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Preface

This book focuses on the probabilistic theory of Brownian motion. This is a good
topic to center a discussion around because Brownian motion is in the intersec-
tion of many fundamental classes of processes. It is a continuous martingale, a
Gaussian process, a Markov process or more specifically a process with in-
dependent increments; it can actually be defined, up to simple transformations,
as the real-valued, centered process with independent increments and continuous
paths. It is therefore no surprise that a vast array of techniques may be success-
fully applied to its study and we, consequently, chose to organize the book in the
following way.

After a first chapter where Brownian motion is introduced, each of the
following ones is devoted to a new technique or notion and to some of its
applications to Brownian motion. Among these techniques, two are of para-
mount importance: stochastic calculus, the use of which pervades the whole book
and the powerful excursion theory, both of which are introduced in a self-
contained fashion and with a minimum of apparatus. They have made much
easier the proofs of many results found in the epoch-making book of It6 and
McKean: Diffusion Processes and their Sample Paths, Springer (1965).

Furthermore, rather than working towards abstract generality, we have tried
to study precisely some important examples and to carry through the computa-
tions of the laws of various functionals or random variables. Thus we hope to
facilitate the task of the beginner in an area of probability theory which is rapidly
evolving. The later chapters of the book however, will hopefully be of interest to
the advanced reader.

We strove to offer, at the end of each section, a large selection of exercises,
the more challenging being marked with the sign * or even **. On one hand,
they should enable the reader to improve his understanding of the notions
introduced in the text. On the other hand, they deal with many results without
which the text might seem a bit “dry” or incomplete; their inclusion in the text
however would have increased forbiddingly the size of the book and deprived
the reader of the pleasure of working things out by himself. As it is, the text is
written with the assumption that the reader will try a good proportion of them,
especially those marked with the sign #, and in a few proofs we even indulged
in using the results of foregoing exercises.

The text is practically self-contained but for a few results of measure theory.
Besides classical calculus, we only ask the reader to have a good knowledge of
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basic notions of integration and probability theory such as almost-sure and in
the mean convergences, conditional expectations, independence and the like.
Chapter 0 contains a few complements on these topics. Moreover the early
chapters include some classical material on which the beginner can hone his
skills.

Each chapter ends up with notes and comments where, in particular, refer-
ences and credits are given. In view of the enormous literature which has been
devoted to Brownian motion and related topics, we have in no way tried to draw
a historical picture of the subject and apologize in advance to those who may
feel slighted. Likewise our bibliography is not even remotely complete and leaves
out the many papers which deal with the relationships of Brownian motion
with other fields of Mathematics such as Potential Theory, Harmonic Analysis,
Partial Differential Equations and Geometry. A number of excellent books
have been written on these subjects some of which we discuss in the notes and
comments.

Finally, it is a pleasure to thank those who have offered useful comments on
the first drafts in particular J. Jacod, P.A. Meyer, B. Maisonneuve and J. Pitman.
Our special thanks go to J.F. Le Gall who put us straight on an inordinate
number of points and Shi Zhan who has helped us with the exercises. Each
chapter of this book has been taught a number of times by the authors in the
last decade, either in a “Cours de 3° Cycle” in Paris or in “crash courses” on
Brownian motion; we would like to seize this opportunity of thanking our
audiences for their warm response. Last but not least, Josette Saman a pris
une part essentielle dans la préparation matérielle du manuscrit et nous I'en
remercions bien vivement.

Paris, October 1990 Daniel Revuz
Marc Yor
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Chapter 0. Preliminaries

In this chapter, we review a few basic facts, mainly from integration and classical
probability theories, which will be used throughout the book without further
ado. Some other prerequisites, usually from calculus, which will be used in some
special parts are collected in the Appendix at the end of the book.

§ 1. Basic Notation

Throughout the sequel, N will denote the set of integers, namely, N = {0, 1,...},
R the set of real numbers, @ the set of rational numbers, C the set of complex
numbers. Moreover R, = [0, o[ and Q, = Q n R,.. By positive we will always
mean >0 and say strictly positive for >0.

