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Editorial Policy

for the publication of proceedings of conferences
and other multi-author volumes

Lecture Notes aim to report new developments - quickly, informally and at a high level. The following
describes criteria and procedures for multi-author volumes. For convenience we refer throughout to
“proceedings” irrespective of whether the papers were presented at a meeting.

The editors of a volume are strongly advised to inform contributors about these points at an early
stage.

§ 1. One (or more) expert participant(s) should act as the scientific editor(s) of the volume. They
select the papers which are suitable (cf. §§ 2 - 5) for inclusion in the proceedings, and have them
individually refereed (as for a journal). It should not be assumed that the published proceedings must
reflect conference events in their entirety. The series editors will normally not interfere with the
editing of a particular proceedings volume - except in fairly obvious cases, or on technical matters,
such as described in §§ 2 - 5. The names of the scientific editors appear on the cover and title-page
of the volume .

§ 2. The proceedings should be reasonably homogeneous i.e. concerned with a limited and
welldefined area. Papers that are essentially unrelated to this central topic should be excluded. One
or two longer survey articles on recent developments in the field are often very useful additions. A
detailed introduction on the subject of the congress is desirable.

§ 3. The final set of manuscripts should have at least 100 pages and preferably not exceed a total of
400 pages . Keeping the size below this bound should be achieved by stricter selection of articles and
NOT by imposing an upper limit on the length of the individual papers .

§ 4. The contributions should be of a high mathematical standard and of current interest. Research
articles should present new material and not duplicate other papers already published or due to be
published. They should contain sufficient background and motivation and they should present proofs,
or at least outlines of such, in sufficient detail to enable an expert to complete them. Thus summaries
and mere announcements of papers appearing elsewhere cannot be included, although more detailed
versions of, for instance, a highly technical contribution may well be published elsewhere later.

Contributions in numerical mathematics may be acceptable without formal theorems/proofs provided
they present new algorithms solving problems (previously unsolved or less well solved) or develop
innovative qualitative methods, not yet amenable to a more formal treatment.

Surveys, if included, should cover a sufficiently broad topic, and should normally not just review the
author’s own recent research. In the case of surveys, exceptionally, proofs of results may not be
necessary.

§ 5. “Mathematical Reviews’ and “Zentralblatt fiir Mathematik™ recommend that papers in proceed-
ings volumes carry an explicit statement that they are in final form and that no similar paper has been
or is being submitted elsewhere, if these papers are to be considered for a review. Normally, papers
that satisfy the criteria of the Lecture Notes in Mathematics series also satisfy this requirement, but
we strongly recommend that each such paper carries the statement explicitly.

§ 6. Proceedings should appear soon after the related meeting. The publisher should therefore receive
the complete manuscript (preferably in duplicate) including the Introduction and Table of Contents
within nine months of the date of the meeting at the latest.

§ 7. Proposals for proceedings volumes should be sent to one of the editors of the series or to
Springer-Verlag Heidelberg. They should give sufficient information on the conference, and on the
proposed proceedings. In particular, they should include a list of the expected contributions with their
prospective length. Abstracts or early versions (drafts) of the contributions are helpful.
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Le "Séminaire de Probabilités" atteint cette année |’age

inespéré de 2S5 ans.

La situation des probabilités a bien changé en un quart
de siécle. Nous avons essayé de suivre cette évolution
alors que les sujets tendaient a se diversifier et Ile

volume des publications a augmenter.

Nous n’avons ni le désir, ni les moyens, de nous trans-
former en journal mathématique pourvu d’un vaste comité

de rédaction.

N

Cela nous ameéne, dés ce volume, mais encore davantage a
partir du volume XXVII en préparation, a concentrer a
nouveau nos efforts sur nos thémes traditionnels : calcul
et analyse sfochastiques, étude du mouvement brownien et

sujets connexes.

En outre, nous espérons, comme autrefois, accueillir lar-

gement des articles d’exposition.

J.A., P.-AM., M.Y.
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Stochastic Calculus and the Continuity of Local Times of Lévy Processes

Richard Bass* and Davar Khoshnevisan

1. Introduction. Let Z; be a one dimensional Lévy process with characteristic func-

tion
Eexp(iuZ,;) = exp(—ty(u)),
where
(1.1) Y(u) = —iau + %azuz - / (€™ — 1 — duzl <1y )v(dz).

