u=f{x - (1 +u)t} (12)

for any differentiable function f. (You may also verify that this
satisfies equation (11).) This shows that disturbances travel at the
characteristic velocity 1 + u. Thus the 'higher' parts of the solution
travel faster than the 'lower'. This 'catching up' tends to steepen a
disturbance until it 'breaks' and a discontinuity or shock wave forms
(see Fig. 4).

For further reading on wave breaking, the books by Landau &
Lifshitz (1959, §94) and Whitham (1974, §2.1) are recommended.

We anticipate that for a solitary wave the dispersive effects
of the term 933u/dx3 and the concentrating effects of the term udu/dx
are just in balance. We shall examine the details of this balance in the
next few chapters. A similar balance occurs for a large number of
solutions of nonlinear equations, a few of which will be demonstrated in
the text and problems of this book.

In future, we shall usually denote partial differentiation by

i = = = 53 3
a subscript, so that U, du/ot, u du/dx, - 9°u/dx> etec.

Fig. 4. Sketch of the nonlinear steepening of a wave as it
develops. (a) t = 0. (b) Later.

(a) (b)




3 The discovery of soliton interactions
Examining the Fermi-Pasta-Ulam model of phonons in an
anharmonic lattice, Zabusky & Kruskal (1965) were led to work on the KdV

equation. They considered the following initial-value problem in a

periodic domain:

du du 33u
Sptust8—=0 (1)
ax3
i.e. u_ + uu_ + Su = 0,
t x XXX
where
u(2,t) = u(o,t), u (2,8) = u (0,t), uxx(Z,t) =u (0,t)
for all t, (2)
and u(x,0) = cosmx for 0 < x < 2. (3)

Fig. 5. Solutions of the KdV equation u  tuu + 6uxxx =
with & = 0.022 and u(x,0) = cosmx for O < x < 2. (After
Zabusky & Kruskal 1965.) (a) The dotted curve gives u at
t = 0. (b) The broken curve gives u at t = 1/n. Note
that a 'shock wave' has nearly formed at x = 0.5; this is
because the initial solution is not steep enough for
dispersion to be significant (i.e. because |&u | << |uu_|

XXX X
mostly) and therefore the terms u, + uu have been
approximately zero up till this time. (c¢) The continuous
curve gives u at t = 3.6/m. Note the formation of eight
more-or—-less distinct solitons, whose crests lie close to a
straight line (extended with the period 2).

u(x,t)
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The periodic boundary conditions suit numerical integration of the system.
Putting & = 0.022, Zabusky & Kruskal computed u for t > 0. They found
that the solution breaks up into a train of eight solitary waves (see Fig.
5), each like a sech-squared solution, that these waves move through one
another as the faster ones catch up the slower ones, and that finally the
initial state (or something very close to it) recurs. This remarkable
numerical discovery, that strongly nonlinear waves can interact and carry
on thereafter almost as if they had never interacted, led to an intense
study of the analytic and numerical properties of many kinds of solitons.
This intense study continues still.

» A 'soliton' is not precisely defined, but is used to describe
any solution of a nonlinear equation or system which (i) represents a wave
of permanent form; (ii) is localized, decaying or becoming constant at
infinity; and (iii) may interact strongly with other solitons so that
after the interaction it retains its form, almost as if the principle of
superposition were valid. The word 'soliton' was coined by Zabusky &
Kruskal (1965) afte% 'photon’, 'proton', etc. to emphasize that a soliton
is a localized entity which may keep its identity after an interaction.
(The Greek word 'on' means 'solitary'.) The word may also symbolize the
hope that the properties of elementary particles will be deduced by cal-
culation of soliton solutions of some nonlinear field theory.

A solitary wave may be defined more generally than as a sech-
squared solution of the KdV equation. We take it to be any solution of a
nonlinear system which represents a hump-shaped wave of permanent form,

whether it is a soliton or not.

4 Applications of the KAV equation

We have related how the KdV equation was discovered in 1895 to
model the behaviour of weakly nonlinear long water waves. Benney (1966)
recognized that this approximation, whereby a small quadratic term rep-—
resenting convection in a moving medium balances a linear term represent-
ing dispersion of long waves, is widely applicable (see also Problem 1.8).
He applied it to inertial waves in a rotating fluid and to internal grav-
ity waves in a stratified fluid. Two of the many other applications of
the KdV equation are to ion-acoustic waves in a plasma (Washimi & Taniuti
1966) and to pressure waves in a misture of gas bubbles and liquid
(Wijngaarden 1968).



Problems
1.1 Motion pictures of soliton interactions. See the animated computer
films of solitons by Zabusky, Kruskal & Deem (F1965) and Eilbeck (F1981).

These films are listed in the motion picture index.

1.2 The 'tail' of a solitary wave. Verify that u(x,t) =

-2k2sech?{k(x - 4x2t)} satisfies the KdV equation in the form

3u 3u . 33u
EC e
3x3
i.e. u, - buu_ + u = 0.
t X XXX
Show that u(x,t) = eZK(x-Ct) is a solution of the linearized KdV
equation,
u_ +u =0,

if ¢ = 4k?. How is the latter solution related to the former as x~ -=?

1.3 The formation of a 'shock wave'. Verify that if u = cos{m(x - ut)}

then
u,_ +uu_ =0 for 0 < x < 2,

u(x + 2,t) = u(x,t) for t > 0, and u(x,0) = cosmx. Where (i.e. at
what stations x) might u approach infinity? Show that u first
ceases to be single valued when t = 1/n. How might one seek to continue

the solution for t > 1/m?

1.4 The initial-value problem for the linearized KAV equation. If

u(x,0) = g(x), and u,u_,u > 0 as x - *», show that

o

u(x,t) = g? J exp{ik(x + kzt)}J g(y)e_ikydy dk

—0o



Joa(x - y)

= (3t)_]”3Jm g(Y)zl- Jm exp[l{—l;a—— - %qﬁ}]dady.
) i ) (3t)

Deduce that

©

“ _]/3 . -2/3 1
u(x,t) v g(y)dy(3t) Ai(X) - yg(y)dy(3t) Ai'(X) + ...

1
as t >« for fixed X = x/(3t)’%, where Ai 1is the Airy function.
Show that the first term of the above asymptotic expansion represents a

1
= t:/3

steeply rising wave front where x and a slowly decaying wave train
1

where x § - t73. .
[You are given that Ai(X) =‘%?J exp{i(ax + %a3)}da.]

)
1.5 The essential nonlinearity of a solitary wave. Why is it that a
solitary wave of infinitesimal amplitude persists whereas all localized
solutions of the linearized KdV equation disperse and decay in time?

Discuss.

1.6 Similarity solutions of the KAV equation. Show that the KdV

equation,

u - 6buu + u = 0,
& X XXX

is invariant under the one-parameter continuous group of transformations
=2 i

x > kx, t > k3t and u > k ‘u. Deduce that taéu and x/t 3 are also

invariant under this group.

Assuming that there exists a solution of the form
% )
u(x,t) = -(3t) 3U(X), where X = x/(3t)73,

show that

d3u du _
— + (U X)R 2U = 0.

dx3

[Miura (1976, p.437).]
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