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Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in the development methodologies has switched in the last two decades
from functional issues to structural issues: both data and functions are encap-
sulated into software units which are integrated into large systems by means of
various techniques supporting reusability and modifiability. This encapsulation
principle is essential to both the object-oriented and the more recent component-
based software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
eling and validation techniques supporting the concepts of reusability and mod-
ifiability and their implementation in new extensions of existing programming
languages like Java.

The new format of FMCO 2005 consisted of invited keynote lectures and
tutorial lectures selected through a corresponding open call. The latter provide
a tutorial perspective on recent developments. In contrast to existing conferences,
about half of the program consisted of invited keynote lectures by top researchers
sharing their interest in the application or development of formal methods for
large-scale software systems (object or component oriented). FMCO does not
focus on specific aspects of the use of formal methods, but rather it aims at a
systematic and comprehensive account of the expanding body of knowledge on
modern software systems.

This volume contains the contributions submitted after the symposium by
both invited and selected lecturers. The proceedings of FMCO 2002, FMCO
2003, and FMCO 2004 have already been published as volumes 2852, 3188,
and 3657 of Springer’s Lecture Notes in Computer Science. We believe that
these proceedings provide a unique combination of ideas on software engineering
and formal methods which reflect the expanding body of knowledge on modern
software systems.

June 2006 F.S. de Boer
M.M. Bonsangue

S. Graf

W.-P. de Roever



Organization

The FMCO symposia are organized in the context of the project Mobi-J, a
project founded by a bilateral research program of The Dutch Organization
for Scientific Research (NWO) and the Central Public Funding Organization for
Academic Research in Germany (DFG). The partners of the Mobi-J projects are:
the Centrum voor Wiskunde en Informatica, the Leiden Institute of Advanced
Computer Science, and the Christian-Albrechts-Universitéit Kiel.

This project aims at the development of a programming environment which
supports component-based design and verification of Java programs annotated
with assertions. The overall approach is based on an extension of the Java lan-
guage with a notion of component that provides for the encapsulation of its
internal processing of data and composition in a network by means of mobile
asynchronous channels.

Sponsoring Institutions

The Dutch Organization for Scientific Research (NWO)
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A Software Component Model and Its
Preliminary Formalisation

Kung-Kiu Lau!, Mario Ornaghi?, and Zheng Wang!

! School of Computer Science, the University of Manchester
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{kung-kiu, zw}@cs.man.ac.uk

2 Dipartimento di Scienze dell’ Informazione,
Universita’ degli studi di Milano
Via Comelico 39/41, 20135 Milano, Italy
ornaghi@dsi.unimi.it

Abstract. A software component model should define what components are, and
how they can be composed. That is, it should define a theory of components
and their composition. Current software component models tend to use objects
or port-connector type architectural units as components, with method calls and
port-to-port connections as composition mechanisms. However, these models do
not provide a proper composition theory, in particular for key underlying concepts
such as encapsulation and compositionality. In this paper, we outline our notion
of these concepts, and give a preliminary formalisation of a software component
model that embodies these concepts.

1 Introduction

The context of this work is Component-based Software Engineering, rather than
Component-based Systems. In the latter, the focus is on system properties, and
components are typically state machines. Key concerns are issues related to communi-
cation, concurrency, processes, protocols, etc. Properties of interest are temporal, non-
functional properties such as deadlock-freedom, safety, liveness, etc. In the former, the
focus is on software components and middleware for composing them. Usually a soft-
ware component model, e.g. Enterprise JavaBeans (EJB) [21], provides the underlying
framework.

A software component model should define (i) what components are, i.e. their syntax
and semantics; and (ii) how to compose components, i.e. the semantics of their composi-
tion. Current component models tend to use objects or port-connector type architectural
units as components, with method calls and port-to-port connections as composition
mechanisms. However, these models do not define a proper theory for composition.

We believe that encapsulation and compositionality are key concepts for such a the-
ory. In this paper, we explain these notions, and their role in a composition theory.
Using these concepts, we present a software component model, together with a prelim-
inary formalisation.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 1-21, 2006.
(© Springer-Verlag Berlin Heidelberg 2006



2 K.-K. Lau, M. Ornaghi, and Z. Wang

2 Current Component Models

Currently, so-called component models, e.g. EJB and CCM (CORBA Component Mo-
del) [24], do not follow a standard terminology or semantics. There are different def-
initions of what a component is [6], and most of these are not set in the context of a
component model. In particular, they do not define composition properly.

For example, a widely used definition of components is the following, due to
Szyperski [28]:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.”

A different definition is the following by Meyer [20]:

“A component is a software element (modular unit) satisfying the following
conditions:

1. It can be used by other software elements, its ‘clients’.

2. It possesses an official usage description, which is sufficient for a client
author to use it.

3. It is not tied to any fixed set of clients.”

Both these definitions do not mention a component model, in particular how composi-
tion is defined.

The following definition given in Heineman and Councill [12] mentions a component
model:

“A [component is a] software element that conforms to a component model and
can be independently deployed and composed without modification according
to a composition standard.”

but it does not define one.

Nevertheless, there is a commonly accepted abstract view of what a component
is, viz. a software unit that contains (i) code for performing services, and (ii) an in-
terface for accessing these services (Fig. 1(a)). To provide its services, a component

Name
Interface |:[:(z provided services
Code required services
(@) (b)

Fig. 1. A software component

may require some services. So a component is often depicted as in Fig. 1(b), e.g. in
CCM and UML2.0 [23].

In current software component models, components are typically objects as in object-
oriented languages, and port-connector type architectural units, with method calls and
ADL (architecture description languages [26]) connectors as composition mechanisms
respectively.

A complete survey of these models is beyond the scope of this paper. It can be found
in [17].



A Software Component Model and Its Preliminary Formalisation 3

3  Our Component Model

In our component model, components encapsulate computation (and data),' and com-
position operators encapsulate control. Our components are constructed from (i) com-
putation units and (ii) connectors. A computation unit performs computation within
itself, and does not invoke computation in another unit. Connectors are used to build
components from computation units, and also as composition operators to compose
components into composite components.

3.1 Exogenous Connectors

Our connectors are exogenous connectors [16]. The distinguishing characteristic of ex-
ogenous connectors is that they encapsulate control. In traditional ADLs, components

(a) Components and connectors (b) Control flow

Fig. 2. Traditional ADLs

are supposed to represent computation, and connectors interaction between components
[19] (Fig. 2 (a)). Actually, however, components represent computation as well as con-
trol, since control originates in components, and is passed on by connectors to other
components. This is illustrated by Fig. 2 (b), where the origin of control is denoted by
a dot in a component, and the flow of control is denoted by arrows emanating from the
dot and arrows following connectors.

In this situation, components are not truly independent, i.e. they are tightly coupled,
albeit only indirectly via their ports.

In general, component connection schemes in current component models (including
ADLs) use message passing, and fall into two main categories: (i) connection by di-
rect message passing; and (ii) connection by indirect message passing. Direct message

L B [ component
B A ynotify(); : 2 connector
A : sz -. >
e D -:: S

(a) Direct message passing (b) Indirect message passing

Fig. 3. Connection by message passing

passing corresponds to direct method calls, as exemplified by objects calling methods
in other objects (Fig. 3 (a)), using method or event delegation, or remote procedure
call (RPC). Software component models that adopt direct message passing schemes as

! For lack of space, we will not discuss data in this paper.
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composition operators are EJB, CCM, COM [5], UML2.0 [23] and KobrA [3]. In these
models, there is no explicit code for connectors, since messages are ‘hard-wired’ into
the components, and so connectors are not separate entities.

Indirect message passing corresponds to coordination (e.g. RPC) via connectors, as
exemplified by ADLs. Here, connectors are separate entities that are defined explic-
itly. Typically they are glue code or scripts that pass messages between components
indirectly. To connect a component to another component we use a connector that
when notified by the former invokes a method in the latter (Fig. 3 (b)). Besides ADLs,
other software component models that adopt indirect message passing schemes are Jav-
aBeans [27], Koala [30], SOFA [25], PECOS [22], PIN [14] and Fractal [8].

In connection schemes by message passing, direct or indirect, control originates in
and flows from components, as in Fig. 2 (b). This is clearly the case in both Fig. 3 (a)
and (b).

A categorical semantics of connectors is proposed in [9], where coordination is mod-
elled through signature morphisms. There is a clear separation between computation,
occurring in components, and coordination, performed by connectors. However, shared
actions may propagate control from one component to others.

By contrast, in exogenous connection, control originates in and flows from connec-
tors, leaving components to encapsulate only computation. This is illustrated by Fig. 4.

(a) Example . (b) Control flow
Fig. 4. Connection by exogenous connectors

In Fig. 4 (a), components do not call methods in other components. Instead, all method
calls are initiated and coordinated by exogenous connectors. The latter’s distinguishing
feature of control encapsulation is clearly illustrated by Fig. 4 (b), in clear contrast to
Fig. 2 (b).

Exogenous connectors thus encapsulate control (and data), i.e. they initiate and co-
ordinate control (and data). With exogenous connection, components are truly indepen-
dent and decoupled.

The concept of exogenous connection entails a type hierarchy of exogenous con-
nectors. Because they encapsulate all the control in a system, such connectors have to
connect to one another (as well as components) in order to build up a complete control
structure for the system. For this to be possible, there must be a type hierarchy for these
connectors. Therefore such a hierarchy must be defined for any component model that
is based on exogenous connection.

3.2 Components

Our view of a component is that it is not simply a part of the whole system. Rather
it is something very different from traditional software units such as code fragments,
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functions, procedures, subroutines, modules, classes/objects, programs, packages, etc,
and equally different from more modern units like DLLs and services.
We define a component as follows:

Definition 1. A software component is a software unit with the following defining char-
acteristics: (i) encapsulation and (ii) compositionality.

A component should encapsulate both data and computation. A component C encapsu-
lates data by making its data private. C' encapsulates computation by making sure that
its computation happens entirely within itself.

An object can encapsulate data, but it does not encapsulate computation, since ob-
jects can call methods in other objects (Fig. 5(a)).
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Fig. 5. Objects and architectural units

Port-connector type components, as in e.g. ADLs, UML2.0 and Koala, can encapsu-
late data. However, they usually do not encapsulate computation, since components can
call methods in other components by remote procedure call (RPC), albeit only indirectly
via connectors (and ports) (Fig. 5(b)).

Components should be compositional, i.e. the composition of two components C
and C' should yield another component C3, which in turn should also have the defining
characteristics of encapsulation and compositionality. Thus compositionality implies
that composition preserves or propagates encapsulation.”

Classes and objects are not compositional. They can only be ‘composed’ by method
calls, and such a ‘composition’ does not yield another class or object. Indeed, method
calls break encapsulation. Port-connector type components can be composed, but they
are not compositional if they do not have (computation) encapsulation.

Encapsulation entails that access to components must be provided by interfaces.
Classes and objects do not have interfaces. Access to (the methods of) objects, if per-
mitted, is direct, not via interfaces. So-called ‘interfaces’ in object-oriented languages
like Java are themselves classes or objects, so are not interfaces to components. Port-
connector type components use their ports as their interfaces.

Our components are constructed from computation units and exogenous connectors.
A computation unit performs just computation within itself and does not invoke compu-
tation in another unit. It can be thought of as a class or object with methods, except that
these methods do not call methods in other units. Thus it encapsulates computation.

