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INTRODUCTION

This monograph is based in part on a series of lectures given by
the first author at Cleveland State University and at Texas A & M Uni-
versity since 1980, and in part on the lectures given by the second
author at Dalhousie University and the Australian National University
since 1981. It concerns the development of certain topics in differ-
ential nonlinear analysis in infinite dimensional real Banach spaces.
Our motivation derives from the rich and elegant theory of nonlinear
analysis in finite dimensional setting and from the fact that the
powerful theorems of Stone-Weierstrass, Whitney and Bernstein do not
extend to infinite dimensional Banach spaces in general. There seems
to be no comprehensive discussion available in the literature on the
topics dealt with in these notes. During the last three decades many
mathematicians have contributed to various problems on nonlinear
analysis in Banach spaces which lie scattered in various journals. A
substantial part of these contributions concern the unravelling of the
geometric structure of infinite dimensional Banach spaces and the
progress that has been made in applying these results to solve problems

in nonlinear analysis on such spaces.

There are several excellent monographs on differential analysis
in Banach spaces and the related theory of differentiable manifalds
modelled on Banach spaces. In this connection we mention the books by
Abraham and Robbin [ 1], Berger {5], Dieudonné [14], Lang [38] and
Yamamuro [67] . While we refer to some of these contributions, we

minimize overlap with the material in these works.

The nonlinear analysis in infinite dimensional Banach spaces
dealt with in these notes is essentially concerned with functions of
class Ck, i.e., k times continously Fréchet differentiable functions,
for k » 1. In Chapter 1 we recall some basic definitions of smooth
functions on open subsets of Banach spaces, some useful convexity
properties of Banach spaces, the concept of finite representability,
fltraproducts and a few inequalities concerning differentiable functions.

In Chapter 2 we provide a classification of Banach spaces based on

k
the order of differentiability of the norm. We introduce C - , BFk—

and UFk— smooth Banach spaces and discuss their interrelations. A
differential characterization of Hilbert spaces modulo isomorphism
and an isomorphic classification of superreflexive spaces are given.



In Chapter 3 we discuss various results of Bonic and Frampton [9J/
Torunczyk [62] and Wells [64] on smooth partitions of unity. We
conclude the chapter with a nonlinear characterisation of superreflex-
ive spaces and present a few applications of the tharacterization to

differential analysis and approximation theory.

Chapter 4 is mainly concerned with the extensions of the well
known theorems of Bernstein and Whitney and related theorems in the
finite dimensional setting to infinite dimensional Banach spaces. The
work of Aron and Prolla [4], Nachbin (44], Kurzweil (37] and Restrapo
[53] on approximation by differentiable and analytic functions, is
discussed. Some recent results of Moulis [43}and Heble LZS} on simul-
taneous approximations by differentiable functions on certain smooth

Banach spaces are stated.

The volume concludes with an appendix on differentiable manifolds
modelled on Banach spaces, dealing with the diffeomorphism and embedd-
ing theorems of Bessaga [6 ] and Eells-Elworthy [21], and the generali-
sation of Palais of Morse's theorem on the behaviour of a smooth func-
tion in the neighborhood of a nondegenerate critical point to infinite

dimensional Banach spaces.

The first author acknowledges his gratitude to Victor Klee for
suggesting certain problems concerning Ck—norms on Banach spaces and
to him and R.R.Phelps for valuable discussions. The authors express
their thanks to Richard Aron for carefully reading a first version of
the chapters and making valuable suggestions. They are grateful to the
referee for comments and suggestions for improvement. Further they
acknowledge their gratitude for the facilities provided by Cleveland
State University and Dalhousie University in carrying out this project.
The first author wishes to thank Elton Lacey for providing an opportu-
nity to deliver some lectures on the topics dealt with in these notes
in the Banach Space Seminars at Texas A & M University during the
Spring semester of 1981. The second author acknowledges support of
a grant (A 5615) from NSERC (Canada) and also takes this opportunity
to thank the Research School of the Australian National University,
Canberra, for facilities afforded in 1984.

Finally the authors express their appreciation and thanks to the Editors
of the LECTURE NOTES Series for their advice and encouragement.



