~ Maurice Bqunoo“ghe-(Ed.) |

o Logic Based
Program Synthesis
and Transformation

13th International Symposium, LOPSTR 2003
Uppsala, Sweden, August 2003
Revised Selected Papers

LNCS 3018

@)/ Springer

4)) Maurice Bruynooghe (Ed.)

"~ Logic Based

Program Synthesis
and Transformation

13th International Symposium, LOPSTR 2003
Uppsala, Sweden, August 25-27, 2003
Revised Selected Papers

I

E200404152

®):; Springer

Volume Editor

Maurice Bruynooghe

Katholieke Universiteit Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium

E-mail: Maurice.Bruynooghe @cs.kuleuven.ac.be

Library of Congress Control Number: 2004107503

CR Subject Classification (1998): F.3.1, D.1.1,D.1.6, 1.2.2, F4.1

ISSN 0302-9743
ISBN 3-540-22174-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer- Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

(© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11010531 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3018

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo

Lecture Notes in Computer Science

For information about Vols. 1-2987

please contact your bookseller or Springer-Verlag

Vol. 3093: S.K. Katsikas, S. Gritzalis, J. Lopez (Eds.),
Public Key Infrastructure. XIII, 380 pages. 2004.

Vol. 3092: J. Eckstein, H. Baumeister (Eds.), Extreme Pro-
gramming and Agile Processes in Software Engineering.
XVI, 358 pages. 2004.

Vol. 3091: V. van Oostrom (Ed.), Rewriting Techniques
and Applications. X, 313 pages. 2004.

Vol. 3089: M. Jakobsson, M. Yung, J. Zhou (Eds.), Applied
Cryptography and Network Security. XIV, 510 pages.
2004.

Vol. 3085: S. Berardi, M. Coppo, F. Damiani (Eds.), Types
for Proofs and Programs. X, 409 pages. 2004.

Vol. 3084: A. Persson, J. Stirna (Eds.), Advanced Infor-
mation Systems Engineering. XIV, 596 pages. 2004.

Vol. 3083: W. Emmerich, A.L. Wolf (Eds.), Component
Deployment. X, 249 pages. 2004.

Vol. 3078: S. Cotin, D.N. Metaxas (Eds.), Medical Simu-
lation. XVI, 296 pages. 2004.

Vol. 3077: F. Roli, J. Kittler, T. Windeatt (Eds.), Multiple
Classifier Systems. XII, 386 pages. 2004.

Vol. 3076: D. Buell (Ed.), Algorithmic Number Theory.
XI, 451 pages. 2004.

Vol. 3074: B. Kuijpers, P. Revesz (Eds.), Constraint
Databases and Applications. XII, 181 pages. 2004.

Vol. 3073: H. Chen, R. Moore, D.D. Zeng, J. Leavitt
(Eds.), Intelligence and Security Informatics. XV, 536
pages. 2004.

Vol. 3070: L. Rutkowski, J. Siekmann, R. Tadeusiewicz,
L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004. XXV, 1208 pages. 2004. (Sub-
series LNAI).

Vol. 3068: E. André, L. Dybkj\ae r, W. Minker, P. Heis-
terkamp (Eds.), Affective Dialogue Systems. XII, 324
pages. 2004. (Subseries LNAI).

Vol. 3066: S. Tsumoto, R. S lowiriski, J. Komorowski, J.W.
Grzymala-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004. (Subseries LNAI).

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic in
Computer Science. X, 275 pages. 2004. (Subseries LNAI).

Vol. 3064: D. Bienstock, G. Nemhauser (Eds.), Integer
Programming and Combinatorial Optimization. XI, 445
pages. 2004.

Vol. 3063: A. Llamosi, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3062: J.L. Pfaltz, M. Nagl, B. Bohlen (Eds.), Applica-
tions of Graph Transformations with Industrial Relevance.
XV, 500 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAI).

Vol. 3059: C.C.Ribeiro, S.L. Martins (Eds.), Experimental
and Efficient Algorithms. X, 586 pages. 2004.

