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Preface

In commemoration of his retirement from the University of California, Berkeley,
an “International Conference on Functional Analysis and its Application in Honor of
Professor Tosio Kato” was held on July 3 through 6, 1989, at Sanjo Conference Hall,
University of Tokyo, the university where he began his academic career. The Organizing
Committee, which consisted of Hiroshi Fujita (Meyji Univ.), S. T. Kuroda (Gakushuin
Univ.), and Teruo Ikebe (Kyoto Univ., chairman), selected invited speakers mostly from
among his students, students’ students, and some recent collaborators. The Conference
was followed by a “Symposium on Spectral and Scattering Theory” held on July 7
through 9 at Gakushuin Centennial Memorial Hall, Gakushuin University, Tokyo.

The Conference received financial supports from the Inoue Foundation for
Science and the Japan Association for Mathematical Sciences, and the Symposium
from Gakushuin University. We express our gratitude to these organizations.

Speakers and participants of these Conference and Symposium wish to heartily
dedicate this volume to Professor Kato in celebration of his seventieth birthday.

H. Fujita
T. Tkebe
S. T. Kuroda
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Spectral Concentration for Dense Point Spectrum

JaMEs S. HowLAND!

Division of Physics, Mathematics and Astronomy
California Institute of Technology
Pasadena, CA 91125
and
Department of Mathematics?
University of Virginia

Charlottesville, VA 22903

Abstract. The degree of spectral concentration at an eigenvalue Ay em-
bedded in a dense point spectrum is shown to depend on the extent to
which Ag is approximated by other eigenvalues whose eigenfunctions have
appreciable overlap with the eigenvectors of Ag. The examples considered
include rank one perturbations and time-periodic perturbation of Floquet
operators of discrete system.

This article is concerned with the perturbation theory of an eigenvalue Ag embedded
in a dense point spectrum. This occurs, for example, in connection with Anderson
localization or with time-periodic perturbations of discrete systems [2,3,8]. The dif-
ficulties involved may be illustrated by recalling the results of Simon and Wollf [14],
who show that for certain oprators Hp with dense pure point spectra, a rank one
perturbation leads to an operator

H(IB) = Ho + ﬂ(a ‘10>‘707

which is pure point for almost every 3. This leaves open the possibility of singular
continuous spectrum occurring for arbitrarily small f. The situation is reminiscent of
the Stark effect, in which an (isolated) eigenvalue Ay disappears into an (absolutely)
continuous spectrum for (all) small 3.

We shall examine the problem from the point of view of spectral concentration,
which was originally invented by Titchmarsh [15] to study the Stark effect. We show
that the degree of concentration depends on the extent {o which Ay is approximated by
other eigenvalues whose eigenfunclions have appreciable overlap with the eigenvector

ISupported by NSF Contract DMS-8801548.

2Permanent address.



of Ag. A similar phenomenon occurs in the adiabatic theorem for dense point spec-
trum, with regard to the degree to which the actual motion is approximated by the
adiabatic motion [1].

In order to treat these problems, we must first note that the classical theory for
isolated eigenvalues extends to the non-isolated case, a fact which seems to have been
noted first in the literature by Greenlee [6]. We summarize the necessary results in
the first section.

We then treat several examples. We first consider rank one perturbations, as dis-
cussed by Aronszajn and Donoghue [5], and Simon and Wolff [14], and then generalize
to certain compact perturbations, as in [7]. Finally, we discuss the physically inter-
esting case of a time-periodic perturbation of a discrete Hamiltonian, which has been
of considerable recent interest [2,3,8].

The author wishes to thank Barry Simon and David Wales for the hospitality of
Caltech, where this work was done.

§1 Spectral Concentration for Non-Isolated Eigenvalues.

We shall assume throughout this section that Hg = [AdEg(A), 0 < 8 < fBp, is a
family of self-adjoint operators on a Hilbert space H, with Hz — Hy in the strong
resolvent sense as # — 0; and that Ag is an eigenvalue of Hy of finite multiplicity m.
Let Py be the projection onto the kernel of Hy — Aq.

We say that the spectrum of Hg is concentrated at Ag on a family of Borel sets Sy
iff

(1.1) Es[Sp] — Po

strongly as # — 0. For p > 0, we say that Hg is concentrated to order p at Ag if the
Lebesgue measure

(1.2) |Sg| = o(B?), asf —0.