Likewise a real-valued function f defined on an interval of R is increasing
(resp. strictly increasing) if x < y entails f(x) < f(y) (resp. f(x) < f(»)).

If a, b are real numbers, we write:

a A b = min(a,b), a v b = max(a,b).

If E is a set and f a real valued function on E, we use the notation
f+=fV0, f;=—(f/\0), |f|=f++f_’
[£1l = sup [ /(x)I.

xeE

We will write a,]a(a,1a) if the sequence (a,) of real numbers increases
(decreases) to a.

If (E, &) and (F, #) are measurable spaces, we write f € &/ to say that the
function f: E — F is measurable with respect to & and Z. If (F, %) is the real
line endowed with the o-field of Borel sets, we write simply f € & and if, in
addition, f is positive, we write f € &,. The characteristic function of a set A4 is
written 1,; thus, the statements A € § and 1, € & have the same meaning.

If Qisasetand (f;),i € I,is a collection of maps from Q to measurable spaces
(E;, &), the smallest o-field on Q for which the f;’s are measurable is denoted by
a(f;, iel). If € is a collection of subsets of Q, then ¢(%) is the smallest o-field
containing %; we say that o(%) is generated by €. The o-field o(f;, i€ ) is
generated by the family € = {f;"'(A;), A; € &, i € I}. Finally if §,,i € I, is a family
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of o-fields on ©, we denote by \/; &, the o-ficld generated by | J; &;. It is the union
of the o-fields generated by the countable sub-families of &}, i € I.

A measurable space (E,&) is separable if & is generated by a countable
collection of sets. In particular,.if E is a LCCB space i.e. a locally compact space
with countable basis, the o-field of its Borel sets is separable; it will often be
denoted by #(E). For instance, #(R?) is the o-field of Borel subsets of the
d-dimensional euclidean space.

For a measure m on (E, &) and f € &, the integral of f with respect to m, if
it makes sense, will be denoted by any of the symbols

ffdm, ff(X)dm(X), Jf(X)m(dX), m(f), <m,f),

and in case E is a subset of a euclidean space and m is the Lebesgue measure,
[ f(x)dx.

If (2, %, P) is a probability space, we will as usual use the words random
variable and expectation in lieu of measurable function and integral and write

E[X] = J X dP.
Q

We will often write r.v. as shorthand for random variable. The law of the r.v. X,
namely the image of P by X will be denoted by Py or X(P). Two r.v.’s defined
on the same space are P-equivalent if they are equal P-a.s.

If 4 is a sub-o-field of .#, the conditional expectation of X with respect to
@, if it exists, is written E[X|¥4]. If X = 1,, A € #, we may write P(4|9). If
% = o(X;, i € I)we also write E[X|X;,ie I] or P(A|X;, i€ I). As is well-known
conditional expectations are defined up to P-equivalence, but we will often omit
the qualifying P-a.s. When we apply conditional expectation successively, we
shall abbreviate E[E[X |#,]|#,] to E[X |#,|.%,].

We recall that if Q2 is a Polish space (i.e. a metrizable complete topological
space with a countable dense subset), # the g-field of its Borel subsets and if ¢
is separable, then there is a regular conditional probability distribution given %.

If 4 and v are two o-finite measures on (E, &), we write 4 L v to mean that
they are mutually singular, u « v to mean that u is absolutely continuous with
respect to v and u ~ v if they are equivalent, namely if u « v and v « u. The

Radon-Nikodym derivative of u with respect to v is written —“I and the Z is
s . o dV F

dropped when there is no risk of confusion.

§2. Monotone Class Theorem

We will use several variants of this theorem which we state here without
proof.
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(2.1) Theorem. Let ¥ be a collection of subsets of 2 such that
) Qe
i) if A,Be ¥ and A < B, then B\A € &
iii) if {A,} is an increasing sequence of elements of & then | JA, € ¥.
If & > % where F is closed under finite intersections then ¥ > o(F).