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3056: H. Dai, R. Srikant, C. Zhang (Eds.), Advances in
Knowledge Discovery and Data Mining. XIX, 713 pages.
2004. (Subseries LNAI).

Vol. 3054: 1. Crnkovic, J.A. Stafford, H.W. Schmidt, K.
Wallnau (Eds.), Component-Based Software Engineering.
X1, 311 pages. 2004.

Vol. 3053: C. Bussler, J. Davies, D. Fensel, R. Studer
(Eds.), The Semantic Web: Research and Applications.
XIII, 490 pages. 2004.

Vol. 3052: W. Zimmermann, B. Thalheim (Eds.), Abstract
State Machines 2004. Advances in Theory and Practice.
XII, 235 pages. 2004.

Vol. 3051: R. Berghammer, B. Méller, G. Struth (Eds.),
Relational and Kleene-Algebraic Methods in Computer
Science. X, 279 pages. 2004.

Vol. 3050: J. Domingo-Ferrer, V. Torra (Eds.), Privacy in
Statistical Databases. IX, 367 pages. 2004.

Vol. 3047: F. Oquendo, B. Warboys, R. Morrison (Eds.),
Software Architecture. X, 279 pages. 2004.

Vol. 3046: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1016 pages. 2004.

Vol. 3045: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1040 pages. 2004.

Vol. 3044: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1140 pages. 2004.

Vol. 3043: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1180 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, I.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004.

Vol. 3039: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1271 pages. 2004.

Vol. 3038: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1311 pages. 2004.

Vol. 3037: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LX VI,
745 pages. 2004.

Vol. 3036: M. Bubak, G.D.v. Albada, P.M. Sloot, J.J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
713 pages. 2004.

%ol. 3035: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XH, 326 pages. 2004. (Sub-
series LNAI).

.. Vol. 3034: J. Favela, E. Menasalvas, E. Chévez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXX VIII, 1076 pages.
2004.

\pl. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.

Vol. 3031: A. Butz, A. Kriiger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3030: P. Giorgini, B. Henderson-Sellers, M. Winikoff
(Eds.), Agent-Oriented Information Systems. XIV, 207
pages. 2004. (Subseries LNAI).

Vol. 3029: B. Orchard, C. Yang, M. Ali (Eds.), Innovations
in Applied Artificial Intelligence. XXI, 1272 pages. 2004.
(Subseries LNAI).

Vol. 3028: D. Neuenschwander, Probabilistic and Statis-
tical Methods in Cryptology. X, 158 pages. 2004.

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. X1, 628 pages. 2004.

Nol. 3026: C. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3024: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3023: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 611 pages. 2004.
Vol. 3022: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XX VIII, 621 pages. 2004.
Vol. 3021: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 633 pages. 2004.
Vol. 3019: R. Wyrzykowski, J.J. Dongarra, M. Paprzy-

cki, J. Wasniewski (Eds.), Parallel Processing and Applied
Mathematics. XIX, 1174 pages. 2004.

Vol. 3018: M. Bruynooghe (Ed.), Logic Based Program
Synthesis and Transformation. X, 233 pages. 2004.

Vol. 3016: C. Lengauer, D. Batory, C. Consel, M. Odersky
(Eds.), Domain-Specific Program Generation. XII, 325
pages. 2004.

Vol. 3015: C. Barakat, I. Pratt (Eds.), Passive and Active
Network Measurement. XI, 300 pages. 2004.

Vol. 3014: F. van der Linden (Ed.), Software Product-
Family Engineering. IX, 486 pages. 2004.

Vol. 3012: K. Kurumatani, S.-H. Chen, A. Ohuchi (Eds.),

Multi-Agnets for Mass User Support. X, 217 pages. 2004.
(Subseries LNAI).

Vol. 3011: J.-C. Régin, M. Rueher (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 415 pages. 2004.

Vol. 3010: K.R. Apt, F. Fages, F. Rossi, P. Szeredi, J.
Vincza (Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004. (Subseries LNAI).

Vol. 3009: F. Bomarius, H. Iida (Eds.), Product Focused
Software Process Improvement. XIV, 584 pages. 2004.

Vol. 3008: S. Heuel, Uncertain Projective Geometry.
XVII, 205 pages. 2004.

Vol. 3007: J.X. Yu, X. Lin, H. Lu, Y. Zbang (Eds.), Ad-
vanced Web Technologies and Applications. XXII, 936
pages. 2004.

Vol. 3006: M. Matsui, R. Zuccherato (Eds.), Selected Ar-
eas in Cryptography. XI, 361 pages. 2004.

Vol. 3005: G.R. Raidl, S. Cagnoni, J. Branke, D.W. Corne,
R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G.D. Smith, G. Squillero (Eds.), Ap-
plications of Evolutionary Computing. XVII, 562 pages.
2004.

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-
ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410
pages. 2004.

Vol. 3002: D.L. Hicks (Ed.), Metainformatics. X, 213
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XVII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. XI, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Vol. 2997: S. McDonald, J. Tait (Eds.), Advances in Infor-
mation Retrieval. XIII, 427 pages. 2004.

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. X VI,
658 pages. 2004.

Vol. 2995: C. Jensen, S. Poslad, T. Dimitrakos (Eds.), Trust
Management. XIII, 377 pages. 2004.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004. (Subseries LNBI).

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Bohm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2990: J. Leite, A. Omicini, L. Sterling, P. Torroni
(Eds.), Declarative Agent Languages and Technologies.
XII, 281 pages. 2004. (Subseries LNAI).

Vol. 2989: S. Graf, L. Mounier (Eds.), Model Checking
Software. X, 309 pages. 2004.

Vol. 2988: K. Jensen, A. Podelski (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. XIV,
608 pages. 2004.

Preface

This volume contains selected papers from LOPSTR 2003, the 13th Interna-
tional Symposium on Logic-Based Program Synthesis and Transformation. The
LOPSTR series is devoted to research in logic-based program development. Par-
ticular topics of interest are specification, synthesis, verification, transformation,
specialization, analysis, optimization, composition, reuse, component-based soft-
ware development, agent-based software development, software architectures,
design patterns and frameworks, program refinement and logics for refinement,
proofs as programs, and applications and tools.

LOPSTR 2003 took place at the University of Uppsala from August 25 to
August 27 as part of PLI 2003 (Principles, Logics, and Implementations of High-
Level Programming Languages). PLI was an ACM-organized confederation of
conferences and workshops with ICFP 2003 (ACM-SIGPLAN International Con-
ference on Functional Programming) and PPDP 2003 (ACM-SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Programming) as the
main events. The LOPSTR community profited from the shared lectures of the
invited speakers, and the active scientific discussions enabled by the co-location.

LOPSTR 2003 was the thirteenth in a series of events. Past events were held
in Manchester, UK (1991, 1992, 1998), Louvain-la-Neuve, Belgium (1993), Pisa,
Italy (1994), Arnhem, The Netherlands (1995), Stockholm, Sweden (1996), Leu-
ven, Belgium (1997), Venice, Italy (1999), London, UK (2000), Paphos, Cyprus
(2001), and Madrid, Spain (2002).

I wish to thank the PLI Organizing Committee and especially Kostis Sago-
nas for welcoming LOPSTR as part of PLI 2003 and taking care of the many
organizational matters. Special thanks go towards Roland Bol for taking care of
LOPSTR specific matters in Uppsala, towards Wim Vanhoof for assistance with
the Program Chair work, and towards Qiang Fu for the help in preparing this
volume. The sponsorship of the Association for Logic Programming (ALP) is
gratefully acknowledged, and the LNCS team of Springer-Verlag is thanked for
publishing this volume with the selected and revised papers. Last but not least,
authors, PC members and additional reviewers are thanked for all the work that
went into preparing this selection of revised papers.

Out of 32 submissions, the program committee selected 18 works for presen-
tation; 16 were revised and submitted for this volume. The program committee
selected 12 of them for inclusion in this volume. In addition, a paper based on
the invited talk of Michael Leuschel is included as well as some abstracts based
on the other papers presented at LOPSTR.

The preproceedings were printed in Uppsala and are also available at
http://www.cs.kuleuven.ac.be/ dtai/lopstr03/, a page with all information about
LOPSTR 2003.

March 2004 Maurice Bruynooghe

Program Chair

Maurice Bruynooghe

Local Chair

Roland Bol

Program Committee

Elvira Albert
Roland Bol

Maurice Bruynooghe
Michael Butler

Jim Caldwell
Wiodek Drabent

Tom Ellman
Norbert E. Fuchs
Robert Gliick
Gopal Gupta

Ian Hayes
Catholijn Jonker
Andy King
Mario Ornaghi
Maurizio Proietti
Germéan Puebla
Julian Richardson
Olivier Ridoux
Sabina Rossi
Wim Vanhoof

Local Organizers

Roland Bol
Kostis Sagonas

Katholieke Universiteit Leuven, Belgium

Uppsala University, Sweden

Complutense University of Madrid, Spain
Uppsala University, Sweden

Katholieke Universiteit Leuven, Belgium
University of Southampton, UK
University of Wyoming, USA

Polish Academy of Sciences, Poland
Linkdping University, Sweden

Vassar College, USA

University of Zurich, Switzerland
Waseda University, Japan

University of Texas at Dallas, USA
University of Queensland, Australia

Vrije Universiteit Amsterdam, The Netherlands

University of Kent, UK
Université degli Studi di Milano, Italy
IASI-CNR, Rome, Italy
Technical University of Madrid, Spain

RIACS/NASA Ames Research Center, USA

University of Rennes 1/IRISA, France
Universita Ca’ Foscari di Venezia, Italy
University of Namur, Belgium

VIII Organization

Additional Referees

José Alferes
Olaf Chitil
Nicoletta Cocco
Dario Colazzo
John Cowles
Agostino Dovier
Thomas Eiter
Samir Genaim
Silvio Ghilardi
Roberta Gori
Stefan Gruner
Hai-Feng Guo
Angel Herranz
Juliana Kiister-Filipe
Kung-Kiu Lau

Lunjin Lu

Alberto Momigliano
Alberto Pettorossi
Isabel Pita

Enrico Pontelli
Alessandra Raffaeté
Konstantinos Sagonas
Alexander Serebrenik
Jan-Georg Smaus
Colin Snook

Vera Stebletsova,
Bert Van Nuffelen
Pedro Vasconcelos
German Vidal

Table of Contents

Invited Talk

Inductive Theorem Proving by Program Specialisation:
Generating Proofs for Isabelle Using Ecce 1
Helko Lehmann and Michael Leuschel

Specification and Synthesis

Predicate Synthesis from Inductive Proof Attempt of Faulty Conjectures.. 20
Francis Alexandre, Khaled Bsaies, and Moussa Demba

Correct OO Systems in Computational Logic 34
Kung-Kiu Lau and Mario Ornaghi

Specification and Synthesis of Hybrid Automata
for Physics-Based Animation i 54
Thomas Ellman

Adding Concrete Syntax to a Prolog-Based Program Synthesis System
(Extended Abstract) 56
Bernd Fischer and Felco Visser

Verification

Formal Development and Verification of Approximation Algorithms
Using Auxiliary Variables 59
Rudolf Berghammer and Markus Muller-Olm

Formal Reasoning about Efficient Data Structures:

A Case Study in ACL2 i 75
José Luis Ruiz-Reina, José Antonio Alonso-Jiménez,
Maria José Hidalgo, and Francisco Jesus Martin-Mateos

Analysis

A Program Transformation for Backwards Analysis of Logic Programs 92
John P. Gallagher

An Efficient Staging Algorithm for Binding-Time Analysis 106
Takuma Murakami, Zhenjiang Hu, Kazuhiko Kakehi,
and Masato Takeichi

Proving Termination with Adornments 108
Alexander Serebrenik and Danny De Schreye

X Table of Contents

Transformation and Specialisation

Constructively Characterizing Fold and Unfold 110
Tjark Weber and James Caldwell

Deterministic Higher-Order Patterns for Program Transformation 128
Tetsuo Yokoyama, Zhenjiang Hu, and Masato Takeichi

From Interpreter to Logic Engine by Defunctionalization 143
Dariusz Biernacki and Olivier Danvy

Linearization by Program Transformation 160
Sandra Alves and Mdrio Florido

Continuation Semantics as Horn Clausesooouoonoon .. 176
Qian Wang and Gopal Gupta

Constraints

Simplification of Database Integrity Constraints Revisited:
A Transformational Approach 178
Henning Christiansen and Davide Martinenghi

Integration and Optimization of Rule-Based Constraint Solvers 198
Slim Abdennadher and Thom Frihwirth

Introducing ESRA, a Relational Language
for Modelling Combinatorial Problems 214
Pierre Flener, Justin Pearson, and Magnus Agren

Author Index 233

Inductive Theorem Proving
by Program Specialisation:
Generating Proofs for Isabelle Using Ecce

Helko Lehmann and Michael Leuschel

Department of Electronics and Computer Science
University of Southampton
Highfield, Southampton, SO17 1BJ, UK
{hel99r,mal}@ecs.soton.ac.uk

Abstract. In this paper we discuss the similarities between program
specialisation and inductive theorem proving, and then show how pro-
gram specialisation can be used to perform inductive theorem proving.
We then study this relationship in more detail for a particular class of
problems (verifying infinite state Petri nets) in order to establish a clear
link between program specialisation and inductive theorem proving. In
particular, we use the program specialiser ECCE to generate specifica-
tions, hypotheses and proof scripts in the theory format of the proof
assistant ISABELLE. Then, in many cases, ISABELLE can automatically
execute these proof scripts and thereby verify the soundness of ECCE’s
verification process and of the correspondence between program special-
isation and inductive theorem proving.

1 Introduction

Program specialisation aims at improving the overall performance of programs
by performing source to source transformations. A common approach, known
as partial evaluation [8], is to exploit partial knowledge about the input by
precomputing parts of the program. In the context of logic programming, par-
tial evaluation is sometimes called partial deduction and is achieved through a
well-automated application of parts of the Burstall-Darlington unfold /fold trans-
formation framework.

The relation between program specialisation and theorem proving has already
been raised several times in the literature [23,7,24,21]. In this paper we will
examine in closer detail the relationship between partial deduction and inductive
theorem proving.

Partial Deduction. At the heart of any technique for partial deduction is a
program analysis phase: Given a program P and an (atomic) goal < A, one
aims to analyse the computation-flow of P for all instances «+— A8 of «+ A. Based
on the results of this analysis, new program clauses are synthesised.

M. Bruynooghe (Ed.): LOPSTR 2004, LNCS 3018, pp. 1-19, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Helko Lehmann and Michael Leuschel

In partial deduction, such an analysis is based on the construction of finite
and usually incomplete!, SLD(NF)-trees. More specifically, following the foun-
dations for partial deduction developed in [17] (see also [12] for an up-to-date
overview), one constructs

— a finite set of atoms S = {41,...,4,}, and
— a finite (possibly incomplete) SLD(NF)-tree 7; for each (P U {« 4;}),

such that:

1) the atom A in the initial goal +— A is an instance of some A; in S, and
2) for each goal <~ By, ..., By labelling a leaf of some SLD(NF)-tree 7;, each
B; is an instance of some A; in S.

The construction of the set S is referred to as the global control, while the
construction of the trees 7; are called the local control. The conditions 1) and
2) are referred to as closedness and ensure that together the SLD(NF)-trees
T1,...,7Tn form a complete description of all possible computations that can
occur for all concrete instances +— A# of the goal of interest. F inally, a code
generation phase produces a resultant clause for each non-failing branch of each
tree, which synthesises the computation in that branch. This phase also typically
generates a fresh predicate name for every element of the set S and rename the
clauses in an appropriate manner.

The approach has been generalised to specialising a set of conjunctions rather
than just atoms in [4]. The basic principle remains roughly as outlined above;
the only difference being that we have a set S of conjunctions rather than atoms
and that the closedness condition becomes slightly more involved to allow the
leaf goals < By, ..., By to be split up into sub-conjunctions. This technique has
been implemented within the program specialiser ECCE [15,4] . An overview of
control techniques that are used in partial deduction and conjunctive partial
deduction in general and by ECCE in particular, such as determinacy, homeo-
morphic embedding, or characteristic trees, can be found in [12].

A Small Example. Let us illustrate conjunctive partial deduction on the fol-
lowing simple program.

even(0).
even(s(X)) :- odd(X).
odd(s(X)) :- even(X).

Suppose we only wish to use this program for queries of the form «+ C
with C' = even(X) A odd(X) Conjunctive partial deduction can then specialise
this program by constructing the incomplete SLD-tree for «+ C depicted in

! As usual in partial deduction, we assume that the notion of an SLD-tree is generalised
[17] to allow it to be incomplete: at any point we may decide not to select any atom
and terminate a derivation.

Inductive Theorem Proving by Program Specialisation 3

Q_dQ(QJ odd(Y),odd(s(Y)) : instance

i (after re-ordering)
’

o
fail odd(Y),even(Y)

Fig. 1. Specialisation of even-odd

Fig. 1. The set S mentioned above would simply be S = {C}. Supposing that
we produce the new predicate name even_odd for C, the specialised program we
obtain, is:

even_odd(s(X)) :- even_odd(X).

It is immediately obvious that even_odd(X) will never succeed, and hence
that no number is even and odd at the same time. The ECCE system [15, 4]
basically produces the above result? and can also automatically infer the failure
of even_odd(X) by applying its bottom up more specific program construction
phase [18] in the post-processing.

Inductive Theorem Proving. Now, the above result corresponds to an induc-
tive proof showing that no number can be both even and odd. The left branch of
Fig. 1 corresponds to examining the base case X = 0, while the right branch cor-
responds to the induction step whereby even(s(Y)), odd(s(Y)) is rewritten into
the equivalent odd(Y'), even(Y) so that the induction hypothesis can be applied.

In a sense the conjunctive partial deduction has identified a working induction
schema and the bottom-up propagation [18] has performed the induction proper.
This highlights a similarity between partial deduction and inductive theorem
proving. Indeed, in the induction step of an inductive proof one tries to transform
the induction assumption(s) for n+ 1 using basic inference rules so as to be able
to apply the induction hypothese(s) and complete the proof. In partial deduction,
one tries to transform the atoms in A (or conjunctions for conjunctive partial
deduction) by unfolding so as to be able to “fold” back all leaves. The set of
atoms A thus plays the role of the induction hypotheses and resolution the role
of classical theorem proving steps. In summary,

— there is a striking similarity between the control problems of partial deduc-
tion and inductive theorem proving. The problem of ensuring A-closedness is
basically the same as finding induction hypotheses where the induction “goes
through.” Many control techniques have been developed in either camp (e.g.,
[1] for inductive theorem proving) and cross-fertilisation might be possible.

2 Using the default settings, ECCE produces a slightly bigger specialised program be-
cause it does not re-order atoms by default. But the overall result is the same.

4 Helko Lehmann and Michael Leuschel

— if basic resolution steps correspond to logical inference rules one may be able
to perform inductive theorem proving directly by partial deduction.
The only difference is that unfolding steps are not guaranteed to decrease
the induction parameter, so program specialisation is only guaranteed to
perform valid inductive theorem proving if the predicates to be specialised
are inductively defined.