Chapter 1

Basic Definitions and Geometric Properties

In this introductory chapter we introduce the basic notations and
definitions, and recall certain geometric properties essential to our
discussion.

All Banach spaces considered here are over the real field R. If
(E, || |I|) 4is a Banach space then the conjugate of E 1is denoted by

E*, and || * is the norm conjugate of the norm | |. If E, F

are two Banach spaces then L(E,F) 1is the Banach space of continuous
linear operators on E into F with the supremum norm. The Banach
space of continuous k-linear operators Tk on E into F 1is denoted

by Bk(E,F) with the norm defined by
T8N = sup {]|T(x,, YI| | x, € E Ilx. ]| < 1}
1w | kg € B gl <

where TkE: Bk(E,F). When F 1is the one dimensional space R the
space Bk(E,F) is simply denoted by Bk(E).

1.1 Some Geometric Properties of Banach Spaces

1.1.1 Convexity and smoothness properties

A Banach space (E, || ||) 1is said to be strictly convex if
x,y €E, x#y, and x| = |ly| =1 imly [I%F|| <1.
E 1is uniformly convex, if given any ¢ > 0 there is a §(€) > O,
such that |[x|| = ||yl =1, |lxy| > € imply [XZ|| <1 - s(€).
If x€E, ||x|] =1, E 1is said to be smooth at x, if there is a
unique ¢ € E* with ||2xH = 1, such that g (x) = 1. 2y € EX

is called the support functional for the unit ball U of E at x

and 2;1(1) is the hyperplane of support for U at x. It is well

known that U is smooth at x 1iff



(a) lim Jdlxttyll = [l

= g,(y) exists for all y € E.
t->0

Further the limit in (a) exists iff the limit with x replaced by
Ax, X # 0 exists. Further 8rx = (sign A)gx. The norm functional on

E is said to be differentiable (Fréchet) if for each x # 0 there

exists a linear functional QX_€ * such that
I=+h]|] - [Ix|| - 2,(h)
(b) lim x =
I[bf] -0 |[Bf]

E 1is said to be uniformly smooth if the limit in (a) exists uniformly

for all (x,y), ||x|| = 1= ||ly]|. It is known that E 1is uniformly

smooth if the limit in (b) is uniformly attained for all x, ||x|| = 1.
In the following remark we summarize some well known results con-

cerning the preceeding properties.

1.1.2 Remark

It is well known that if the limit lim JLXtEYHt - =)l - gx(y)
t->0
exists at some x # 0, for all y € E, then g € E¥, and [[e ] = 1.

Further if the dual of a Banach space E 1is smooth (strictly convex)
iff E is strictly convex (smooth). A Banach space (E, || || ) 1is
uniformly convex (uniformly smooth) iff E* is uniformly smooth

(uniformly convex). For these results see, Day [11l].

1.2 Finite representation of a Banach space

A normed linear space E 1is said to be finitely represented in
another normed linear space F in symbols E<<F, if for each € > 0,
and each finite dimensional subspace EO of E there exists a sub-

space F0 of F, depending on EO and €, such that there is an



isomorphism T on E,; onto F, satisfying [[T|| ||T—H|§.l + E.

A useful tool in the theory of finite representation is the concept
of ultraproduct of a normed linear space. .Let S be an infinite set,
and & be a nontrivial (free) ultrafilter on S. If f 1is a bounded
real valued function on S, then lé? f 1is by definition the number,
sup[A|{tex, £(t) > A} € Wj. If (E, || ||) 1is a normed linear
space, and f 1is a bounded E-valued function on S, let
[£] = LéP [[£(t) ]| - It is verified that | | is a seminorm on the
vector space V of bounded E-valued functions on S. The quotient
space of E modulo the kernel of the seminorm | | , equipped with the
quotient norm is called the ultrapower of E with respect to the pair
(S, ) and we denote this here by E(S, ¥ ).

In the discussion to follow the equivalence class determined by a
bounded function £:S - E 1is simply denoted by f. Further for
clarity, we write sometimes {f(s)} € ?.

We summarize here several useful facts concerning ultrapowers.

For a detailed account concerning ultrapowers and their ramifications
in the structure theory of Banach spaces, we refer to Stern [56], and

Krivine [34].

