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Preface

It 1s the aim of this work to establish connections between three fields which seem only
loosely related from the usual point of view. These fields are described by the following
terms: Hamiltonian and Lagrangian systems, center manifold reduction, and elliptic vari-
ational problems. All three topics have had a period of fast development within the last
two decades; and the interrelations have grown considerably. Here we want to consider
just one facet at the intersection of all three fields, namely the implications of center
manifold theory to the study of variational problems. The main tool for the analysis is
the Hamiltonian point of view.

The original motivation for this work derives from my interest in Saint—Venant’s prob-
lem. Having in mind the center manifold approach and hearing about the Galerkin or
projection method to derive rod models, I thought it worthwile to study the connections
between these two reduction procedures. However, it soon turned out that the tools to
be developed involved fairly general ideas in Hamiltonian and Lagrangian system theory.
I realized that many of the necessary results are known but spread over many sources
or hidden in very abstract clothing. Often, the special needs for our objective were not
directly covered. Thus, the plan evolved to write the abstract Part I on Hamiltonian and
Lagrangian systems as self-contained as possible.

I made a controversial decision concerning the use of methods and notations from
differential geometry. Since many applied researchers are not familiar with differential
forms and coordinate free analysis on manifolds, I avoided these tools as much as possible.
On the one hand the center manifold is a local object and can be described by one
coordinate chart; but on the other hand it is nevertheless a manifold and in order to
define a Hamiltonian system on it, the use of differential forms is absolutely necessary.
Additionally, the concept of Lie groups involves global manifolds. In this conflict I was
guided by the idea to enable nonspecialists (I am one of them) to follow the analysis, give
them a first contact to methods in analysis on manifolds and symplectic geometry, and,
finally, to motivate them to study these methods in their own right. The reader should
judge how far this goal is reached.

To appreciate the abstract methods of Part [ it is strongly recommended to get involved
in some of the applications studied in Part Il (the easiest one is given in Section 8.2).
For classical Hamiltonian systems the center manifold does not play an important role,
since most systems are oscillatory, which leads to high-dimensional center manifolds.
However, center manifolds in elliptic problems in cylinders, first found by Kirchgassner
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[Ki82], reduce an infinite-dimensional system to a finite-dimensional one. In nonlinear
elasticity one application is the Saint—Venant problem concerning the static deformations
of a very long prismatic body. In mechanics this situation is modelled by rod theory
which is an ordinary differential equation replacing the equilibrium equations of three-
dimensional nonlinear elasticity. Such rod models can now be justified by the center
manifold approach; and it was the question of finding the variational structure of these
rod equations which brought my attention to this exciting field.

The research reported here was initiated during a one-year stay at Cornell University,
where I had numerous, very stimulating discussions with Phil Holmes. I am very grateful
to him. Additionally, I would like to thank all the persons who supplied me with interest-
ing hints and helpful comments during the development of this work. Especially, I want to
mention M. Beyer, T. Healey, H. Hofer, G. looss, J. Marsden, J. Moser, P. Slodowy, and
E. Zehnder. Finally, my thanks extend to my former advisor and teacher K. Kirchgassner,
who played a major role in my education in mathematics and their applications and who

encouraged me whenever needed.
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Chapter 1
Introduction

In applications, very often complex mathematical models are developed to describe certain
phenomena in nature. However, in some circumstances it turns out that only a few critical
modes are relevant for the basic effects. This is especially the case when systems with
an equilibrium state near the threshold of instability are considered. Then it is desirable
to have a method to reduce the complex system to a simpler one which only takes into
account the amplitudes of the critical modes. The basic requirement for such a reduction
procedure is that the reduced model is a faithful representation of the original problem, at
least locally. This means that the solution sets of both systems should be in a one-to—one
correspondence for the solutions one is interested in.

For steady problems such a method is provided by the Lyapunov-Schmidt reduction,
whereas for time-dependent systems the center manifold reduction is available. There are
further reduction methods which may not (yet) be justified in a mathematically rigorous
way (in the sense of faithfulness), but are still widespread in the applied sciences due
to their simplicity and their important results. Examples are the so-called Galerkin
approximations [GH83, pg.417] and amplitude or modulation equations of Ginzburg-
Landau type [NW69, DES71]. For the latter, initial results for a mathematical justification
are given in [CE90, vH90, IM91, Mi91b].

For Hamiltonian and variational methods it is well-known that Galerkin approxima-
tions are best done on the Hamiltonian function and on the functional rather than on
the associated differential equation. Then, the reduced problem maintains the Hamilto-
nian or variational structure; see e.g. [[1086, BB87| for examples in fluid dynamics and
[An72, Ow87] for elasticity theory. We will call these methods simply projection methods.
It is our aim to recover these methods from a mathematical rigorous basis.

