

PARALLEL AND DISTRIBUTED
DISCRETE EVENT SIMULATION

L LR

Nova Science Publishers, Inc.
New York

Senior Editors: Susan Boriotti and Donna Dennis

Coordinating Editor: Tatiana Shohov

Office Manager: Annette Hellinger

Graphics: Wanda Serrano

Editorial Production: Jennifer Vogt, Matthew Kozlowski, Jonathan Rose,
Ron Doda and Maya Columbus

Circulation: Ave Maria Gonzalez, Indah Becker and Vladimir Klestov

Communications and Acquisitions: Serge P. Shohov

Marketing: Cathy DeGregory

Library of Congress Cataloging-in-Publication Data
Available upon request.
ISBN 1-59033-377-2

Copyright © 2002 by Nova Science Publishers, Inc.
400 Oser Ave, Suite 1600
Hauppauge, New York 11788-3619
Tele. 631-231-7269 Fax 631-231-8175
e-mail: Novascience@earthlink.net
Web Site: http://www.novapubishers.com

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system or transmitted in any form or by any means: electronic, electrostatic, magnetic,
tape, mechanical photocopying, recording or otherwise without permission from the
publishers.

The authors and publisher have taken care in preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for any
errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of information contained in this book.

This publication is designed to provide accurate and authoritative information
with regard to the subject matter covered herein. It is sold with the clear understanding
that the publisher is not engaged in rendering legal or any other professional services.
If legal or any other expert assistance is required, the services of a competent person
should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY
ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND
A COMMITTEE OF PUBLISHERS.

Printed in the United States of America

PARALLEL AND DISTRIBUTED
DISCRETE EVENT SIMULATION

APPLICATIONS OF PARALLEL AND DISTRIBUTED
DISCRETE EVENT SIMULATION

CARL TROPPER

Discrete-event simulation has long been an integral part of the design process
of complex engineering systems and the modelling of natural phenomena. Many
of the systems which we seek to understand or control can be modelled as digital
systems. In a digital model, we view the system at discrete instants of time, in
effect taking snapshots of the system at these intstants. For example, in a
computer network simulation an event can be the sending of a message from one
node to another node while in a VLSI logic simulation, the arrival of a signal at
a gate may be viewed as an event.

Each event in a discrete-event simulation has a timestamp associated with
it. When an event is processed, it is possible that new events are generated
as a consequence of this processing. These new events have larger timestamps,
obtained by adding a simulation time advance to the timestamp of the event
which it had prior to processing. The events in the simulation are stored in a
heap and are processed in order of the lowest timestamp first.

Digital systems such as computer systems are naturally susceptible to this
approach. However, a variety of other systems may also be modelled this way.
These inclued transportation systems such as air-traffic control systems, epi-
demological models such as the spreading of a virus, and military war-gaming
models.

As the systems and phenomena we want to model increase in size and com-
plexity, the memory demands of these simulations increase and it becomes in-
creasingly difficult to obtain acceptible execution times. The circuits which we
want to simulate now contain hundreds of millions of gates. A detailed sim-
ulation of the Internet would make inordinate demands on a workstation. In
order to accomodate the grwoing need for the simulation of larger models, it
became necessary to make use of distributed and parallel computer systems to
execute the simulations. In the early 90’s parallel machines were made use of
while more recently the use of clusters of workstations (Beowulf, Myrinet) are
utilized as they represent a more cost-effective approach then parallel machines.
In addition, shared memory multiprocessors are now much more cost-effective.

Like any other distributed program, a distributed simulation is composed of
processes which communicate with one another. The communication may occur
via shared memory or via message passing. The processes in a distributed simu-
lation are each intended to simulate a portion of the system being modelled and
are referred to as Logical Processes (LPs). An LP creates events, sends events
to other LPs and receives events from other LPs in the course of a simulation.
Associated with each LP are input queues used to store messages from other
LPs.

The advance of time in a distributed simulation poses an intriguing problem
because of its inherant lack of global memory. The events of a distributed

viii C. Tropper

simulation are spread among the processors and consequently time is advanced in
each process independantly of the other processes. This is accomplished via the
notion of Local Simulation Time (LST) which is maintained by each LP. When
an event is processed at an LP, the LST takes on the value of its timestamp.
The LP processes events from its input queues by selecting the event bearing
the smallest timestamp from all of its queues.