1.2.1 Proposition

The ultrapower E(S, 2 ) of a Banach space E 1is a Banach space.

For subsequent use in our discussions we recall some basic concepts

from [34].

If E 1is a Banach space, and xl,...nﬂlc E, let cb:Rn -+ R be
defined by @(Al,xz,...,xn) =[|i§lkixiﬂ. ¢ is called a n-type associated
with R YRR S Since ¢ 1is absolutely homeogeneous, ¢ is deter-
mined by its values on the set Sz = (O, 0y) € r" sup IAi|=l}.

l<i<n
The set of all functions ¢ associated with n-tuples of points

}2=]’C: E could be equipped with the topology 1 of uniform con-

n
vergence on S_.

{xi



1.2.2 Lemma
Let E be a Banach space, and E(S,ZL) be an ultrapower of E.
~ n .
Let {fi}i=1c E(S, W) and {fi(s)}S€S €fi, 1 <i<n. Let o, @

be the n-types of {fi(s)}T, and {fi}? respectively. Then @S > ¢

following the ultrafilter Z in the topology t of n-types.

Proof
Since the ranges of fi are bounded subsets of E, there is a
number M > 0 such that

IEs() I <™, [II£50ll <M, 1<i<n, s€&S.

From the definition of ultrapowers it follows that

: _ n
(D lim Qs(Al,Az,...,)\n) = @(Al,xz,...,xn) for (Al,Az,...,An) € R,
Further
1.1 1
oAy Xgs e udy) = 0 (AL A5, - u )

< 11Oy - ADE @]

n
< kI Iy -l

L il.

Thus {<1>s}s€_S is an equicontinuous family of functions on the compact
set S:. Thus by Arzela's theorem it follows that %&m ¢S(A1,A2,...,An)=
= W(Al,...,xn) for some continuous function VY on S: + R, uniformly
over SZ. From (1) Y =¢ . Thus 1lim ®S = ¢ uniformly over SZ

The main theorem which establishes the importance of the concept
of ultrapowers of Banach spaces in the theory of finite representation
is the following. Since the proof illustrates a technique we provide

the details here.

1.2.3 Theorem
Let E, F be two Banach spaces. Then E<«<F 1iff E 1is isometric

with a subspace of an ultrapower of F.

Proof

Let E<<F. Let JF be the set of all finite dimensional subspaces



of E. Consider the free ultrafilter ?11 generated by the tails

L €% |L DLO} where L, 1is an arbitrary subspace of E in . Let I

0
be the set of positive integers, and 212 be a free ultrafilter of 1I.

Let Z be the ultrafilter on S =% x I generated by the product

L‘l x 2(2. Let T:E » F(S,2«) be defined by setting T, = TE(X)

if x €L, and Tx = 0 otherwise, where TE is an isomorphism on
L » F such that [|T2| « [[(T®)7!]

1 . . n
<1+ =. Since ||Tx]|| = lim ||T; (x)]],
L n L,med L

»

it follows that ||Tx|| = |[|x|| . We complete the proof by showing that

the ultrapower F(S, 2 )<<F. Let G be a finite dimensional subspace

~ n . [ond
of F(S, ), and {f;}j_1; be a basis for G. Let {fi(s)}s€ s €Ifi,
~
1 <i<n. Since llzr: £ |l| » sup |Ars|, are norms on R", it follows
-7 & L l<i<n
that there exists a constant k such that
~ . n
k IHZAifiHI > 1st:lp |Ai|, for all points (Al,xz,...,xn) € R .
<i<n

Now if g€ > 0 from the preceeding lemma it follows that there is a
set QCS, Q € U such that L lEa 5 I - e £ < €
for all s € Q, and for all (Al,kz,...,xn) €R®. Let T:G -+ F be
defined by T(in%;) = Zkifi(so) where g is a fixed point in Q.
If T(G) = M, it follows that T 1is an isomorphism on G onto M, and

Tl > (T < (L+k€)/(L - keE).

1.2.4 Definition
A Banach space E 1is superreflexive if every Banach space F
finitely represented in E 1is reflexive, James [28]. For an account

of superreflexive spaces see VanDulst [63] and Diestel [12].

