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Preface

The International Symposium on Practical Aspects of Declarative Languages
(PADL) is a forum for researchers and practitioners to present original work
emphasizing novel applications and implementation techniques for all forms of
declarative concepts, especially those emerging from functional, logic, and con-
straint languages. Declarative languages have been studied since the inception
of computer science, and continue to be a vibrant subject of investigation today
due to their applicability in current application domains such as bioinformatics,
network configuration, the Semantic Web, telecommunications software, etc.

The 6th PADL Symposium was held in Dallas, Texas on June 18-19, 2004,
and was co-located with the Compulog-Americas Summer School on Computa-
tional Logic. From the submitted papers, the program committee selected 15 for
presentation at the symposium based upon three written reviews for each paper,
which were provided by the members of the program committee and additional
referees.

Two invited talks were presented at the conference. The first was given by
Paul Hudak (Yale University) on “An Algebraic Theory of Polymorphic Tem-
poral Media.” The second invited talk was given by Andrew Fall (Dowlland
Technologies and Simon Fraser University) on “Supporting Decisions in Com-
plex, Uncertain Domains with Declarative Languages.”

Following the precedent set by the previous PADL symposium, the program
committee this year again selected one paper to receive the ‘Most Practical Pa-
per’ award. The paper judged as the best in the criteria of practicality, originality,
and clarity was “Simplifying Dynamic Programming via Tabling,” by Hai-Feng
Guo, University of Nebraska at Omaha, and Gopal Gupta, University of Texas
at Dallas. This paper presents an elegant declarative way of specifying dynamic
programming problems in tabled logic programming systems.

The PADL symposium series is sponsored in part by the Association of Logic
Programming and Compulog Americas, a network of research groups devoted to
the promotion of computational logic in North and South America.

We thank the University at Buffalo and the University of Texas at Dallas for
their support. We gratefully acknowledge the contributions of Shriram Krishna-
murthy and Pete Hopkins, Brown University, for maintaining the PADL website
which provided much needed assistance in the submission and review process.
Finally, we thank the authors who submitted papers to PADL 2004 and all who
participated in the conference.

April 2004 Bharat Jayaraman
Program Chair
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An Algebraic Theory
of Polymorphic Temporal Media

Paul Hudak

Department of Computer Science
Yale University
paul.hudak@yale.edu

Abstract. Temporal media is information that is directly consumed by
a user, and that varies with time. Examples include music, digital sound
files, computer animations, and video clips. In this paper we present a
polymorphic data type that captures a broad range of temporal media.
We study its syntactic, temporal, and semantic properties, leading to
an algebraic theory of polymorphic temporal media that is valid for un-
derlying media types that satisfy specific constraints. The key technical
result is an axiomatic semantics for polymorphic temporal media that is
shown to be both sound and complete.

1 Introduction

The advent of the personal computer has focussed attention on the consumer, the
person who buys and makes use of the computer. Our interest is in the consumer
as a person who consumes information. This information takes on many forms,
but it is usually dynamic and time-varying, and ultimately is consumed mostly
through our visual and aural senses. We use the term temporal media to refer
to this time-varying information. We are interested in how to represent this
information at an abstract level; how to manipulate these representations; how
to assign a meaning, or interpretation, to them; and how to reason about such
meanings.

To achieve these goals, we define a polymorphic representation of temporal
media that allows combining media values in generic ways, independent of the
underlying media type. We describe three types of operations on and proper-
ties of temporal media: (a) syntactic operations and properties, that depend
only on the structural representation of the media, (b) temporal operations and
properties, that additionally depend on time, and (c) semantic operations and
properties, that depend on the meaning, or interpretation, of the media. The
latter development leads to an axiomatic semantics for polymorphic temporal
media that is both sound and complete.

Examples of temporal media include music, digital sound files, computer ani-
mations, and video clips. It also includes representations of some other concepts,
such as dance [10] and a language for humanoid robot motion [5]. In this paper
we use two running examples throughout: an abstract representation of music
(analogous to our previous work on Haskore and MDL, DSLs for computer music

B. Jayaraman (Ed.): PADL 2004, LNCS 3057, pp. 1-15, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 P. Hudak

[9,6,7,8]), and an abstract representation of continuous animations (analogous
to our previous work on Fran and FAL [4,3,7]).