The treatment of time in a distributed system is of fundamental importance
to the understanding and building of distributed systems. [16] contains a dis-
cussion of the nature of time in a distributed system for the interested reader.
It was necessary to develop synchyronization strategies for the distributed and
parallel programs which execute distributed simulations. As mentioned beﬁ)re,
in a uniprocessor events are stored in a heap and simulated in the order of the
smallest timestamp first. Since the events of a distributed simulation are spread
among the processors it is possible to execute events out of their correct order.
This happens if an event with a smaller timestamp then an event which has
already been processed arrives at a processor from another processor. In a mili-
tary simulation, it matters in which order the events “aim the gun” and “fire the
gun” are executed. The central problem of Distributed simulation is the develop-
ment of synchronization algorithms which are capable of maintaining causality
and which do so with minimal overhead. The interested reader should consult
the proceedings of the IEEE Workshop on Parallel and Distributed Simulation
(PADS) and a recent book which describes the field [10].

Two primary approaches to synchronization algorithms have been devel-
oped, the conservative and optimistic classes of algorithms. A conservative al-
gorithm is characterized by its blocking behavior. In a conservative simulation,
if one of the input queues at an LP is empty the LP blocks awaiting a message
from another LP. This behavior exacts a price, however, in the form of increased
execution time and the possible formation of deadlocks. A deadlock forms if a
group of LPs is arranged in the form of a cycle such that each of the LPs is
awaiting a message from its predecessor in the cycle. More generally, a deadlock
occurs if the LPs are arranged in the form of a knot. Hence it becomes necessary
to either find means to avoid deadlocks or to detect and break them. There are
a plethora of algorithms for each approach. We describe several algorithms.

In the null message approach [9], each time an LP sends a message to a
neighboring LP, it also sends a message (the null message) to its other neigh-
bors containing the timestamp of the message, thereby causing the neighbors to
advance their LST’s. As a consequence, all of the LPs are aware of the earliest
simulation time that a message can arrive at an empty input queue. The LP
can use this information to avoid blocking by comparing the smallest timestamp
in each of its input queues to this value. If the smallest timestamp in all of the
input queues is samller then this value then it can process the associated event.
Otherwise it must block. The drawback of this approach is clearly the large
number of messages which must be sent; as a consequence much work has been
done to avoid the sending of a large number of null messages. [13] and [14] are
efforts in this direction. Another form of deadlock avoidance is a time window

Introduction ix

approach in which tiem windows are successively generated with the property
that the events contained in these windows are safe to process [1].

The deadlock detection and breaking approach relies upon algorithms to
detect deadlocks. For example, in [19], a knot detection algorithm is used to
detect a deadlock, and the event bearing the minimal timestamp in the knot is
detected as well. This event is safe to execute.

The other major class of synchroniztion algorithm is known as optimistic.
Time Warp [4] is the prime example in this category. In optimistic algorithms
LPs maintain one input queue and all of the events which arrive from other LPs
are stored in the queue. The events are processed without any concern for the
arrival of events with smaller timestamps. If such a ”straggler” eventarrives at
an LP, the LP restores its state just prior to the arrival of the straggler and
continues with the simulation from that point, a process known as rolling back.
The LP must maintain checkpoints of previous states in order to roll back. In
addition, it is necessary to to cancel messages which were produced subsequent
to the straggler as they may well be incorrect. In order to do this, each LP
maintains an output queue in which it stores copies of messages which it has
already sent. Upon the arrival of a straggler, the LP sends these copies to the
same LPs which received the original messages. If the message and its copy
meet in an input queue, the two messages cancel (anihilate) one another. For
this reason, the copy is known as an anti-message. If the anti-message arrives
after the original message has been processed, the destination LP rolls back
to the time of the anti-message and sends out its own anti-messages. Clearly,
the memory demands imposed by storing copies of LP’s states and maintaining
anti-messages in the output queue are onerous. Hence techniques to reduce the
amoutn of memory used by Time Warp are fundamental to its success. One
important technique involve the computation of the smallest simulation time to
which any LP in the simulation may roll back, known as the Global Virtual Time
(GVT). If we define the LVT as the timestamp of the last message processed at
an LP, then the GVT is the minimum of (1) the LVT values of all of the LPs in
the simulation and (2) the minimum timestamp of all of the events which have
been sent but which have not been processed at a given point in real time. Since
nq LP can roll back prior to the GVT, all of the memory allocated prior tothe
GVT may be released. Many algorithms for computing the GVT have been
developed [7]. Another technique to reduce the amount of memory employed is
to periodically checkpoint the states of an LP, instead of after every event.