1.2.5 Theorem [James and Enflo]

The following statements concerning a Banach space E are equiva-
lent:

(a) E 1is superreflexive.

(b) E 1is isomorphic to a uniformly smooth (uniformly convex)

Banach space F.

(¢) E 1is isomorphic to a Banach space F which is uniformly



smooth and uniformly convex.

For a proof of the theorem we refer to [63].

1.3 Multilinear forms and differential concepts in Banach spaces

1.3.1 Remarks on multilinear forms

If T% is a continuous n-linear form on a Banach space E into
R, we already noted in 1.1 that the norm of ™ is given by

n
% TFE 1|T (Xl’XZ""’Xn)I‘
i

l<i<n
If T% is also symmetric then by the polarization identity,

Alexiewicz and Orlicz [2], it follows that

€,

he~— 3

1 n-

T (% x £ 3 = k- ) (-1 if1 1T“(n y ()
1'*20 %y al e =g * .Zleixi :
l’€é""’ 7 i=
where Tn(h)(n) = Tn(h,h,...,h). Hence it follows that
on 0 on 2
N < S suwp  |TOGox,...,0 | < ST - .0 (A)

l[x][=1
The definition of a polynomial in a real variable may be extended to

n . s . .
Banach spaces. If T is a continuous symmetric n-linear form on a

Banach space E, then Tn(x,x,...,x), usually denoted by Tn(x(n)%
is called a homogeneous polynomial of degree n. A polynomial of
n . .
degree n on a Banach space E 1is a function P(x) = 2 Tl(x(l)),
i

s . =0
where Tl(x(l)) is a homogeneous polynomial of degree i, 1 < i <n.

1.3.2 Definition

If U 1is an open subset of a Banach space E and f 1is a function
on U into a Banach space F then f 1is said to be differentiable
(Fréchet) at x € U if there is a continuous linear operator ’I‘x on

E - F such that
|| £Cxe+h) - £(x) -T, (h) ||

lim
i+ o el

Tx is called the derivative of f at x. If "f 1is differentiable

at all points x € U, we say that f is differentiable in U, and the



map X - TX on U into L(E,F) 1is called the differential of f,
and is denoted by Df. If Df is a continuous map then f 1is called

a Cl—function. f 1is said to be k-times differentiable in U, if

Dk_lf exists and the map Dk'lf:U > Bk—l(E,F) is once differentiable,

th

and in this case the k differential Dkf is a function on U

. k
into B (E,F), the Banach space of continuous k-linear operators on E

F. k

into If D'f is continuous we say f 1is of class Ck. Further

we note that Dkf(x) is a symmetric k-linear operator on E into F.
The usual form of Taylor's theorem in the finite dimensional calculus
extends to infinite dimensions equally well. Thus if f 1is a Ck

map on U into F, and x €U, then if [x, xth] C U,

(&) £(x+h) = £(x) + TL(h) + Ti(h(z))+...+T§(h(k)) + 8 (h)

where (1) T; are continuous symmetric i-linear maps on E into F,

(2) the maps x - T; are continuous on U into Bl(E,F), and

g, (h)
(3) im % =
I[af~0  [|bf|
In (A) above, Ti(h(i)) = j%r fi(x)- h(i), 1 <i <k where fi(x)

th

is the i derivative at x. Further sometimes it is useful to use the

following form (Lagrange formula) of (A).

k-1 1

f(xth) = £ + | < fro ) + (g
i=1 1! 0

1 k-1
(1-s) k (k)
W f (x+sh)ds)h o

Further we have the following converse of Taylor's theorem. If £:U > F

is a continuous mapping such that for each x € U,

i
f(x+h) = £(x) + ] T (h‘'"’) + 6_(h)
i=1 * %

where the maps x *-T; are continuous on U into the space Bl(E,F),

with Ti symmetric for all x € U, 1 <1ic<k, and if Ilex(h)”
) mE
as ||h|| >0, then f is a C'-function on U » F. See [45].

In differential analysis in infinite dimensional Banach spaces it

is extremely useful to introduce weaker as well as stronger differen-
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tiability of a function than the customary Ck-differentiability as
already done here above. We introduce few such concepts here, as they

are useful in the discussion to follow.