The key new ideas in the current work are the polymorphic nature of the
media type, the exploration of syntactic and temporal properties of this media
type that parallel those for lists, the casting of the semantics in a formal algebraic
framework, the definition of a normal form for polymorphic temporal media, and
a completeness result for the axiomatic semantics. The completeness result relies
on a new axiom for swapping terms in a serial/parallel construction.

We present all of our results using Haskell [12] syntax that, in most cases, is
executable. Haskell’s type classes are particularly useful in specifying constraints,
via implicit laws, that constituent types must obey. Proofs of most theorems have
been omitted in this extended abstract.

2 Polymorphic Media

We represent temporal media by a polymorphic data type:

data Media a = Prim a
| Media a :+: Media a
| Media a :=: Media a
We refer to T in Media T as the base media type. Intuitively, for valuesx :: T and
mi, m2 :: Media T, a value of type Media T is either a primitive value Prim x,
a sequential composition m1 :+: m2, or a parallel composition m1 :=: m2. Al-

though simple in structure, this data type is rich enough to capture quite a
number of useful media types.

Example 1 (Music): Consider this definition of an abstract notion of a
musical note:

data Note = Rest Dur | Note Pitch Dur

type Dur = Real

type Pitch = (NoteName, Octave)

type Octave = Int

data NoteName = Cf | C | Cs | Df | D | Ds | Ef | E | Es | Ff | F
| Fs | GE | G | Gs | Af | A | As | Bf | B | Bs

In other words, a Note is either a pitch paired with a duration, or a Rest that
has a duration but no pitch. Dur is a measure of time (duration), which ideally
would be a real number; in a practical implementation a suitable approximation
such as Float, Double, or Ratio Int would be used. A Pitch is a pair consisting
of a note name and an octave, where an octave is just an integer. The note name
Cf is read as “C-flat” (normally written as Cb), Cs as “C-sharp” (normally
written as Cf), and so on.! Then the type:

type Music = Media Note

! This representation corresponds well to that used in music theory, except that in
music theory note names are called pitch classes.
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is a temporal media for music. In particular, a value Prim (Rest d) is a rest
of duration d, Prim (Note p d) is a note with pitch p played for duration
d, m1 :+: m2 is the music value m1 followed sequentially in time by m2, and
ml :=: m2 is ml played simultaneously with m2. This representation of music is
a simplified version of that used in the Haskore computer music library [9,6],
which has been used successfully in several computer music applications. As a
simple example:

let dMinor = Note (D,3) 1 :=: Note (F,3) 1 :=: Note (4,3) 1
gMajor = Note (G,3) 1 :=: Note (B,3) 1 :=: Note (D,4) 1
cMajor = Note (C,3) 2 :=: Note (E,3) 2 :=: Note (G,3) 2

in dMinor :+: gMajor :+: cMajor

is a ii-V-I chord progression in C major.
Example 2 (Animation): Consider this definition of a base media type for
continuous animations:

type Anim = (Dur, Time -> Picture)
type Dur = Real
type Time = Real
data Picture = EmptyPic | Circle Radius Point
| Square Length Point | Polygon [Point]
type Point = (Real, Real)

A Picture is either empty, a circle or square of a given size and located at a
particular point, or a polygon having a specific set of vertices. An Anim value
(d, f) is a continuous animation whose image at time 0 < t < d is the Picture
value £ t. Then the type:

type Animation = Media Anim

is a temporal media for continuous animations. This representation is a simplified
version of that used in Fran [4,3] and FAL [7]. As a simple example:

let balll = (10, \t -> Circle t origin)
ball2 = (10, \t -> Circle (10-t) origin
box = (20, \t -> Square 1 (t,t))

in (balll :+: ball2) :=: box

is a box sliding diagonally across the screen, together with a ball located at the
origin that first grows for 10 seconds and then shrinks.