A pseudoeigenvector for Hp of order p, or more briefly, a p-pairis a family ¢z of
unit vectors and a real-valued function Az such that

(1.3) (Hg — Ag)ps = o(B"), asp —0.

An asymptotic basis of order p for Hg at Ag 1s a family {<pg),/\g) ci=1,.. .,m} of
p-pairs, such that /\g) — Ag and gog) — ¢U) where (1) ... (™) is a basis of PoH.

There are two main results of [13]. The first is the equivalence of spectral concen-
tration and the existence of p-pairs. The following is proved in [4], [10, p. 473], and
[13] for isolated eigenvalues, and in [6] for non-isolated.

1.1 THEOREM. If Hp has an asymptotic basis of order p at Ao, then the spectrum of
Hpg is concentrated at Ay to order p.

The set Sg is taken as the union of m intervals, centered at /\g), and of width 4
where v5 = o(87).



ProoF: The proof is exactly the same as that of Theorem 5.2 of [10, p. 473], except
that since Ag is not isolated, it must be shown at the end that if Q = I — Py, then

(1.4) s ;133) Es[Sp)Q = 0.

Let J. = (Ao — €,A0 + €). For B small, Ss C J, so that
|Es[Sp]Qu| < |Eg[Je]Qul .
In the limit, by [10, Theorem 1.15, p. 432], this gives
lim | E5[S5]Qu| < |Eo[J.]Qul -

As € — 0, the right side converges to |PoQu| = 0. §

1.2 Remark. Riddell also proves the converse result [13, p. 384], that if there is
concentration to order p, then an asymptotic basis can be found. We will not need
this result, since in practice concentration is usually proved by constructing p-pairs.

The second result of [13] is that p-pairs can be constructed by the perturbation
method.

Assume that

(1.5) Hp = Ho + BV,

where V 1s Hg-bounded, which implies strong resolvent convergence. The reduced
resolvent

(1.6) S=(Ho—X)"'Q

is a well-defined self-adjoint operator, although it is bounded only if Ay is isolated.
1.3 THEOREM. Assume that for k=1,--- p, the operators

(1.7) X1 Xy X Py

are all bounded, where each X; is either S or SV. Then Hg has an asymptotic basis
of order p at Ag.

The idea 1s that X --- X} P are exactly the objects needed to be able to solve the
perturbation equations out to order p. For multiplicity m = 1, these equations are
simple, and as shown in [6], Riddell’s proof [13, p. 391] works without change, if one
remembers that S need not be bounded. For m > 1, Riddell’s inductive procedure
is less transparent but seems to go through as well. The author has given a different
proof for the non-isolated case in [9], basing the argument on Nenciu’s idea [11] of
applying the adiabatic theorem.

By similar methods, one also obtains



1.4 THEOREM. Let
(oo}

(1.8) v(g)=>_pv®
k=1

be bounded and analytic for || < o. Assume that the operators

(1.9) X1 Xy X, Py

are all bounded, where each X; is either S or SV, for some k < p. Then
Hpg = Ho+V(B)

is concentrated at Ag to order p.

§2. Applications.

We shall now give some applications of Theorem 1.3. All will be deduced from a
simple corollary. As above, we let Ag be an eigenvalue of Hy of finite multiplicity m,
and S = (Ho — Ao) ' Q the reduced resolvent.

2.1 THEOREM. Let Hg = Ho+ BV where V is Hy-bounded. If SPV is bounded, then
Hp is concentrated at Ao to order p.

ProoF: This follows from Theorem 1.3 because the operators X; X, --- X, are prod-
ucts of operators of the form S*V with 1 < k < p. It is necessary to show that
boundedness of SPV implies boundedness of S¥V for 1 < k < p as well. Let
E = Eg(Ao—1,A0 + 1) and write

S*V = (ES*?) (S*V) + (1 — E)S*V.
Both factors of the first term are bounded, while for the second, we have

(1—E)S*V = lim [V (Hy — 2) " * (1= E)]*.

z— Ao

The quantity in brackets on the right 1s bounded and norm analytic at z = Ay since
V i1s Ho-bounded. |

We shall also need a real variable lemma [1,7,14].
2.2 LEMMA. Ifa, >0 and ) .7 a, < oo then for any sequence A, and any a > 1,
(oo}

(2.1) >y A=Al < o0

n=1



for a.e. \.

EXAMPLE 1: RANK ONE PERTURBATIONS [7,14]. Let Hg be pure point, of finite
multiplicity, with Hge,, = A,e,, n > 0, and e,, a complete orthonormal set. Define

(2:2) Hy = Ho+ B, 9)p

where |¢|? = 1. Since the perturbation is of rank one, we may assume that Hy has
simple multiplicity. We are, of course, thinking primarily of the case in which the
eigenvalue A, are dense in some interval.

One has, for a fixed eigenvalue Ag,

(2.3) SPVu=>" (A — 20) 7 {p, en)(u, 0)en,
n#0

so that SPV is bounded iff

(2.4) > (A = 20) "7 [, en)]* < 0.
n#0

Define, for p > 1, the set

(25) W= {*: S k= 77 [, ex)l” = oo, for every n > 1},
k=n

and

N = || N,.

s

Il
-

p

According to Lemma 2.2, N, has Lebesgue measure zero if

[o.e]

(2.6) S K, en)|'” < oo

n=0

Hence, if {(p, e,) decays exponentially, N, has measure zero. By Theorem 2.1, we
have

2.3 THEOREM. If (2.6) holds, then N, has measure zero. If \g ¢ N,, then Hy Is

concentrated at Ag to order p.

For p = oo, this means that Hg is concentrated to order p for every finite p.

The set N, consists of points which are well approximated by eigenvalues A,, whose
eigenvectors e, are substantially disturbed by the perturbation (-, ). Thus, the
degree of concentration depends on the degree to which Ay can be approximated by
such A,’s. Condition (2.6) assures us that N, depends only on the tails {\; : k > n}
of the eigenvalue sequence.



ExAMPLE 2. COMPACT PERTURBATIONS [7]. A natural generalization of preceding
example is the following. Let Hy be as above, and let

H5=Ho+ﬂv,

where V is self-adjoint and satisfies
(2.7) 3 Vea|'? < 0.
n=0

This is a strong condition which even for p = 1 implies that V is trace class (cf. [7]).
For any A, define

(2.8) So(A) = (Ho — A) ™1 Q(N),

where I — Q(A) is the projection onto ker(Ho — A) (which may be zero). Then

So(APVu= Y (A =A)7"(u,Ven)en,

An#A

so that

[So P Vul* < [uf? 37 (A =177 [Ven|*

An#A
which is finite for a.e. A by (2.7) and Lemma 2.2.
Define
(2.9) N, = {/\: > (,\,,—A)-2P|ve,,|2:oo}.
An#EA

2.4 THEOREM. If (2.7) holds, then N, is of mesure zero. If \g ¢ N,, then Hg is
concentrated to order p at Ag.

ExAMPLE 3. FLOQUET HAMILTONIANS [2,3,8]. Next, let Hy be discrete, with
eigenvalues 0 < A} < Ay < --- of simple multiplicity. Let Hpe, = A, e,, |en]? = 1.
Let V(t) be bounded, strongly C™ and 2x-periodic. We consider the time-dependent
Hamiltonian

Hpg(t) = Ho + BV (1),

or, more precisely, its Floquet Hamiltonian:

d
Kp = i+ Ho+ BV (1)

on Lo(0,27) ® H with periodic boundary condition u(27) = »(0). For § = 0, K has
pure point spectrum, with eigenvalues

A,,,k =n+4+ A\



(n=0,£1,£2,--- ,k =1,2,---). We shall assume that all A, x are of finite multi-
plicity, which implies that they are dense, since the spectum of Ky is periodic.

Such operators have been of considerable recent interest as a problem in quantum
stability, which may be said to occur when Kg has pure point spectrum. (See [3,8],
and especially [2].) Under conditions weaker than those assumed below, the author
[8] showed that Kz has no absolutely continuous spectrum.

Since the degree of spectral concentration can be regarded as a measure of the
stability of an eigenvalue under perturbation, the following result seems of interest in
this context.

Define, for intergers p > 1, and real y > 0, the set

(2.10) N(p,v) = /A:ZI(/\k +n—p) P =0
n,k

where the prime on the summation means that terms with A\, + n = g are omitted.
By assumption, these terms are finite in number.

2.5 LEMMA. N(p,~) has measure zero if 1 < p < 4. Hence for any fixed § > 0, the
set

Neo=|JNp.p+9)

p=1

has measure zero.