Here v satisfies [(1 A 2?)v(dz) < co.

We are interested in those Lévy processes for which 0 is regular for {0} and either
0% > 0 or (R — {0}) = oo. In this case (see [K]) there exists a bounded continuous
function g that is a density for the 1-resolvent:
(1.2) [f@ae —nds=B* ["etza, fzo, yer

0

(If G(z,y) is the Green function for Z; killed at an independent exponential time with
parameter 1, the relationship between g and G is given by g(z) = G(0,z) = G(a,a +z)
for any a € R and G(z,y) = g(y — z).)

For each z,

(1.3) 9(z) = %/e_i“zﬁ;(—wdu.

For each z, g(z — -) is the 1-potential of an additive functional L7 that is continuous in
t. Moreover, a version of Lf(w) may be chosen that is jointly measurable in (z,t,w).
See [GK] for details. LF is called the local time of Z; at z. LF is also a density of

occupation time measure: if f > 0,

(1.4) /0 t £(2,)ds = / f(z)LEdz, as..

A number of people have studied the question of the continuity of L} in the space
variable (see [Bo], [Me], [GK] and [MT]), culminating in the works [B1], [BH], and [B2],
where a necessary and sufficient condition for the joint continuity of Lf in ¢t and z is

given.

* Research partially supported by NSF grant DMS-8822053



The purpose of this paper is to give a stochastic calculus proof of the following
sufficient condition for joint continuity. Let ¢ : R — [0, 00) be defined by

(1.5) oi(z) = —-/(1 cosu:.::)R,e1 T '/’(U)
Let d(a,b) = ¢(b— a) and let H(u) be the logarithm of the smallest number of d-balls

of radius less than u that are needed to cover [—1,1]. Define

6
(1.6) F(6) = /0 (H(u))}du.

Theorem 1.1. (a) If F(0+) < oo, then L7 has a jointly continuous version.

(b) For each t,

; |L3 — L3 2\1/2
hn;lsoup {a,b: :(:Eb)a}saq F—(m & 2(51? HP% wn
Theorem 1.1(a) was first proved in [BH], where it was also remarked that the

entropy condition was equivalent to one involving the monotone rearrangement of ¢.
Part (b) was also proved in [BH], with, however, the constant 2 replaced by a larger
constant (namely 416). In [B2] it was shown that part (b) holds with the constant 2
under the additional assumption that ¢ is regularly varying (but not slowly varying)
and that the constant 2 is sharp. (The principle result of [B2] was that the condition
F(0+) < oo is necessary as well as sufficient for joint continuity.) Marcus and Rosen
[MR] have recently obtained necessary and sufficient conditions for the joint continuity
of local times of certain Markov processes. Theorem 1.1 for symmetric Lévy processes
is a special case of their results.

In Section 2 we prove Theorem 1.1 assuming that esssup, L < oo, a.s. We establish
this latter fact in Section 3.

2. Modulus of continuity. Our proof is modeled after that of [McK]. Let us begin
by assuming for this section that esssup,L¥ < 0o, a.s. Let R be an exponential variable

with parameter 1, independent of Z;. Since g(z — ) is the 1-potential of L¥, we have

(2.1) E*LY% = g(b—a).



Proposition 2.1. |g(a) — ¢(b)| < ¢*(a —b).

Proof. Let T; = inf{t: Z, = z},S = T, AT}. Since L7 increases only when Z, is at z,
the strong Markov property at time S yields

lg(a) — g(b)| = |E°L% — E°Ly| = |E°[E?s Ly — E?*Ly; S < R)|
< EOIEZSL?{ —EZSL,M
= E°(|E°L% — E°L%|; S = Tu] + E°[|E°Lg; — E°Ly|; S = Th)
= |9(0) — g(b — a)|P°(S = Ta) + lg(a — b) — g(0)|P°(S = Ty)

Since g(z) = E°L% < E*L% = g(0), then
lg(a) — g(b)] < 2¢(0) — g(b— a) — g(a —b).
By (1.3) and (1.5), the right hand side equals ¢?(a — b). O
Using (2.1) and the Markov property,
(22) Mg = g(a— Zing) — 9(a — Zo) = Ling
is a martingale with My = 0. Fix a and b and let N, = M? — M®. Let L} = esssup,L¥.