3 Syntactic Properties

Before studying semantic properties, we first define various operations on the
structure (i.e. syntax) of polymorphic temporal media values, many of which are
analogous to operations on lists (and thus we borrow similar names when the
analogy is strong). We also explore various laws that these operators obey, laws
that are also analogous to those for lists [2,7].
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Map. For starters, it is easy to define a polymorphic map on temporal media,
which we do by declaring Media to be an instance of the Functor class:

instance Functor Media where

fmap £ (Prim n) = Prim (f n)
fmap f (m1 :+: m2) = fmap f ml :+: fmap f m2
fmap f (m1 :=: m2) = fmap f m1 :=: fmap f m2

fmap shares many properties with map defined on lists, most notably the standard
laws for the Functor class:

Theorem 1. For any finitem :: Media T1 and functions £, g :: T1 -> T2:

fmap (f . g) = fmap f . fmap g
fmap id = id

fmap allows us to define many useful operations on specific media types, thus
obviating the need for a richer data type as used, for example, in our previous
work on Haskore, MDL, Fran, and Fal. For example, tempo scaling and pitch
transposition of music, and size scaling and position translation of animation.

Fold (i.e. catamorphism). A fold-like function can be defined for media values,
and will play a critical role in our subsequent development of the semantics of
temporal media:

foldM :: (a->b) -> (b->b->b) -> (b->b->b) -> Media a -> b
foldM f g h (Prim x) = f x

foldM £f g h (m1 :+: m2)
foldM f g h (m1 :=: m2)

foldM f g h m1 ‘g foldM f g h m2
foldM f g h m1 ‘h¢ foldM f g h m2

Theorem 2. For any f :: T1 -> T2:

foldM (Prim . f) (:+:) (:=:) = fmap £
foldM Prim (:+:) (:=:) = id

More interestingly, we can also state a fusion law for foldM:

Theorem 3. (Fusion Law) For f :: T1i->T2, g, h :: T2->T2->T2,
k :: T2->T3,and g’, h’ :: T1->T3,if:

f2 x =k (f x)
g’ (kx) (ky) =k (gxy)
h’ (k x) (ky) =k (hxvy)

then: k . foldM f g h = foldM £’ g’ h’.

Example: In the discussion below a reverse function, and in Section 4 a du-
ration function, are defined as catamorphisms. In addition, in Section 5 we define
the standard interpretation, or semantics, of temporal media as a catamorphism.
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Reverse. We would like to define a function reverseM that reverses, in time,
any temporal media value. However, this will only be possible if the base media
type is itself reversible, a constraint that we enforce using type classes:

class Reverse a where

reverseM :: a -> a

instance Reverse a => Reverse (Media a) where
reverseM (Prim a) = Prim (reverseM a)
reverseM (ml :+: m2) = reverseM m2 :+: reverseM ml
reverseM (ml :=: m2) = reverseM ml :=: reverseM m2

Note that reverseM can be defined more succinctly as a catamorphism:

instance Reverse a => Reverse (Media a) where
reverseM = foldM (Prim . reverseM) (flip (:+:)) (:=:)

Analogous to a similar property on lists, we have:

Theorem 4. For all finite m, if the following law holds for reverseM :: T -> T,
then it also holds for reverseM :: Media T -> Media T:

reverseM (reverseM m) = m

We take the constraint in this theorem to be a law for all valid instances of a base
media type T in the class Reverse. It is straightforward to prove this theorem
using structural induction. However, one can also carry out an inductionless
proof by using the fusion law of Theorem 3.

Example 1 (Music): We declare Note to be an instance of class Reverse:

instance Reverse Note where
reverseM = id

In other words, a single note is the same whether played backwards or forwards.
The constraint in Theorem 4 is therefore trivially satisfied, and it thus holds for
music media.?

Example 2 (Animation): We declare Anim to be an instance of Reverse:

instance Reverse Anim where
reverseM (d, f) = (d, \t -> f (d-t))

Note that reverseM (reverseM (d, f)) = (d, f), therefore the constraint in
Theorem 4 is satisfied, and the theorem thus holds for continuous animations.