In a shared memory multiprocessor the use of direct cancellation [12] is used
to control the use of memory. Here pointers are used to link the descendants of
an event to the event, thereby eliminating the need for anti-messages. Recently,
a direct cancellation technique for distributed memroy environments has been
developed [17]. Memory management techniques are also used to reclaim space
from LPs so that a stalled simulation may be allowed to continue [5, 6, 12].

In recent years the emphasis in the field has changed from developing efficient
synchronization techniques to the application of these techniques to real world
problems. In the area of computer networks, an on-going effort is simulation of

b & C. Tropper

the Internet [8]. The intention of the project is to provide a realistic test-bed for
the development of new Internet protocols and to locate performance problems.
A detailed distributed simulation of the Internet provides an environment in
which experimental conditions can be controlled and in which it is possible to
replicate experiments. To date, it has been necessary to experiment on the
actual network itself.

The simulation of VLSI circuitry provides another fruitful area for the appli-
cation of distributed simulation. A simulation environment for VHDL circuitry
is described in [15]. A similar project for Verilog is underway.

Military simulations are benefitting from advances in distributed simula-
tion. An important application is the uniting of existing simulations of diffefent
aspects of combat together, e.g. tank warfare, close air-support and infantry
warfare. The inclusion of live exercises into this environment is also being pur-
sued. The field of distributed interactive simulation (DIS) is devoted to these
advances. A number of conferences are devoted to this area, among them the
IEEE Real Time and Distributed Interactive simulation conference.

Yet another area is the simulation of large manufacturing environments,
such as the production of VLSI wafers.

The chapters in this book are representative of the advances in these fields.
In “The Development of Conservative Superstep Protocols for Shared Memory
Systems”, Gan et al provides strong evidence for the utility of (conservative)
distributed simulation of a wafer fabrication process. The performance of sev-
eral different synchronous conservative protocols are compared on a number of
models based on data sets supplied by Sematech. Sematech is a consortium of
semiconductor manufacturing companies that does research for its members in
semiconductor manufacturing. In the “Implementation of a Virtual Time Syn-
chronizer for Distributed Databases on a Cluster of Workstations”, Boukerche et
al study the performance of a distributed database system implemented on a net-
work of workstations and synchronized by an optimistic protocol. In “Applying
Multilevel Paritioning to Parallel Logic Simulation”, Subramaninan et al de-
scribe a partitioning algorithm for logic simulation and examine its performance
making use of the optimistic simulation kernel which lies at the heart of the
VHDL simulator referred to above. In “Self-Organizing Criticality in Optimistic
Simulation of Correlated Systems”. Overeinder et al examine the relationship
between the rollback behavior in Time Warp and hte physical complexity of
Ising Spin systems. Ising Spin models are used to simulate the magnetization
of ferro-metals. Finally, Moradi et al study the DOD’s High Level Architecture
(HLA) in the context of a simulation of an air-traffic control system.

REFERENCES

[1] TURNER, S. AND XU, M., Performance Evaluation of the Bounded Time Warp Algo-
rithm, Proceedings of the SCS Multi-conference on PADS, volume 22, pages 117-126,
1992.

[2] Das, S. anp FusimoTo, R., An Adaptive Memory Management Protocol for Time Warp
Parallel Simulation, Proceedings of ACM SIGMETRICS Conference on Measure-

Introduction xi

ment and Modeling of Computer Systems, volume 22, pages 201-210, 1994.