A More Complicated Example. Let us now have a look at a slightly more
involved example. The following is a simple theory expressed in the proof as-
sistant ISABELLE [19]. (We will provide more details about ISABELLE later in
the paper.) The theory defines a datatype for binary trees and then defines the
function mirror which simply produces the mirror image of tree (i.e., reversing
left and right children for all nodes). We then define a lemma stating that ap-
plying mirror twice produces the same result and then instruct Isabelle to use
induction on the tree in order to show this lemma.

theory ToyTree = PreList:

datatype ’a tree = Tip oo

| Node "’a tree" ’a "’a tree"
consts mirror :: "’a tree => ’a tree"
primrec

"mirror([]) = [1"

"mirror((Node 1s x rs)) = Node (mirror(rs)) x (mirror(ls))"
lemma mirror_mirror [simp]l: "mirror(mirror(xs)) = xs"
apply (induct_tac xs)

Loading this theory int ISABELLE results in the following output:

proof (prove): step 1
fixed variables: xs

goal (lemma (mirror_mirror), 2 subgoals):
1. mirror (mirror []1) = []
2. !!treel a tree2.
[| mirror (mirror treel) = treel; mirror (mirror tree2) = tree2 |]
==> mirror (mirror (Node treel a tree2)) = Node treel a tree2

It is now possible to use ISABELLE to prove this lemma, by interactively
performing the required rewriting steps and twice applying the induction hy-
pothesis?.

Let us now try to achieve the same result using program specialisation. First,
we have to encode the mirror function and the lemma as a logic program:

mirror (tip,tip).
mirror(tree(L,N,R),tree(RR,N,RL)) :- mirror(L,RL), mirror(R,RR).
lemma(X,R) :- mirror(X,Z),mirror(Z,R).

3 E.g., first calling the simplifier apply(simp) and then the automatic prover
apply (auto) will perform the required proof steps.

Inductive Theorem Proving by Program Specialisation 5

mirror_conj__2(A,C) == }
{ mirror(A,B),
! .‘,\\... = s —

lemma__1(AB)==}
{rr(AB)]

mirror(A,B),
| mitror(B.C

mirror(A,B),
| mirror(C,D),
{ mirror(tree(D.E J

{ mirror(A,B), |
mirror(C,D), |
| mirror(D,E), |
] B.F

Fig. 2. ECCE specialisation tree for mirror

Now, one would like to be able to infer that for all valid trees the the second
argument of lemma must be identical to the first argument. Surprisingly this
is exactly what we obtain when we specialise the above program for the call
lemma(X,R) using the ECCE program specialiser (with the most specific version
[18] postprocessing enabled):

/* Transformation time: 130 ms */
/* Specialised Predicates:
lemma__1(A,B) :- lemma(A,B).

mirror_conj__2(A,B) :- mirror(A,C1), mirror(Ci,B). */
lemma(A,A) :- mirror_conj__2(A,A).
lemma__1(A,A) :- mirror_conj__2(A,A).

mirror_conj__2(tip,tip).
mirror_conj__2(tree(A,B,C),tree(A,B,C)) :-
mirror_conj__2(A,A), mirror_conj__2(C,C).

Again, ECCE has managed to rewrite the lemma in such a way that the
induction hypothesis could be applied (in this case it was applied twice as can be
seen from the two instances of mirror_conj__2 in the last clause of the specialised
program). The specialisation tree produced by ECCE can be seen in Fig. 2. The
dashed arrows indicate a descendance at the global control level (see, e.g., [12]),
whereas the solid arrows indicate unfolding steps. By carefully inspecting the
proof trace of ISABELLE and the specialisation tree of ECCE it turns out that
there is a one-to-one correspondence between the steps performed by Isabelle
and by ECCE.

An obvious question is now whether there is a systematic way to exploit this
correspondence? In the next sections we show how ECCE can be used to perform
inductive theorem proving as applied to verification tasks and how the special-
isation trees produced by ECCE can be automatically translated into induction
schemas for the proof assistant Isabelle [19].