2 The reverse of a musical passage is called its retrograde. Used sparingly by traditional
composers (two notable examples being J.S. Bach’s “Crab Canons” and Franz Joseph
Haydn’s Piano Sonata No. 26 in A Major (Menueto al Rovescio)), it is a standard
construction in modern twelve-tone music.
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4 Temporal Properties

As a data structure, the Media type is fairly straightforward. Complications
arise, however, when interpreting temporal media. The starting point for such
an interpretation is an understanding of temporal properties, the most basic of
which is duration. Of particular concern is the meaning of the parallel compo-
sition m1 :=: m2 when the durations of m1 and m2 are different. In this paper
we simply disallow this situation: i.e. m1 and m2 must have the same duration
in a “well-formed” Media value. This approach does not lack in generality, since
other approaches can be expressed by padding the media values appropriately
(for example with rests in music, or empty images in animation).

Duration. To compute the duration of a temporal media value we first need a
way to compute the duration of the underlying media type, which we enforce as
before using type classes:

class Temporal a where
dur :: a -> Dur
none :: Dur -> a
instance Temporal a => Temporal (Media a) where
dur = foldM dur (+) max
none = Prim . none

The none method allows one to express the absence of media for a specified
duration, as discussed earlier.

We take the constraint in the following lemma to be a law for any valid
instance of a base media type T in the class Temporal:

Lemma 1. If the property dur (none d) = d holds for dur :: T -> Dur,
then it also holds for dur :: Media T -> Dur.

Note that, for generality, the duration of a parallel composition is defined as
the maximum of the durations of its arguments. However, as discussed earlier, we
wish to restrict parallel coompositions to those whose two argument durations
are the same. Thus we define:

Definition 1. A well-formed temporal media value m :: Media T is one that
is finite, and for which each parallel composition m1 :=: m2 has the property
that dur m1 = dur m2.

Example 1 (Music): We declare Note to be Temporal:

instance Temporal Note where

dur (Rest d) =d
dur (Note p d) = d
none d = Rest d

Example 2 (Animation): We declare Anim to be Temporal:

instance Temporal Anim where
dur (d, £f) =d
none d = (d, const EmptyPic)
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Take and Drop. We now define two functions takeM and dropM that are analo-
gous to Haskell’s take and drop functions for lists. The difference is that instead
of being parameterized by a number of elements, takeM and dropM are param-
eterized by time. As with other operators we have considered, this requires the
ability to take and drop portions of the base media type, so once again we use
type classes to structure the design. The expression takeM d m is a media value
corresponding to the first d seconds of m. Similarly, dropM d m is all but the first
d seconds. Both of these are very useful in practice.

class Take a where
takeM :: Dur -> a -> a
dropM :: Dur -> a -> a
instance (Take a, Temporal a) => Take (Media a) where
takeM dm | d <= 0 = none O
takeM d (Prim x) = Prim (takeM d x)
takeM d (m1 :+: m2) = let d1 = dur mil
in if d <= d1 then takeM d ml else ml :+: takeM (d-d1) m2
takeM d (m1 :=: m2) = takeM d m1 :=: takeM d m2
dropM ... = ... (details omitted) ...

Perhaps surprisingly, takeM and dropM share many properties analogous to
their list counterparts, except that indexing is done in time, not in the number
of elements:

Theorem 5. For all non-negative d1, d2 :: Dur, if the following laws hold for
takeM, dropM :: Dur -> T -> T, then they also hold for takeM, dropM ::
Dur -> Media T -> Media T:

takeM d1 . takeM d2
dropM d1 . dropM d2
takeM d1 . dropM d2
dropM d1 . takeM d2

takeM (min d1 d2)

dropM (d1+d2)

dropM d2 . takeM (di1+d2)

takeM (d2-d1) . dropM di -- if d2>=d1

I

There is one other theorem that we would like to hold, whose corresponding
version for lists in fact does hold:
Theorem 6. For all finite well-formed m :: Media a and non-negative
d :: Dur <= dur m, if the following law holds for

takeM, dropM :: Dur->T->T, then it also holds for
takeM, dropM :: Dur —> Media T -> Media T:

takeM d m :+: dropM d m =m
However, this theorem is false; in fact it does not hold for the base case:

takeM d (Prim x) :+: dropM d (Prim x)
= Prim (takeM d x) :+: Prim (dropM d x)
/= Prim x

We cannot even state this as a constraint on the base media type, because it
involves an interpretation of (:+:). We will return to this issue in a later section.
Example 1 (Music): We declare Note to be an instance of Take:



