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PREFACE

The field of ultrasonics has grown enormously in the last forty years;
it has not enly provided us with much insight into problems of basic physics
but also has found a large number of industrial and biological-medical
- applications. One of the most important basic studies by ultrasonic waves
is that of the structure of matter, in which respect ultrasonic spectroscopy
has taken a place along with optical and X-ray spectroscopy.

There are several excellent books on ultrasonics but none is devoted
exclusively to the molecular basis of ultrasonic absorption and dispersion,
nor is their treatment of this subject very detailed. We are principally
interested in the information which ultrasonics can’give on certain molecular
processes in liquids and gases, namely, on relaxation mechanisms associated
with the rate of energy exchange and the rate of structural changes in the
fluid. ' The connection between ultrasonic data, the theory of chemical
reaction rates, and the theory of the gas, liquid, and glassy states is considered.
This book is intended as a treatise on this particular aspect. of ultrasonics.
In style and content it is halfway between a textbook and a handbook. The
theories are extensively developed and we have tried to give the experimental
results as completely as possible, but only in so far as they give quantitative
information on relaxation processes. Since we hope that the book will be
useful to experimental and theoretical physicists and to physical chemists
the presentation of the mathematical development is extensive. |

In Section A we have given a connected story of the field, with almost
no formulae, so that the reader may see which parts of the detailed treatment
he may omit if his interest is restricted to part of the subject only.

‘Unpublished material is included in several sections. Moreover a number
of investigations recently published were occasioned by the writing of
this book. i

There are some important sections which we had to omit, to avoid making
the book even longer than it is: the properties of aqueous salt solutions,
including sea water, the field of polymers, and ultrasonic propagation in
solids. W. P. Mason has just published a book on the latter subject.

We wish to use this occasion to pay homage to two of our late colleagues
who were masters in ultrasonics and whose names appear often in the book,
namely, the Very Reverend Francis E. Fox, O.S.F.S., and J. C. Hubbard.

.
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NOTATION

-Amplitude of de Broglie wave (Chapter VII)

A constant

Constant in van der Waals equation (Secs. 35, 40)

Lattice distance (Secs. 89)

Coefficient in the transformation to normal coordinates (Sect. 65,
68)

Affinity (Secs. 31, 103)

Frequency factor (Secs. 55, 70)

A constant in the equation of state (Sec. 33)

Abbreviation for AC’/C,(C, — C’) (Sec. 17)

Abbreviation for (8% — 8,%)/82% (Secs. 18, 25)

A constant defined by «'/f? = A[z/(1 + w*?] + B (Secs. 97,
98, 118) :

Quantities related to the virial (Sec. 88)

Certain collision integrals (Sec. 36)

A constant

A coefficient (Sec. 61)

Constant in van der Waals equation (Secs. 35, 40)

~ Molecular constants (Burnett) (Sec. 47)

A coefficient in the transformation to normal coordinates (Secs. 65,
68) :

A constant in the equation of state (Sec. 33)

A constant in the absorption equation o'/f2 = A[7/(1 4 w*? |+ B
(Secs. 97, 98, 118)

Second virial coefficient (Sec. 35)

= BIRT (Sec. 35)

Velocity of light in a vacuum (Sec. 75)

A constant (Sec. 61)

A coefficient in the transformatlon to normal coordinates
(Secs. 65, 68) :

Specific heat per gram

Specific heat per mole, measured quasx-statxca.lls

Specific heat of internal degrees of freedom, relaxing specific heat

= C — (', specific heat of external degrees of freedom, specific
heat at infinite frequency, frozen specific heat

xi
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NOTATION

Sutherland constant (Secs. 36, 39)

Diameter of Pitot tube (Sec. 45)

Diameter of hard molecule (Secs. 82, 84)

Diffusion constant (Secs. 31, 34, 41, 87)

Symbeol indicating material differentiation (Secs. 1, 2, 3, 6)
Coefficient of thermal diffusion (Sec. 41)

Electric charge (Sec. 9)

Energy (usually per mole)

Young’s modulus (Sec. 112)

Energy of state § (per mole)

Relaxing energy

Internal energy

= E, — E,, energy difference in a two-state system
Activation energy :

Energy of activated state

Eucken number

Frequency

Frequency factor (Sec. 92)

A function (Secs. 31, 60, 61)

Maxwell distribution function of velocities (Sec. 36)
A function (Secs. 60, 61)

A force (Sec. 9)

Free energy »

Free energy of state j

Free energy of activated state

= Fy — F,, free energy difference in two-state systems

‘Distribution function of molecular velocities (Sec. 36)

A constant (Secs. 42, 45)
A constant used to idealize sound velocities (Sec. 33)
Degeneracy or weight of a quantum state

‘= 4n2pllh (Secs. 58, 61, 65)

Normalized distribution function  of shear relaxation times
(Secs. 105, 108)

Molecular distribution functions in space (Sec 87)

A function (Sec.-24)

Collision operator (Sec. 36)

= G' + 1G"”, complex shear modulus (Chapter XII)

Shear modulus at infinite frequency

Planck’s constant

Thickness of a layer (Sec. 83)
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NOTATION : xiii

A constant characterizing the forces in triatomic molecules
(Secs. 64, 66)

= E 4 pV, enthalpy or heat content

Enthalpy of state §

= H, — H,, difference of enthalpy in two-state system

Enthalpy of activated state

Hamiltonian

Perturbating Hamiltonian, Perturbation function

Interaction energy

Sound intensity (Sec. 32)

Sound intensity

Moment of inertia (Sec. 64)

An index

Angular momentum quantum number of relatxve motion

Angular momentum quantum number oi molecular rotation
(Secs. 64, 69)

Boltzmann’s constant

Constants used in Sec. 42

Normalized distribution function of compressional relaxation
times (Secs. 106, 109)

Rate constant for transition from state j to state s

Forward reaction rate constant

Backward reaction rate constant

A rate constant in the thermodynamic theory (Secs. 31, 103)

w1 Equilibrium constant

= K' + iK' Complex compr&ssmnal modulus, defined =
in Equs. 10446 R

Compressional modulus at low frequencies (quasi-static) 8

Instantaneous or frozen compressional modulus g

= K, — K, Relaxational part of compressional modulus

Hooke’s law force constant (Sec. 9)

Range of repulsive forces (Chapter VII)

Range of repulsive forces (Secs. 58, 57, 58)

Distance of nuclei in diatomic molecule (Secs. 64, 66)

Thickness of transition layer in shockwaves (Sec. 45)

Characteristic length for change of shape of high intensity wave
(Sec. 33)

Molecular distances (Sec. 90)

Molecular mass

== mym, [(my + m,), effective mass



Xiv

R

R
8

WS 2R 2
|
o

i

-

NOTATION

Molecular weight

Effective molecular weight

= M’ + iM" -Complex longitudinal modulus (defined in
Eq. 104-16) '

Low frequency (quasi-static) longitudinal modulus

= K, + %G, Instantaneous (frozen) longitudinal modulus

Refractive index (Sec. 9) '

Number of particles (Sec. 19)

Total number of moles (Sec. 27)

Number of particles per unit volume

Number of ‘particles

Number of particles per unit volume (Secs. 9, 36, 40, Chapter X)

Number of molecules in first neighboring shell (Sec. 86)

Avogadro number

Normalization factor (Sec. 64)

= —'% (P;; + Py + Pj3), hydrostatic pressure

= mw Linear momentum (in Chapter VII only)

Excess pressure in high intensity soundwave (Sec. 33)

Probability (Sec. 32)

Stress component

= P; + p, deviatory normal stress

= Py, 1#Eg ‘

Normal stress due to volume viscosity

Prandtl number (defined in Eq. 7-20)

Normal coordinates (Sec. 65)

= 4dnpllh (Sec. 61) _

A molecular quantity (Sec. 36)

Partition function (Secs. 92, 100)

Scattering cross section (Secs. 61, 62, 69)

Number of rotational degrees of freedom (Secs. 34, 38)

Distance :

Radius of a tube (Sec. 42)

Reflection coefficient of amplitude of shear wave (Sec. 108)

Constant in Lennard-Jones formula

Universal gas constant

Distance of molecule from center of cell (Sec. 86)

Real part of propagation impedance for longitudinal waves,
defined in Eqgs. (104-32, 33) '

Real part of propagation impedance for shear wave, defined in
Egs. 108-12, 14

ChapterXII
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NOTATION. - y XV

= pB,%nw Reynolds number (Secs. 7, 47)
Strain component
=(p—po)lPo=—13% (s11 + Sg9 + Sgg), condensation, defined
in' Eq. (3-1)
= s; + s, deviatory strain component, defined in Eq. (104-3)
=s; 157], deviatorystrain component, defined in Eq. (104-3)
As subscript, solvent (Sec. 29)
As subscriﬁt, shear

As subscript, running index

Entropy

Entropy of state j

=S, — S, Entropy difference between two states

Entropy of activated state

As subscript means adiabatic or at constant entropy

An expression used to “reduce’” measurements on shear waves
(Secs. 108, 109) .

Time

Temperature (Kelvin)

Temperature of external (translational) degrees of freedom

Temperature of internal (or relaxing) degrees of freedom

Temperature at the end of a reversible process (Sec. 30)

A stress tensor (Sec. 88)

Velocity of jet (Sec. 45)

Components of flow velocity

Relaxing variable (Sec. 9)

Real part of Cg (Sec. 21)

Components of unit vectors occuiring in Sec. 24

Arbitrary volume

Free volume (Sec. 85)

Volume element j, of size v’ (Sec. 88)

Mole volume

Available volume (Sec. 84)

Mole volume of state 7

=V, — V,, volume difference between states (2) and (1)

Volume of one mole of holes (Sec. 91)

Sound velocity

Macroscopic flow velocity

Molecular velocity (Chapter VII) (W is used in Sec. 62)

Work (Sec. 32) '

w;, w,, wy Components of macroscopic flow velocity
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NOTATION

W,,W,, W, Components of molecular velocity

W

S Xas Xy
%, 9,2

>

® &

SR

Xclass

B or By
B or 8,
ﬂ'

Vo OF 7

Imaginary part of C (Sec. 21)

Cartesian coordinates

Cartesian coordinates

A variable (Secs. 12, 15)

Abbreviation for sw (Sec, 21) or —iw (Sec. 24)

= m;/Zn,, mole fraction of component j '

= ny/(ny + n,), mole fraction of component (2) in a system of
two components only

Mole fraction, calculated in moles of the monomer

Component of displacement in the direction #; (Secs. 104, 108)

Components of unit vectors occurring in Sec. 24

An expression defined in Sec. 21

A mole fraction (Sec. 40)

Amplitude of vibration (Chapter VII)

Reactance appearing in the propagation of longitudinal waves,
defined in Eq. (104-32, 34)

Reactance appearing in the propagation of shear waves, defined
in Egs. (108-12, 13)

Cartesian coordinate

A variable (Secs. 12, 15, 21)

Components of unit vectors occurring in Sec. 21

A function (Sec. 62) : ;

Cartesian coordinate

= /7, (nearly equal to) average number of collisions necessary
for energy transfer

= R + ¢X Complex longitudinal impedance, defined in
Eq. (104-31)

= R, + +X, Complex shear impedance, defmed in Eq (108—12) :

Absorption coefficient of amplitude, in Centimeters™

Classical absorption, defined in Eq. (7-17)

= o — Oy, molecular absorption

Quasi-static coefficient of thermal expansion

Instantaneous or frozen coefficient of thermal expansion

= B — B, relaxing part of thermal expansion coefficient:

= ’/C

Instantaneous (frozen) value of y

Angle between the molecular axis and the line of approach of a
hitting atom (Secs. 64, 69)



NOTATION xvii

A small number

-~ A small angle

4
4f
AF

4H
Ar
AT

A symbol for variation

= C, — C,, difference of specific heats

Sluft in frequency (Sec. 52)

Change of free energy in a reaction (Sec. 27, 28)
Free energy of activation (Sec. 105)

Heat of evaporation

Amplitude of vibration (Sec. 65)

Fluctuation of temperature (Sec. 88)

Ax, Ay, Az Components of atomic vibration (Sec. 65) ‘

dp

K OT K
teg o (kz)o
K5 OF (Kg)o
R OT K,
RT' ’?S

K'

A

2
4

Fluctuation of density (Sec. 88)

Depth of the potential well in the Lennard Jones formula, defined
in Eq. (69-2)

Energy of quantum state j

An energy occurring in the expression for energy transfer, defined
in Eq. (56-6') '