The main motivation for the present work is the study of elliptic variational problems
on cylindrical domains, in particular Saint-Venant’s problem for the deformations of long
prismatic bodies (Ch. 11). It was first shown in [Ki82], that elliptic systems in cylinders
can be considered as (ill-posed) evolutionary problems with the axial variable as time,
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and that these problems are accessible by the center manifold reduction. With this tool
one is able to construct all solutions on the infinite cylinder which stay close to a given
solution being independent of the axial variable. This method was extensively developed
in [Fi84, Mi86a, Mi88b, Mi90, IV91]. Here we are not concerned with the technicalities
necessary for proving the existence of center manifolds in this context.

Our interest lies in the question, what additional information about the reduced prob-
lem on the center manifold can be gained when the original elliptic problem was obtained
as Euler-Lagrange equation of a variational problem. The best we can expect is that the
reduced problem can be again understood as a reduced variational problem. For exam-
ple, this is the case for the Lyapunov-Schmidt reduction, see Section 6.1. But for center
manifold reduction, the desired result is, in general, false. Fortunately, in most applica-
tions it can be shown that the center manifold reduction of a variational problem is again
variational. We state the conjecture that for strongly elliptic systems this is always true
(Section 6.3).

The main idea to approach variational problems in cylinders is to exploit the distin-
guished role of the axial variable. Starting with the energy density f = f(y,u, Vyu, ),
where (y,t) € ¥ x IR with £ being the cross—section and & = du/0dt, we define a Lagrangian

L, ) = [f(y,u,vyu,u) dy

where (u, ) is now assumed to be an element of some function space over the cross—section
Y. Thus, the system can now be considered as a Lagrangian problem in an infinite-
dimensional space. In this sense we use the words ‘Lagrangian problem’ and ‘variational
problem’ synonymously. Associated to this Lagrangian formulation is a Hamiltonian
formulation H(u,v) which is be obtained by the Legendre transform v = dL/d%. This
relation can always be locally inverted due to the ellipticity of the problem.

Now, all the tools of Hamiltonian systems are at our disposal. For instance, bifur-
cations of solutions, which are periodic in the axial direction, have to obey the more
stringend rules of Hamiltonian bifurcation theory. In [BM90] this idea is applied to the
bifurcations from the Stokes family in the theory of surface waves.

Center manifolds are mostly studied in cases where they are stable. This explains
why they are not used very often in Hamiltonian theory, since there the symmetry of the
spectrum does not allow for a stable center manifold. However, the basis of the present
work is the observation that the flow on the center manifold of a Hamiltonian system
is again described by a reduced Hamiltonian system. Although this fact seems to be
well-known in the realm of Hamiltonian theory, one hardly finds references to this; see
e.g. [KI82, Ch.3.1] for the linear case and [Po80, Ch.2E] for the case involving simple
eigenvalues only. The only general treatment, the author is aware of, is given in [Mo77].

After recovering canonical coordinates on the center manifold we have to check whether
it is possible to do the inverse Legendre transform; then a reduced variational problem is



found. We represent this method in the following diagram.

L(u,) _Legendre H(u,v) reduction to
transform wi manifold
natural ﬁ(x) &
reduction 7 i

Legendre = Darboux’s

z(‘I» q) H(q,p), can theorem

transform ?

This method constitutes the core of the work presented here. Of course, it can be con-
sidered independently of elliptic problems, purely on the level of Lagrangian and Hamil-
tonian systems. The abstract derivation of the method is done in Part I, and applications
to several problems in continuum mechanics are given in Part II.

One remaining open question is to clarify the relations between the full Lagrangian
L and the reduced Lagrangian I. The most natural relation would be that L equals
the restriction of L to the center manifold. If this holds, we use the notion of natural
reduction. Note that this is exactly the case when the projection (or Galerkin) method
yields the same reduced problem as our method. However, the results in this area (Section
6.5) are only preliminary and further research is needed.

On the contents

In Chapter 2 we introduce the necessary notations for Hamiltonian systems on manifolds
and then give a basic introduction to the ideas of center manifold theory. Next we treat
linear Hamiltonian systems and present some results on linear normal form theory, which
are needed later on.

In Chapter 4 we consider center manifolds in Hamiltonian systems. In the first section
we give the basic reduction theorem due to Moser [Mo77] and certain related results. In
Section 4.2 we generalize the result to Poisson systems as follows. Let X be a Banach
space which splits into X; x X, where X; is finite-dimensional. Consider a Hamiltonian

(il) ( 1(z) Ja(z) ) (dz]H(x)) (1)
) Js(z) Ja(z) ) \do, H(z)/) '
Here, H is the Hamiltonian and J = ) : X* — X defines the Poisson bracket

{F,G} = dF(JdG). We assume that (1. 1) has a center manifold M¢c being tangential
to X, in the point z; = 0, i.e. Mg = {(a1,h(z1)) € X : =1 € Uy C X}, where the
reduction function & satisfies h(0) = Dh(0) = 0.

system on X given by
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Under the sole assumption that J4(0) : X5 — X, has a bounded inverse we show that
the flow on M is described by

&y = J(z1)dg, H (21). (1.2)

The reduced Hamiltonian H is just the restriction of H onto Mc: ﬁ(zl) = H(z1, h(z1)).

The operator J(z;) : X7 — X, defines a reduced Poisson bracket on M¢ and is given by

J(Il) = Jl + (—JlB* + J2)(J4 = BJ2 = J3B* + BJ]B*)—I(BJl = J3) (13)

where J; = Ji(z1, h(z1)) and B = Dh(z,), with B* being the adjoint. In fact, this reduc-
tion method is not restricted to center manifolds but holds for every invariant submanifold
with invertible Jj4.

In Section 4.3 we treat the method of flattening of center manifolds in canonical coor-
dinates. This procedure gives an effective way of calculating the reduced Hamiltonian in
canonical coordinates, up to any given order. This method is especially useful for imple-
mentation, either numerically or by symbolic manipulations. Finally, we are concerned
with the analyticity problem for center manifolds in Hamiltonian systems.

In Chapter 5 systems are studied which are invariant under the action of a Lie group.
A short introduction to Lie groups is given in Section 5.1 and the classical reduction of
Hamiltonian system by symmetry ([Ma81, MR86]) is outlined. Note that the reduction
onto a center manifold is completely different from the classical reduction. There a reduced
phase space is obtained by factoring with respect to a symmetry action and by restricting
onto level surfaces of the corresponding first integrals. The center manifold, however, is
characterized only by the dynamical behavior of the solutions lying on it. In particular,
in Section 5.2 we show that systems, being invariant under the action of a Lie group, give
rise to a reduced system on the center manifold which inherits all the symmetries of the
original system. For this purpose we use a slice theorem to decouple the symmetry action.
Furthermore we develop special versions of Poincaré’s Lemma and Darboux’s Theorem
for the symmetry case. It follows then that the symmetry reduction can be done after
the center manifold reduction.

Variational problems are treated in Chapter 6. First we consider the Lyapunov-
Schmidt reduction and the projection method which both have the property that their
reduced problem has a natural variational structure. We point out the essential differences
to our approach and to get ideas what the desired results for Lagrangian systems are. As
a byproduct, we obtain that the center manifold reduction in a gradient system is again
a gradient system, but with respect to a non-flat metric.

Then we study the abstract setting of Lagrangian problems and their relation to
canonical Hamiltonian systems. The general reduction method proposed above always
leads from the original Lagrangian problem, via the Legendre transform and the center
manifold reduction, to a reduced Hamiltonian system. Darboux’s theorem then supplies



canonical coordinates and we would like to transform back into a Lagangian problem.
Yet, in general this is not possible, even when all possible canonical coordinates are taken
into account. The following condition is necessary and sufficient for the existence of an
associated Lagrangian problem. Denoting the linearization of the vector field in (1.2) at
z; = 0 by Kjz; this condition is simply given by

dim(kernel K;) < - dim Xj. . (1.4)

1
2
This result is very useful, since it makes the sometimes cumbersome calculation of the
quadratic part of H superfluous. Using this condition the reduction procedure can be
completed as given in the above diagram. The important question of ¥itural reduction is
discussed in Section 6.5. However, by now only a relaxed version of it is well understood.

Moreover, we consider symmetric Lagrangian systems which may have a relative equi-
librium with respect to the action of a Lie group. Using augmented Hamiltonians we are
able to construct a center manifold close to the relative equilibrium, such that the reduced
Lagrangian system is again invariant under the reduced action. This theory will be basic
for the understanding of Saint—Venant’s problem.

In Chapter 7 we are concerned with nonautonomous Hamiltonian or Lagrangian sys-
tems. Under suitable uniformity conditions on the time-dependence, the existence of a
time-dependent center manifold is known. Then the reduced symplectic structure de-
pends on time also. Using an especially adapted version of Darboux’s theorem we find
canonical coordinates while keeping the time variable unchanged and preserving the qual-
itative time-dependence like (quasi-) periodicity. Moreover, for an autonomous system
under a nonautonomous perturbation on a finite time—interval we show that the reduced
system on the center manifold can be brought into the same form. This leads to ap-
plications in elliptic problems with localized perturbations, e.g. fluid flow over a bump.

Part II is dedicated to applications of the above theory to elliptic variational problems
in cylindrical domains. In Chapter 8 we show that elliptic variational problems in cylin-
ders admit a natural Lagrangian formulation, where the Lagrange function is obtained by
simply integrating the density over the cross—section rather than over the whole cylinder.
Moreover, the ellipticity condition shows that this Lagrangian problem can always be
converted into an associated Hamiltonian problem by the generalized Legendre transfor-
mation. Now, the reduction onto a center manifold yields a reduced Hamiltonian system.
The question is whether the reduced system on the center manifold again can be under-
stood as the Euler-Lagrange equations of a reduced variational problem. But this can be
answered affirmatively if condition (1.4) holds. This provides the first rigorous reduction
procedure for elliptic variational problems in cylindrical domains to a finite-dimensional
variational problem.

As applications we treat several elliptic problems with increasing complexity. Most of
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them were already discussed before, however the Hamiltonian structure was not exploited
then. The first is just an introductory example to show the basic ideas without involving
too much technicalities (Section 8.2). Then we study a nonautonomous problem, describ-
ing steady internal waves in a channel in the presence of a small localized perturbation
(bump) at the bottom of the channel. The previous results in [Mi86b, Mi88b] can now
be obtained much more easily and more completely.

In Chapter 9 steady surface waves under the influence of capillarity and gravity are
investigated. In particular, we discuss the question of solitary waves for small Bond
number and show that no multi-solitons can bifurcate at Froude number equal to 1.

The fourth example comes from elasticity and considers the deformation of a two-
dimensional strip under tensile loading. For certain materials there exists a critical load
under which the strip starts to deviate from the homogeneous deformation and exhibits
localized necks. We establish the corresponding elliptic variational problem and find the
associated reduced variational problem on the four-dimensional center manifold. Thus,
the existence of neck solutions can be proved.

The last example (Ch. 11) deals with the so-called nonlinear Saint-Venant problem.
In fact, most of the present work was developed in order to handle this problem. It is con-
cerned with static elastic deformations of a very long beam loaded only at its ends. The
Euler-Lagange equations are the equilibrium equations of nonlinear elasticity, a strongly
elliptic system of three elliptic partial differential equations in three space dimensions.
It is shown in [Mi88c] that, for this system, a twelve-dimensional center manifold ex-
ists which contains solutions corresponding exactly to the solutions of the classical rod
equations given in [Ki59, An72, KMS88]. Moreover, the invariance of the problem un-
der rigid-body transformations is now interpreted as the invariance under the action of
the (six-dimensional) Lie group of all Euclidian transformations in IR*. The undeformed
straight beam is a relative equilibrium, since the cross—section moves linearly with the
axial variable.

For hyperelastic materials the equilibrium equations are variational and the functional
is the stored-energy function Wyeam(V(y,u). Applying the Lagrangian reduction proce-
dure we are able to construct a reduced variational problem on the tangent bundle of
G, giving rise to a hyperelastic rod model with a reduced energy functional for the rod
Wioa which is deduced from Wycam in a mathematically rigorous way. Moreover, we show
that, on the quadratic level, a natural reduction can be achieved, i.e. W,,q can be chosen
such that the energy of a solution calculated in the rod model gives the same value, up to
terms of third order in the strains, as the true energy f}: Wheamdy of the associated beam
solution.
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Hamiltonian and Lagrangian theory






Chapter 2

Notations and basic facts on center

manifolds

We consider a possibly infinite-dimensional manifold X which is modelled over a reflexive
Banach space X ([We71, La62]). As our theory is local with respect to some base point
we will often identify X with X by a local coordinate system. As a general reference
for infinite-dimensional Hamiltonian systems we use [CM74, AMT78, Ma81] and [HM83,
Ch.5.3]. Throughout the whole work we try to be as self-contained as possible. Therefore
we avoid the extensive use of special notations and facts in the calculus on manifolds.
This should enable readers, who are not familiar with this field, to follow the analysis.
However, at some points this has to be payed with less consistent notations or with less
elegant proofs.

As usual the tangent and the cotangent bundles TX and T*X are defined as the unions
of the local tangent and cotangent spaces (z, T, Xx') and (z,T;X'), respectively. Hence, TX
and T*X are locally isomorphic to X x X and X x X™, respectively, where X* denotes the
dual space of X consisting of all continuous linear forms on X with the natural contraction
written as (-, - )x : X* x X - R.

All manifolds, functions, mappings, and bundles over manifolds will only be assumed to
have a finite order of differentiability, which is sufficiently high to perform the calculations.
A theory of C*-manifolds is, for instance, developed in [La62]. We cannot work in the
C*°-setting as the center manifold, being our main interest, is in general not a C'*-
manifold (see [CH82]). We will not specify the order of differentiability explicitly in each
point. From the context it will be clear what regularity is needed in a certain step. For
instance, on a C*-manifold, being defined to have charts ¢; such that the compositions
¢,~o¢]-_1 are in C*, we may define only C*~functions, the tangent space is a C*~!-manifold,
and so on.

Throughout the whole work it suffices to consider C®-manifolds. Starting with a