Proposition 2.2. (N,N), < 2p?%(a — b)L}

Proof. Let N¢, N4 be the continuous and purely discontinuous parts of Ny, respectively.
We first estimate (N¢, N¢),.
Let

(23) W(z,z) = [{g(a - (z +2)) —g(a — )} — {9(b— (z + 2)) — 9(b — 2)}].

Since L¢ and L are both continuous in ¢, the jumps of N, are the jumps of g(a—Z;)
—g(b— Z;). Hence

[N, N, = > ANZ= Y (W(Z,-,AZ,)).

s<t s<tAR
By the definition of Lévy measure, EY ", ., 14(AZ,) = v(A)t if A is a subset of R
that is a positive distance from 0. By the Markov property and the translation invariance

of the increments of Z,, ), ., 14(AZ,) — v(A)t is a martingale. Taking the stochastic
integral of 15(Z,-) with respect to this martingale, we see that ) ., h(Z,-,AZ,) —



fol J h(Z,-,2z)v(dz)ds is again a martingale, where h(z,2) = 1p(z)14(z). Taking linear

combinations and limits, we deduce that

[N% N%ar — /0 e / W(Z,-,2)*v(dz)ds

is a local martingale. Hence it follows that

(N4, Ny, = /0 e / W(Z,s—,2))?v(dz)ds.

Since Z, has only countably many jumps, we get

(24) (N4, N9, = / " / (W(Zs, 2))?v(dz)ds
< / / (W(z, 2))2 LEdz v(dz)
< L://(W(z,z))zd:c v(dz)

- %//lW(u,z)lzdu v(dz) (Plancherel’s theorem)
™

where W(u, z) is the Fourier transform of W(:, z), z fixed.
By (2.3),

W(u,z) = 5(—u)({ei“(u-z) _ eiua} _ {eiu(b—g) _ eiub})
— ?(_u)eiua(e—iuz _ 1)(1 _ eiu(b—")).

Since |e'*f — 1|2 = 2(1 — cos §),
(2.5) / / W (u, z)|?v(dz)du = 2 / |5(—u)|?|1 — '*(=a)2 / (1 — cosuz)v(dz)du
=4 [ (1= cos(u(b — a))g() Rep(w) d,
where ¥?(u) = (u) — 2o?u?. Substituting (2.5) in (2.4), we obtain

(2.6) (N4, N9y, “L

-2 [ - con(u(s — @))Igw)PRe (u) du.

Next we estimate (N¢, N¢),. If f is a smooth function and we write K, for the

martingale part of f(Z:ar), then by Itd’s formula,

tAR
Ki = / f'(Zs-)odB,,
0



where B, is a standard Brownian motion. Then

tAR

(2.7) (ke K%)= o | M @yrs = o | @
<o [P Lt
<o’ [(f(e)Pde
— azL:—l— / \Fi(w)Pdu  (Plancherel)
=027 [ luPIfw)Pdu.

Approximating g.5(-) = g(a —-) — g(b— -) by smooth functions in a suitable way, taking
limits, and noting that G,s(u) = g(—u)(e*® — e'*?), we get

(NC,NC)g < 02&/u2|'g~(_u)l2leiua _ ei“b|2du

=24 / 7 ()1 — cos(u(b — a)))du.

T

Adding to (2.6) yields
(2.8) (N,N), = (N¢,N°), + (N¢, N),
< 22 [ 19PRe p(u)(1 — cos(u(b - a)))d.

Finally, from (1.1), Ret(u) > 0. So

(2.9) P(z) = /(1 cos u:::)Re1 n ¢(u)
e+ $(u))
=7 [ o)

== /(1 — cosuz)[g(u)|*(1 + Re¢(u))du,
since g(u) = (1 + ¢(u))~*. Comparing (2.9) to (2.8) proves the proposition. O

Proposition 2.3. Let ¢ > 0. There exists Jo > 0 depending on € such that if X, is
any square integrable martingale with jumps bounded in absolute value by Jo and with

(X, X): continuous, then exp(X, — (1 + €)(X, X)¢/2) is a positive supermartingale.
Proof. Take Jp small enough so that |[e* — 1 —z| < (1 + €)z?/2 if |z| < Jo. Let

Ye = Xe — (1+ )(X, X)e/2



By It6’s formula,

' | R -
eV =1 +/ e¥-dY, + —/ e -d(Y,Y°), + ) (¥ — V- — eV -AY))

i t t
=1+/ e“-dx,-(LJ’—e)/ ey'-d(X,X),+l/ e¥-d(X°, X°),
0 2 0 2 0

+) e¥r-(eAY —1-AY,)
s<t

t t
=1+ local martingale — %/ e¥e-d(Xc,X°), — %/ e¥-d(x4, x4,
0 0

+ Z efr-(eA%r —1- AX,)

s<t

Since (X%, X?%); — 3, <.(AX,)? is a local martingale,

t
(2.10) e¥* =1+ local martingale — %/ e¥*-d(X°,X°), + local martingale
0

1 g
- ;6 X:tzy"(A)\’,)2 +ZC“‘(6AX' —-1-AX,).
s<t s<t

But eAX: —1 - AX,—(14¢€)(AX,)?/2 < 0 by our selection of Jo. Hence (2.10) exhibits
exp(Y:) as a local martingale minus an increasing process. O

Write P for P°.
Corollary 2.4. P(sup,<, |X,| > A+ (1 + €)(X, X),/2) < 2e7*.
Proof. Reducing the continuous part of X; by stopping times, we may assume X,
bounded, as long as our probability bound does not depend on the L* norm of X,.

We can then write e¥* = K; — V;, where K, is a martingale with Ko = 1 and V; an
increasing process with V5 = 0. Then by Doob’s inequality,
P(supe™ > &) < P(sup K, > ¢e*)
s<t s<t

< e EK;=e¢EK, =e>.

This proves P(sup,<; Xs > A + (1 + €)(X,X):/2) < exp(—A). Applying the same
argument to —X proves the corollary. O

Under the assumption L} < 0o, a.s., we can now prove Theorem 1.1.



Proof of Theorem 1.1. Let N, = M? — M} as above, F(§) defined by (1.5). Since
the potentials of L¢,z and L%, ; are bounded. N; is square integrable ([DM], p.193).
Clearly FI(§) — 0 as § — 0. Also, ¢(6) — 0 as § — 0 by the continuity of g, hence
H(u) — oo as u — 0, hence §/F(§) — 0 as § — 0.
Let a, 8 be > 0 such that af > 1, let € > 0, set § = |b — a|, and set n = ©(§). Let

X. = BF(n)n~%Ny.

Since the jumps of N, are bounded by 2sup, |g(z — a) — g(z — b)| < 2¢%(b — a), the
jumps of X, are bounded by 26F(n), which will be less than the Jo of Proposition 2.3
if § is small.

Now apply Corollary 2.4: if § is sufficiently small,

(2.11) Plaup|M; ~ M;| > aF(n) + (1 + €)F(n)L})

d+e +6) F(n)
'I

< P(sup |Ns| > aF(n) + ——F—5=(N,N):) (Proposition 2.2)

= P(sup | X,| > oBF*(n)/n* + (X, X))

< exp(—aﬂFz(n)/nz)-

A standard metric entropy argument (see, e.g., [D]) and (2.11) shows that we can
find a version of M{ that is jointly continuous in ¢t € [0, R) and z € Q and such that
for each K > 0,

(2.12) P(limsup sup sup IM‘—‘ >cla+(1+€)pBLy)=0
710 {a,b€QN[—K,K]:p(a—b)<n} s<t F(‘P(a b))

for each a, # > 0 such that a8 > 1. Here Q denotes the rationals. By being a bit more

careful with the constants in the metric entropy argument, one can show that one can

in fact take ¢ = 1.

Fix an w not in the null set for any a,f3,€ rational, K a positive integer, take
K > sup,,(1Z:] + 1), @ € [(L{(@))2, (1 + )(L; (@))/?], and § = (1 + ¢)/a, and then
let € — 0. We thus get

M

: |M; 1/2
(2.13) lim sup sup sup ————3. < 2(L¥)'/?, as.
2P ety <n) o Flpla =) = XE)

By Proposition 2.1, |g(z — a) — g(z — b)| < ¢?*(6). Since n = o(F(n)) as n — 0, (2.2)
yields (2.13) with M? — M! replaced by L%, — L%, p. Arguing as in [GK], one can