Exogenous connectors encapsulate control, as we have seen in the previous section.
The type hierarchy of these connectors in our component model is as follows. At the

2 Compositionality in terms of other (non-functional) properties of sub-components is an open
issue, which we do not address here.
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lowest level, level 1, because components are not allowed to call methods in other com-
ponents, we need an exogenous invocation connector. This is a unary operator that
takes a computation unit, invokes one of its methods, and receives the result of the in-
vocation. At the next level of the type hierarchy, to structure the control and data flow
in a set of components or a system, we need other connectors for sequencing exoge-
nous method calls to different components. So at level 2, we need n-ary connectors for
connecting invocation connectors, and at level 3, we need n-ary connectors for connect-
ing these connectors, and so on. In other words, we need a hierarchy of connectors of
different arities and types. We have defined and implemented such a hierarchy in [16].
Apart from invocation connectors at level 1, our hierarchy includes pipe connectors,
for sequencing, and selector connectors, for branching, at levels n > 2. These con-
nectors are called composition connectors for the obvious reason. Level-1 connectors
are invocation connectors, and level-2 composition connectors connect only invocation
connectors, but composition connectors at higher levels are polymorphic since they can
connect different kinds of connectors at different levels (and with different arities).

We distinguish between (i) atzomic components and (ii) composite components.

Definition 2. An atomic component C is a pair (i,u) where u is a computation unit,
and ¢ is an invocation connector that invokes u’s methods. i provides an interface to the
component C'.

A composite component CC'is a tuple (k, Cy, Cs, ... C;), for some j, where k is a
J-ary connector at level n > 2, andeach C;,i = 1, ..., j, is either an atomic component
or a composite component. k is called a composition connector. It provides an interface
to the component C'C.

Invocation —jur
connector ;
Computation
unit C1 c2 CcJ
(a) An atomic component (b) A composite component

Composition
~€——connector

Fig. 6. Atomic and composite components
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(a) An atomic component (b) A composite component

Fig.7. Encapsulation and compositionality

Figure 6 illustrates atomic and composite components. Clearly, an atomic compo-
nent encapsulates computation, since a computation unit does so, and an invocation
connector invokes only methods in the unit (Fig 7(a)). It is easy to see that a composite
component also encapsulates computation (Fig 7(b)).
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3.3 Composition Operators

To construct systems or composite components, we need composition operators that
preserve encapsulation and compositionality. Such composition operators should work
only on interfaces, in view of encapsulation.

Glue code is certainly not suitable as composition operators. Neither are object
method calls or ADL connectors, as used in current component models. Indeed, these
models do not have proper composition operators, in our view, since they do not have
the concepts of encapsulation and compositionality.

As in Definition 2, we use exogenous connectors at level n > 2 as composition
operators. These operators are compositional and therefor preserve and propagate en-
capsulation. As shown in Fig 7(b), a composite component has encapsulation, as a result
of encapsulation in its constituent components. Furthermore, the composite component
is also compositional. Thus, any component, be it atomic or composite, has a top-most
connector that provides an interface, and it can be composed with any other component
using a suitable composition operator.

This self-similarity of a composite component is a direct consequence of component
encapsulation and compositionality, and provides the basis for a compositional way of
constructing systems from components. Fig. 8(b) illustrates self-similarity of a com-

(a) Acme (b) Exogenous connection

Fig. 8. Self-similarity of a composite component

posite component in a system composed from atomic and composite components. Each
dotted box indicates a composite component. Note in particular that the composite at
the top level is the entire system itself. Most importantly, every composite component
is similar to all its sub-components.

The system in Fig. 8(b) corresponds to the Acme [11] architecture in Fig. 8(a). By
comparison, in the Acme system, the composites are different from those in Fig. 8(b).
For instance, (D,E) is a composite in (b) but not in (a). Also, in (a) the top-level com-
posite is not similar to the composite (B,D,E) at the next level down. The latter has an
interface, but the former does not.

In general, self-similarity provides a compositional approach to system construction,
and this is an advance over hierarchical approaches such as ADLs which are not com-
positional, strictly speaking.

3.4 The Bank Example

Having defined our component model, we illustrate its use in the construction of a
simple bank system. The bank system has just one ATM that serves two banks (Bank1
and Bank?2) as shown in Fig. 9.