= ¢ — i¢’’," complex dielectric constant (Sec. 114)

Brownian motion constant (Sec. 87)

Phase factors (Sec. 61)

Shear viscosity

Volume,. bulk or second viscosity

Polar angle

= hv|k, characteristic temperature of molecular vibration,
defined in Eq. (68-9)

= 0.815 M0%2, a temperature characteristic of the transfer of
energy from vibration to translation, defined in Eq. (58-9')

A temperature characterizing a rotational energy change, defined
by Eq. (69-5)

Quasi-static or low frequency compressnbxhty

Isothermal quasi-static compressibility

Adiabatic quasi-static compressibility

Instantaneous or frozen compressibility

Isothermal and adiabatic instantaneous compressibility

= k — R, relaxing part of compressibility

Coefficient of heat conductien (Secs. 7, 34)

Wave length of sound

Wave length of light (Sec. 75)

Mean free path (Secs. 36, 83)

A constant used in Sec. 69, defined in Eq. (69-3)
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NOTATION

= 9A4/on, chemical potential (Sec. 31)

Cosine of polar angle (Sec. 60)

Frequency of molecular vibration

= yjc = 1/4,, wave number of molecular vibration

Degree of advancement of a reaction defined in Eq. (27-5),
generalized in Eq. (31-2) '

Indicates a product

Density

Undisturbed density

p® Probability functions (Sec. 87)

‘Reciprocal of partltlon function for angular motlon and rotation
(Secs. 62, 64) ’

Relaxation time

Time between collisions, defined by Egs. (36-2, 36-3)

= 4/3/pB,2?, Lucas time, defined in Eq. (7-9)

= (4/3 7 + 7)[pB,?, modified Lucas time, defined in Eq. (7-9")

Relaxation time at constant pressure <o

Relaxation time at constant pressure and entropy

Relaxation time at constant volume

Relaxation time for s’th process

Relaxation time for shear s

Times proportional to 7 occurring in different expressions;
see Sec. 18

An apparent relaxation time defined“in Chapter XII by the
equation a'/f2 = Ar* (1 + 0?*?) + B

Angle ;

Phase angle (Secs. 11, 16)

A function (Sec. 39)

A function of composition in chemical reaction (Secs. 27, 28, 29, 31)

A function describing deviation from Maxwell’s distribution law

 (Sec. 36)

An angle

Perturbations in the distribution function g (Sec. 87)

Translational wave function

Vibrational wave function

Rotational wave function

Total wave function

= 2nf, circular frequency

Element of steric angle

Chapter VII
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‘INTRODUCTION

-All fluids absorb ultrasonic waves by a “classical”’ mechanism, namely,
loss through shear viscosity and (with very few exceptions) heat conduction,
and show a corresponding dispersion. In addition, however, fluids (with
the exception of monatomic gases and perhaps monatomic liquids) have an_
additional, “molecular,” absorption and dispersion. Tisza has shown that
this can always be formally introduced into the hydrodynamic equations by

a “bulk viscosity.” The opinion has been expressed that with the introduc-
tion of a bulk viscosity the problem is reduced to the integration of the
modified hydrodynamic equations of Stokes and Navier.

We take a different standpoint. The problem can be illustrated by an
electrical analogy. One could say that the problem of dielectric polarization
was solved by the introduction of a dielectric constant by Faraday and
Maxwell, and the only task remaining is that of formally integrating Maxwell’s
equations containing the dielectric constant. Thousands of papers on
dielectric properties testify that this is not so. Three important problems
are attacked:

- 1. What is the mechanism of dielectric polarization ?

2. How does the dielectric ““‘constant’” depend on frequency ?

3. How is the numerical value of the dielectric constant determined by
the structure of a particular substance, and how does it depend on tem-
perature and pressure ?

Exactly the same problems for uItrasomc waves form the substance of
this book: '

1. What is the molecular mechanism explaining the existence of bulk
viscosity ?

2. How does bulk viscosity depend on frequency?

3. How is the numerical value of the bulk viscosity determined by the
structure of a particular substance, and how does it depend on temperature =
and pressure?

In amplification of point 2, it is shown in Sec. 108 and Chapter XII that -
even the shear viscosity (and with it the classical absorption) is not constant
at very high frequency.