The above version deals with sets. We turn to the functional version.

(2.2) Theorem. Let 3# be a vector space of bounded real-valued functions on Q
such that :

1) the constant functions are in #,

i1) # is closed under uniform convergence,

iii) if {h,} is an increasing sequence of positive elements of # such that
h = sup, h, is bounded, then h € #.

If € is a subset of # which is stable under pointwise multiplication, then #
contains all the bounded o(%)-measurable functions.

The hypothesis of this theorem may be altered in several ways. For instance
the conclusion is still valid if # is a set of bounded functions satisfying ii) and
iii) and % is an algebra containing the constants; it is also valid if # is a set of
bounded functions satisfying iii) and % is a vector space, stable under the
operations A and v and containing the constants. This last version avoids
uniform convergence.

The above theorems will be used, especially in Chap. III, in the following
set-up. We have a family f;, i € I, of mappings of a set 2 into measurable spaces
(E;, ;). We assume that for each i € I there is a subclass .4; of &;, closed under
finite intersections and such that a(4;) = &;. We then have the following results.

(2.3) Theorem. Let A~ be the family of sets of the form ()i, f; ' (A;) where A,
ranges through A; and J ranges through the finite subsets of I, then o(A') =
o(f,iel).

(2.4) Theorem. Let # be a vector space of real-valued functions on £2, containing
1o, satisfying property iii) of Theorem (2.2) and containing all the functions 1
for I'e . Then, # contains all the bounded, real-valued, o( f;, i € I)-measurable
functions.

§ 3. Completion

If (E, &) is a measurable space and p a probability measure on &, the completion
&* of & with respect to u is the o-field of subsets B of E such that there exist B,
and B, in & with B, = B = B, and u(B,\B,) = 0. If y is a family of probability
measures on &, the o-field

&= &

uey
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is called the completion of & with respect to y. If y is the family of all probability
measures on &, then & is denoted by &* and is called the o-field of universally
measurable sets.

If # is a sub-g-algebra of & we define the completion of & in &” with respect
to y as the family of sets A with the following property: for each u € y, there is a
set B such that A4B is in &” and u(A4B) = 0. This family will be denoted Z?;
the reader will show that it is a o-field which is larger than #*. Moreover, it has
the following characterization.

(3.1) Proposition. A set A is in %" if and only if for every u € y there is a set B,
in # and two p-negligible sets N, and M, in & such that

B\AN,c A=B,uM,.

Proof. Left to the reader as an exercise. O

The following result gives a means of checking the measurability of functions
with respect to g-algebras of the Z ’-type.

(3.2) Proposition. For i = 1, 2, let (E;, &;) be a measurable space, y; a family of
probability measures on &; and ¥; a sub-o-algebra of &'. If f is a map which is
both in &,/&, and F,|F, and if f(u) € y, for every p € y, then f is in ' | F;>.

Proof. Let A be in %7>. For pu e y,, since v = f(u) is in y,, there is a set B, € %,
and two v-negligible sets N, and M, in &, such that

BAN,c AcB,uM,.

The set B, = f ~'(B,) belongs to #,, the sets N, = f"}(N,) and M, = f"1(M,)
are u-negligible sets of &; and

B\N, © f'(4) = B,u M,

This entails that £ ~!(A4) € £, which completes the proof.

§4. Functions of Finite Variation and Stieltjes Integrals

This section is devoted to a set of properties which will be used constantly
throughout the book.

We deal with real-valued, right-continuous functions 4 with domain [0, co[.
The results may be easily extended to the case of R. The value of 4 in ¢ is denoted
A, or A(t). Let 4 be a subdivision of the interval [0,t] with0=t,<t, < - <
t, = t; the number |A| = sup;|t;,; — t;| is called the modulus or mesh of 4. We
consider the sum

StA = Z |Ar“, - Al,-l-

13
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If A" is another subdivision which is a refinement of 4, that is, every point ¢; of
A is a point of 4’, then plainly S/ > S4.

(4.1) Definition. The function A is of finite variation if for every t

S, =sup S8 < +o0.
a4 S

The function t — S, is called the total variation of A and S, is the variation of A
on [0, t]. The function S is obviously positive and increasing and if lim,_, , S, <
+00, the function A is said to be of bounded variation.

The same notions could be defined on any interval [a, b]. We shall say that
a function A4 on the whole line is of finite variation if it is of finite variation on
any compact interval but not necessarily of bounded variation on the whole of R.

Let us observe that C!-functions are of finite variation. Monotone finite
functions are of finite variation and conversely we have the

(4.2) Proposition. Any function of finite variation is the difference of two in-
creasing functions.

Proof. The functions (S + A4)/2 and (S — A)/2 are positive and increasing as the
reader can easily show, and 4 is equal to their difference. O

This decomposition is moreover minimal in the sense that if A=F — G
where F and G are positive and increasing, then (S + 4)/2 < F and (S — 4)/2 < G.

As a result, the function A4 has left limits in any ¢t € ]0, co[. We write 4,_ or
A(t —) for lim,4, A; and we set A,_ = 0. We moreover set 44, = A, — A,_; this
is the jump of Ain t.

The importance of these functions lies in the following

(4.3) Theorem. There is a one-to-one correspondence between Radon measures pu
on [0, co[ and right-continuous functions A of finite variation given by

A, = ([0, 1]).

Consequently 4, = u([0,¢[) and 44, = u({t}). Moreover the variation S
of A corresponds to the total variation |u| of 4 and the minimal decomposition
of p into positive and negative parts.

If f is a locally bounded Borel function on R,, its Stieltjes integral with
respect to A, denoted

t t
f f,dA,, J f(s)dA(s) or f(s)dA,

0 0 10,1]
is the integral of f with respect to u on the interval ]0, t]. The reader will observe
that the jump of A at zero does not come into play and that [, d4, = 4, — A,.
If we want to consider the integral on [0,t], we will write (i, ,f(s)dA,. The
integral on ]0, t] is also denoted by ( f - 4),. We point out that the map ¢t — (f- A),
is itself a right-continuous function of finite variation.
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A consequence of the Radon-Nikodym theorem applied to u and to the
Lebesgue measure 4 is the

(4.4) Theorem. A function A of finite variation is A-a.e. differentiable and there
exists a function B of finite variation such that B = 0 i-a.e. and

t
A, =B + J A, ds.
(0]

The function A is said to be absolutely continuous if B = 0. The corre-
sponding measure u is then absolutely continuous with respect to 4.

We now turn to a series of notions and properties which are very useful in
handling Stieltjes integrals.

(4.5) Proposition (Integration by parts formula). If A and B are two functions of
finite variation, then for any t,

t t

A, dB, +f B,_ dA,.

0

A,B, = AOBO + J‘

0

Proof. If u (resp. v) is associated with A4 (resp. B) both sides of the equality are
equal to (u ® v)([0,]%); indeed [, A,dB, is the measure of the upper triangle
including the diagonal, [ B,_ dA, the measure of the lower triangle excluding
the diagonal and A,B, = 1 ® v({0,0}). O

To reestablish the symmetry, the above formula can also be written

t t
A,B, =f A,_dB, +j B,_dA,+ ) AA,4B,.
0 0 s<t
The sum on the right is meaningful as 4 and B have only countably many
discontinuities. In fact, A can be written uniquely A, = A; + ng,AAs where A€
is continuous and of finite variation.
The next result is a “chain rule” formula.

(4.6) Proposition. If F is a C!-function and A is of finite variation, then F(A) is
of finite variation and

l Fl(As—)dAs = Z (F(As) - F(As—) - FI(As—)AAs)'

0

F(A,)=F(Ao)+f

Proof. The result is true for F(x) = x, and if it is true for F it is true for xF(x) as
one can deduce from the integration by parts formula; consequently the result
is true for polynomials. The proof is completed by approximating a C*-function
by a sequence of polynomials. O

As an application of the notions introduced thus far, let us prove the
useful