1.3.3 Definition

Let U be an open subset of a Banach space E and f be a
continuous mapping on U into a Banach space F. If x € U, then f
is said to be k-times directionally differentiable at x if there are
continuous symmetric i-linear transformations Ti, 1l <i<k on E
into F such that for each h € E

6, (th)
(1) f(x+th) = f(x) + z t h(l>) + 0 (th) where H X ]|->O as t-+0.
|t]

It is verified that the i-linear transformations {T;},l < i <k, are
uniquely determined. £ 1is said to be k-times Fréchet differentiable

(F-differentiable) if the limit in (1) is uniform over the unit sphere,

Sg = {hfh € E, ||| =1} of E i.e. given € >0 there is a
§ > 0 independent of h €S, such that |l (th)| < € |t]k, if
[t] < 8. £ 1is said to be k-times directionally (k-times Fréchet)

differentiable over the set U if f 1is k-times directionally
(k-times Fréchet) differentiable over U. f 1is said to be uniformly

k-times Fréchet differentiable over a set PC U if for each xe€ P

(2) £(xt+h) = £(x) + z i) + 6 () where (11}, 1 < <k
i=1
I, (B)]]
are as described above, and lim —————E——— 0 uniformly for x & P.
[[hf[~0 [|h

If f is k-times Fréchet differentiable at all x € P, then f 1is
said to be boundedly k-times Fréchet differentiable over P if
k
sup [|TX[| < w.
XEP X
The following proposition follows from the definitions, and Taylor's

theorem and its converse.

1.3.4 Proposition

If U 1is an open subset of a Banach space E, and f 1is k-times
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Fréchet differentiable function on U into a Banach space F then f
is k-times directionally differentiable. Further f is a Ck—mapping
iff the mappings x -+ Ti are continuous.

Before concluding the introductory chapter we recall two useful

results from differential analysis of functions of a real variable.

1.3.5 Markov's inequality

Let P be a polynomial of degree n in a real variable. If
a < b are two real numbers, then
) n2
a;l;gb IP' ()| < {poay— Sup |P(t) |

1.3.6 1Inequalities for the derivatives of a function

If f 1is k-times continuously differentiable real valued function

on an open interval J]a,b[C R and if sup [£(e) | = My,
t€ja,b[
sup Ifk(t)l = M, then
t€]a,b[
k-1
k-1 8 (b+a)
sup £ ()| < — T Mt T M
t€la,b[ (b-a) 0 "

For the inequalities in 1.3.5 and 1.3.6, see Todd [60], and

Dieudomné [14].



Chapter 2

Smoothness Classification of Banach Spaces

In this chapter we discuss various differentiability properties
of the norm in a Banach space. We are primarily interested in higher

order differentiability of the norm.
2.1 Differentiability properties of norms
2.1.1 Definition

A Banach space (E, || ||) 1is said to be DX-smooth (Fk-smooth)
at a point x € E, x # 0, if the || || is k-times directionally differ-
entiable at x (k-times Fréchet differentiable at x). E is Dk—smooth

(Fk—smooth) if it is Dksmooth at x (Fk-smooth at x) for all x # 0.

2.1.2 Remark
It follows from the definitions that if E 1is Fk—smooth then

it is Dk-smooth.

2.1.3 Proposition

k . . .
Let E be D‘-smooth at x, and (%) ||x+ttyl|] =||x|| + I tlT;(y(l))+
=
+ ex(ty), y € E, be the expansion assured by the Dk—smoothness at x.
Then .
; . I
(1) E is Dk—smooth at ix, X # 0, and TAXl = ii%f?;%%— T;,
(2 (@) T2(y,y) >0 for all y€E, and
(ii) if Ti is considered as a map on E » E*, range
Ti(: x*
Proof

(1) follows at once by noting that || ix+ty]| [x] |xteyll =

k .. .
= Azl + 1 (%)IT;(y(l)) + 8 (%?)}, and for a fixed A, X # 0,
i=1 x

exx(ty)
——x—| >0 as t~>0.
t
To prove (2) enough to verify that Ti(y,y) >0, if ||x]| =1,

for all y € E, by the preceding part of the pfoposition. Let z € E,