[3] R. FusmMoto, Time Warp on a Shared Memory Multiprocessor, Transactions of the
Society for Computer Simulation, Vol. 6, No. 3, pp. 211-239, July 1989.

[4] D.A. JEFFERSON, Virtual Time, ACM Transactions on Programming Languages and
systems, Vol. 7, No. 3, pp. 404-425, July 1985.

[5] D.A. JEFFERSON, Virtual Time II: The Cancelback Protocol for Storage Management
in Time Warp, Proc. 9%th Annual ACM Symposium on Principles of Distributed
Computing, pp 75-90, ACM, 1990

[6] Y-B LIN, E. LAZOWSKA, Reducing the State Saving Overhead for Time Warp Paral-
lel Simulation, T-R 90-02-03, Dept. of Computer Science and Engineering, Univ.
Washington, Seattle, WA, 1990

[7] MATTERN, F., Efficient Algorithms for Distributed Snapshots and Global Virtual Time
Approrimation, Journal of Parallel and Distributed Computing, 18: 423-434, 1993.

[8] D. Nicor, J. CROWE, A. OGIELSKI, Modelling of the Global Internet, Computer Science
and Engineering, voll, nol, Jan-Feb 1999, pp. 42-50.

[9) K.CHANDY, J.MISRA, Distributed Simulation:A Case Study in the Design and Verifica-
tion of Distriuted Programs, IEEE Trans. Software Eng S-5, Sept. 1979, pp. 440-452

[10] R. FusmMoTo, Parallel and Distributed Simulation Systems, Wiley Interscience, 2000

[11] H. AvriL, C. TROPPER, Clustered Time Warp and Logic Simulation, Proceedings of the
9th Workshop on Parallel and Distributed Simulation,1995, pp112-119.

[12] S. Das, R. FusiMoTo,K. PANESAR, D. ALLISON, M. HYBINETTE GTW: A Time Warp
System for Shared Memory Multiprocessors Proceedings of the 1994 Winter Simu-
lation Conference, 1994

[13] J. MisrA, Distributed discrete event simulation, ACM Computing Survey 18,1 ,March
1986, pp 39-65

[14] W. Cal, E. LETERTRE, S.J. TURNER,Dag Consistent Parallel Simulation: a Predictable
and Robust Conservative Algorithm, Proc. 11th Workshop on Parallel and Distrib-
uted Simulation (PADS97), pp 178-181, Lockenhaus, Austria, June 1997

[15] P. WILSEY,ET AL, Analysis and Simulation of Mized Technology VLSI Systems, Special
Issue of Journal of Parallel and Distributed Computing, to appear, April 2002

[16] L. LAMPORT, Time, Clocks, and the ordering of events in a distributed system, Commu-
nications of the ACM, vol21(7), pp. 558-565.

[17] J-L. Zuao, C. TROPPER, The Dependence List in Time Warp, Proc. Workshop on Par-
allel and Distributed Simulation (PADS01), to appear, Los Angeles, California, May
2001

[18] D. E. MARTIN, R. RADHAKRISHNAN, D. M. RAo, M. CHETLUR, K. SUBRAMANI, AND P.
A. WILSEY, Analysis and Simulation of Mized-Technology VLSI Systems, Journal
of Parallel and Distributed Computing (in press).

[19] A, BOUKERCHE, C, TROPPER, Parallel Simulation on the Hypercube Multiprocessor, Dis-
tributed Computing, Springer-Verlag, vol.8, no.4, pp 181-191.

CONTENTS

Introduction vii

The Development of Conservative Superstep Protocols for

Shared Memory Multiprocessor Systems 1
Boon-Ping Gan, Yoke-Hean Low, Wentong Cai, Stephen J. Turner, Sanjay
Jain, Wen Jing Hsu, and Shell Ying Huang

Implementation of a Virtual Time Synchronizer for Distributed
Databases-on a Cluster of Workstations 25
A. Boukerche, S. K. Das, A. Datta, and T. E. LeMaster

Applying Multilevel Partitioning to Parallel Logic Simulation 49
Swaminathan Subramanian, Dhananjai M. Rao and Philip A. Wilsey

Self-Organized Criticality in Optimistic Simulation of Correlated
Systems 79
B. J. Overeinder, A. Schoneveld and P. M. A. Sloot

Some Ownership Management Issues in Distributed Simulation
Using HLA/RTI 99
Farshad Moradi, Rassul Ayani and Gary Tan

Communication Overhead on Distributed Memory Machines 121
Shiping Chen and Jingling Xue

vi Contents

Rank Order Filtering on Massively-Parallel Single-Bit Mesh
Processor Arrays 135
Hongchi Shi and Hongzheng Li

Index 147

THE DEVELOPMENT OF CONSERVATIVE SUPERSTEP
PROTOCOLS FOR SHARED MEMORY MULTIPROCESSOR
SYSTEMS

BOON-PING GAN', YOKE-HEAN LOW!, WENTONG CAI}, STEPHEN J. TURNER/}
SANJAY JAINT, WEN JING HSU*, AND SHELL YING HUANG?

Abstract. This paper summarizes our work involving the successive refinements of a
conservative superstep protocol. The refined protocols are known as the SST, SLS, and FET
protocols. Each of the refinements improves the safetime bound, which in turn reduces the
number of supersteps. In general, this helps to reduce the synchronization overhead and thus
the execution time. However, a change in the number of supersteps can also introduce load
imbalances within supersteps into the simulation. This observation becomes apparent with the
FET protocol in particular. The performance of the refined protocols is compared through sev-
eral semiconductor supply-chain simulation models. The results from the experiments strongly
indicate the feasibility of using parallel discrete-event simulation techniques in the simulation
of large scale systems such as a supply-chain.

1. Introduction. Parallel discrete-event simulation (PDES) has been a
well-researched area for many years. An important area in PDES has been the
design and development of new synchronization protocols. In PDES, a sim-
ulation is decomposed into logical processes (LPs) that can be simulated in
parallel. PDES synchronization protocols are used to ensure that parallel ex-
ecution of these LPs does not violate the causality constraint, i.e. events are
strictly processed in timestamp order. PDES synchronization protocols can be
broadly classified into two categories, conservative and optimistic. Conservative
protocols (7, 4] strictly enforce the causality constraint by allowing the simula-
tion to progress up to a safetime. A safetime is a time guarantee that no events
with a lower timestamp will be received from the upstream LPs, and is normally
computed based on events received from the upstream LPs. Unlike the conserv-
ative approach, optimistic protocols [8, 12] allow events to be executed without
considering if executing those events will result in any causality violation. Each
LP in this case will proceed to execute each incoming event as it arrives. If an
event message arrives and has a timestamp that is lower than the ones that have
beéen processed, the LP must correct this error by undoing those events that
have been executed.

The focus of this paper is on the conservative protocol. Conservative pro-
tocols can be further sub-divided into two classes: synchronous [4] and asyn-
chronous [7]. In the synchronous approach, LPs progress in supersteps. Each
LP must wait for all the other LPs to complete their current superstep be-
fore the next superstep can proceed. In the asynchronous approach, each LP
progresses in the simulation independently as long as there exist events that are

T Gintic Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
tCentre for Advanced Information Systems, School of Computer Engineering, Nanyang
Technological University, Singapore 638798

2 B.P. Gan, Y.H. Low, W. Cai, S.J. Turner, S. Jain, W.J. Hsu, and S.Y. Huang

safe to process. In this paper, we will provide a summary of our work in succes-
sively refining a synchronous conservative superstep protocol. A separate paper
describing our work in using the asynchronous approach in a conservative syn-
chronization protocol can be found in [9]. We will compare the performance of
the different improvements made to the conservative superstep protocol using a
semiconductor supply-chain simulation model.

The rest of the paper is organized as follows. Section 2 explains the original
superstep protocol described in [4]. Section 3 describes the three refined super-
step protocols that improve the safetime bound calculation. Section 4 discusses
three important issues for the superstep protocols. In section 5, the semicon-
ductor supply-chain simulation model used in the experiments will be explained.
The performance of these protocols when running the supply-chain simulation
model will also be presented and compared. Section 6 provides an overview of
other related work carried out by researchers in the PDES community. Section 7
concludes this paper and outlines future research directions for our project. The
proof of correctness of the four versions of the superstep protocol is given in the
appendix.

2. Original superstep protocol. We will first describe the original con-
servative superstep protocol based on that presented in [4]. The conservative
superstep protocol proceeds in a series of supersteps, where each superstep is
followed by a barrier synchronization. Each superstep consists of two phases,
the computation phase and the communication phase. This is analogous to the
bulk synchronous parallel (BSP) model first proposed in [22]. The communi-
cation phase involves the exchange of event messages between the LPs. In the
computation phase, each LP will compute a safetime for itself for the current
superstep. The safetime is usually computed based on the events received from
the upstream LPs. The LP can then simulate, in the current superstep, all
events in its event-list with timestamp less than or equal to its safetime without
violating any causality constraint.

The algorithm for the original conservative protocol is shown in Figure 2.1.
In the algorithm, each communication link between two LPs is implemented by
two buffers, which are priority queues, to take advantage of the shared memory
architecture. The sender LPs will insert external events to one buffer while the
receiver LPs will receive events from the other. The two buffers are swapped at
the end of the superstep in the main simulation loop. With this approach, the
conflict in accessing the same buffer between the sender and the receiver LPs is
avoided. This eliminates the need for buffer locking.

The calculation of SafeTime (Part2(A) in Figure 2.1) uses both local and
global information, and is set to be the maximum of L P;.InClock and the global
simulation time (GST). Intuitively, the LP;.InClock provides the local informa-
tion while GST constitutes the global information.

To calculate LP;.InClock, a link clock is kept for each input link of LFP;
(e.g. in the pseudo-code in Figure 2.1, LP;.clock[k] holds the link clock value
for the input link from LPy to LP;). It keeps track of the timestamp of the

Conservative Superstep Protocols 3

// PART 1: Global initialization
Initialize the links between LPs and each LP’s state.
GST = 0;
for all initial event e caused by InitialState do
// assume event e scheduled for LP;
OrderInsert(e@e.TimeStamp, L P;.event_q);
endfor

// PART 2: Executed by every LP, say LP;.
while (GST < o0) do

// (A) calculate SafeTime
L P;.Inclock = oo
for each LPy, s.t. LP; has a directed link to LP; do
if(InBuff[L Py |[LP;] # empty) // update the link clocks
L P; clock[k|=LastElementTime(InBuff(L Px|[L P;])
Merge InBuff[L Pi][L P;] into LP;’s event-list, i.e. LP;.event_q
endif
L P; InClock=min(L P;.InClock, LP;.clock[k]);
endfor
SafeTime = max(LP;.InClock, GST);
LP;.out = oo; // Tracks the smallest time of all external events sent out by
LP;

// (B) simulate all safe events
while (FirstElementTime(L P;.event_q) < SafeTime) do
e = RemoveFirstElement(LP;.event_q); // dequeue an event and process it
LP; local_time=e.TimeStamp;
LP; state = Simulate(e);
for all InternalEvent ie caused by Simulate(e) do // enqueue new internal
events
Orderlnsert(ie@ie.TimeStamp, L P;.event_q);
endfor
for all ExternalEvent ee caused by Simulate(e) do //output external events
// external event ee has timestamp equal to LP;.local_time
Orderlnsert(ee@L P;.local_time, OutBuff[L P;|[L P;]) where ee is from LP;
to LP;
LP;.out = min(LP;.out, ee.TimeStamp);
.endfor
endwhile

// (C) calculate smallest timestamp of any event in this LP
if (LP;.eventq # empty) then LP; MinTime =
FirstElementTime(L P;.event_q);
else LP; MinTime = oo; end if
LP; MinTime = min(LP;.out, LP; . MinTime);

// (D) global reduction to calculate new GST after all LPs reach
barrier
{ barrier_begin();
GST = min_reduce(LP; MinTime);
Swap InBuff and OutBuff
barrier_end();

endwhile

FiG. 2.1. Original Superstep Parallel Simulation Protocol

last message received on the input link in the last superstep. The timestamp of
the last message is readily available when the input link is implemented using
priority queues ordered by the timestamp of events. LP;.InClock is defined as
the minimum value of all input link clocks. Thus, from the current superstep
onwards, no event can arrive on an input link with a timestamp that is smaller

4 B.P. Gan, Y.H. Low, W. Cai, S.J. Turner, S. Jain, W.J. Hsu, and S.Y. Huang

than the LP;.InClock value. As the calculation of L P;.InClock assumes messages
for communication links are received in non-decreasing timestamp order, all
external events generated by an LP have timestamp equal to its local simulation
time.

GST is defined as the minimum of the simulation time of all events waiting
in the event-list, and the timestamp of all events that have just been generated
in the current superstep. At the end of a superstep (Part 2(C) of the pseudo-
code in Figure 2.1), each LP computes the minimum timestamp event that it
knows about, by taking the minimum timestamp of events in its event-list, and
those events that it generated in the current superstep. This minimum value
is stored in the MinTime field. GST can then be computed by doing a glbbal
min-reduction of all the MinTime’s. Therefore, GST is the smallest timestamp
of any event in the whole system and so no event with a smaller timestamp than
GST can be generated.

With the GST and LPFP;.InClock values, SafeTime of the current superstep
can then be computed. Each LP can proceed to simulate events with timestamp
smaller than or equal to its SafeTime (Part 2(B) in Figure 2.1). The simulation
terminates when GST reaches infinity (beginning of Part 2). This happens when
there are no more events in the system. The algorithm is proved to be safe and
deadlock free in the appendix.

3. Refinement of the original protocol. In this section, we discuss the
three refined protocols which are improved versions of the original conservative
superstep protocol. In each case, the improvement lies in the way the safetime
of each LP is computed. In addition, the refined protocols all exploit lookahead
information in the safetime computation. The original protocol does not use this
lookahead information since external events are timestamped with the sender
LPs’ local simulation time. A technique called event pre-sending (to be discussed
in Section 4) is used to further enhance the lookahead value for the three refined
protocols. This has a significant impact on the performance of the protocols.

3.1. Sender-Simulation-Time protocol (SST). In this section, we will
discuss the Sender-Simulation-Time (SST) protocol. The improvement to the
safetime calculation is derived by noting that if there is a link from LP; to LP;,
the original algorithm uses the link clock in the safetime calculation. However,
we know that the timestamp of future events from LP; must be greater than
or equal to LP:’s local simulation time. Therefore, the local simulation time
would give a more relaxed bound for LP;’s safetime calculation than the link
clock used in the original protocol.

Figure 3.1 shows the algorithm for the modified conservative superstep pro-
tocol. The SST algorithm has essentially the same structure as the original
algorithm. The two major differences are in Part 2(A), where the SafeTime is
computed, and Part 2(B), where external events are pre-sent with timestamp
equal to their occurence time.

In Part 2(A), for each LPy that has a directed link to LP;, L P; computes the
value

Conservative Superstep Protocols 5

// PART 1: Global initialization
Initialize the links between LPs and each LP’s state.
GST = 0;
for all initial event e caused by InitialState do
// assume event e scheduled for LP;
OrderInsert(e@e.TimeStamp, L P;.event_q);
endfor

// PART 2: Executed by every LP, say LP;.
while (GST < o0) do

Merge events from all InBuff{L Px][LP;| for all LP, connected to LP;, into
LP;’s event-list

// (A) calculate SafeTime
SafeTime = oo
for each LPx, s.t. LPi has a directed link to LP, do
SafeTime = min (SafeTime, L Py.local_time + LookAhead(L Px][LP;])
endfor
SafeTime = max(GST, SafeTime)
LP;.out = oo; // Tracks the smallest time of all external events sent out by
LP;

// (B) simulate all safe events
while (FirstElementTime(L P;.event_q) < SafeTime) do
e = RemoveFirstElement(L P;.event_q); // dequeue an event and process it
LP;.local_time=e.TimeStamp;
LP; state = Simulate(e);
for all InternalEvent ie caused by Simulate(e) do // enqueue new internal
events
Orderlnsert(ieQie.TimeStamp, L P;.event_q);
endfor
for all ExternalEvent ee caused by Simulate(e) do //output external events
Insert(ee@ee. TimeStamp, OutBuff[L P;][L P;]) where ee is from LP; to LP;
LP;.out = min(LP;.out, ee.TimeStamp);
endfor
endwhile

// (C) calculate smallest timestamp of any event in this LP
if (LP;.eventq # empty) then LP; MinTime =
FirstElementTime(L P;.event_q);
else LP; . MinTime = oo; end if
LP; MinTime = min(LP;.out, LP; MinTime);

// (D) global reduction to calculate new GST after all LPs reach
barrier
barrier_begin();
GST = min_reduce(LP; MinTime);
Swap InBuff and OutBuff
barrier.end();
endwhile

Fic. 3.1. Sender-Simulation-Time Protocol

SafeTimeBound, = LPg.local_time + LookAhead[LP;][LP;]. LPg.local time is
the current simulation time of LP;. LookAhead[LPx|[LP;] represents the mini-
mum advancement in simulation time required by LPx to generate an external
event for LP;. The value SafeTimeBound; thus provides a time guarantee to
LP; that the next external event LPx sends to LP; will have timestamp no
less than SafeTimeBoundy. LP; then computes STB = the minimum of all its
SafeTimeBound, values. The SafeTime of LP; is taken to be the maximum of
STB and GST.

6 B.P. Gan, Y.H. Low, W. Cai, S.J. Turner, S. Jain, W.J. Hsu, and S.Y. Huang

In Part 2(B), each LP can simulate all events with timestamp smaller or
equal to its SafeTime. Since the SafeTime calculation in this algorithm does
not rely on the information on the link clocks, external messages need not be
constrained to have their timestamps equal to the sender LP’s local time. This
allows external messages to be pre-sent with timestamp equal to their occurence
time. The priority queue between LPs in the original algorithm can also be
replaced by an unordered list and the OrderedInsert operation by a simple Insert.
Any pre-sent external events received by an LP are held in the LP’s event-list
(ordered by timestamp of events) and are executed only when the LP’s SafeTime
becomes greater than or equal to the event’s timestamp. The correctness of this
protocol is proven in the appendix. !

3.2. Sender-Last-SafeTime protocol (SLS). In this section, we de-
scribe the second improvement made to the conservative superstep protocol.
We will refer to this algorithm as the Sender-Last-SafeTime (SLS) algorithm in
subsequent sections.

We first note that at the end of each superstep n, each LP; has simulated
all events e that satisfy the condition t. < LP.S,, where t. is the timestamp of
event e and LPy.S,, is the safetime of L Py for superstep n. The local time of LP;
is now set to the timestamp of the last event executed in this superstep. Since
the safetime LPy.S, for L P is a guarantee that any event it receives in the next
superstep will have timestamp at least equal to or greater than LP;.S,, we can
effectively take the safetime of LPj as its local time at the end of a superstep
and use this value to compute the safetime of its individual receiver LPs at the
beginning of the next superstep.

Figure 3.2 shows the SLS algorithm. In this algorithm, we use a variable
LastSafeTime to keep track of the safetime of each LP in the previous superstep.
In Part 1, this variable is initialized to 0. Since each LP starts off with a local
time of 0, we can use the individual lookahead values in the links to compute an
initial safetime for each LP.

In the SLS algorithm, the only difference from the SST algorithm presented
in section 3.1 is the computation of SafeTime in Part 2(A). For each LP;, it
computes a SafeTimeBoundy value for each LP; that has a directed link to
it. However, instead of using the local time of LPj, we now use the previous
SafeTime of LPj to compute SafeTimeBoundy. We set SafeTimeBound; to be
the sum of L Py .LastSafeTime and LookAhead[LPx][LF;].

In Part 2(C), the GST computation is unchanged. However, in addition to
the GST computation, each LP has to store the SafeTime value computed in the
beginning of the current superstep in the LastSafeTime variable. The algorithm
is proven to be correct in the appendix.

3.3. Future-Event-Time protocol (FET). The Future-Event-Time
(FET) protocol is a further refinement of the SLS protocol, in which the safetime
bound calculation is relaxed further. The FET protocol relaxes this bound by
computing the safetime based on the sender LP’s first safe event time in the
current superstep instead of the sender LP’s safetime at the last superstep. The