ProoF: The set N(p,v) is periodic, with period 1, so it suffices to prove that N(p,v)N
J is of measure zero, where J =[0,1). Fix p € (0,1) and write the sum in (2.10) as

S ¢ % Lo

Ax+n€J  Ap+n¢J

The second term is analytic on (0,1) and thus always finite. The first term can be
treated by observing that Ay +n € J for at most one value ny of n. Thus the term
is equal to
5 O e
)

where ¢y, is zero if A; + n is never in J, and is one otherwise. By lemma 2.2, this sum
1s finite for a.e. pif p < 7.

2.6 THEOREM. Assume that Ko has finite multiplicity, that V(1) is strongly C*°, and
that the gap
AN, = )‘n+1 — Ay

between eigenvalues satisfies
A), > cn®



for some o > 0. Then the spectrum of Kz is concentrated at Ao to all orders if

Ao ¢ Noo.

PROOF: According to [8], K is unitarily equivalent to an operator of the form

= d -
Ky =iz + H+ BAW(L,5)A,

where H is discrete and diagonal in the same basis e, as H, W(t, 3) is bounded and

analytic in 3, and
A= Z n= (-, en)en.
n

For V() in C*, v may be taken as large as desired.
For p fixed, choose v > p + 8. By Lemma 2.5, S(A)? A is bounded. Thus if we
expand the perturbation

V(B) = AW (B)A = Zﬂ’“AW(’“)A.
k=1

we will have

SPA)VE) = (SP(A)A)(WEA)

bounded for all k. Using Theorm 1.4, and the argument in the proof of Theorem 2.1
gives the result. |

REMARK. It is possible to keep track of the relationship between «, the degree of
smoothness of V(¢), and the order of concentration that can be expected.

¢3 Remarks.

There are two points that need clarification. In the first place, s concentration
really relevant here? For example, in [2,3], a KAM-type argument leads to an explicit
diagonalization of Hg, so that the spectrum is concentrated on a one poimnt set, the
perturbed eigenvalue. Of course, [2,3] contain strong assumptions, like analyticity,
but the question is still in order.

A complete answer would require a rather complete theory of these operators, which
we are at present far from having. Nevertheless, the following example is instructive.

Let v be a measure on [0, 1] which is singular continuous, for which the set N of A
where

(3.1) /OI(A—t)_zu(dt) =0

is of measure zero, but dense. Let the operator Hg of multiplication by A on L?(v)
be perturbed by the vector 1:

Hﬂ = HO +ﬁ<)1>1



(cf. [14]). Then Hp is pure point for a.e. 8, but can have no point spectrumin N [8,14].
This means that Hz cannot have an eigenvalue A(f3) which varies continuously, as in
the case [2,3]. The author finds it probable that worse examples can be constructed.

In the second place, how do we know that all the ergenvalues of Hy are not in the
bad set N, ? In this case, our theorems would say nothing! While it might be possible
for this to occur, the following result shows that it is in some sense rare.

Recall that if H is a self-adjoint, we write P(A) for the projection onto the kernel
of H — A (which may be trivial), Q(A) = I — P()), and S(A) = (H — X\)~'Q(\) for
the reduced resolvent. By definition, A ¢ N,(H, V) iff S(A)?V is bounded.

3.1 THEOREM. Let H = Ho + V, where V is Ho-bounded, and assume that A\ ¢
N,(Ho,V) and that So(A) is compact. If A is an eigenvector of H or Hy, we also
assume that its multiplicity is finite.

(a) if A ¢ o,(H), then A ¢ N,(H,V).
(b) if A€ op(H), then A ¢ N,_1(H,V).

Hence, in general, N,_1(H,V) C N,(Ho, V).
If we apply this result to Example 1, where

‘Hﬁ = }IO +/B<790>907

we see that N,_1(Hg) C N,(Hp). According to [8] and [14], however, for any fized
null set N
Eﬁ [N] =0

for a.e. A. Thus if
"l enl? < oo,

then for a.e.f, A ¢ N,_1(Hp) for every eigenvalue of Hg. This indicates that having
eigenvalues in N, is an unstable condition and does not obtain in the generic case.
Thus, here, the perturbation problem

Hy = Hy+ B( o)

with
H{ = Ho+ Bo(,e)p

has N,_1(Hj) No,(Hf) = 0 for a.e. fo.
We sketch a proof, leaving some details about domains to the reader.

PRrRoOOF OF THEOREM 3.1: First, note that we can assume that A ¢ o,(Hg) by writing
(32) H=H0+V=(H0+P0)+(V—P0):H(’)+V’,
where Py = Py(A). Then

(3.3) Ro(A)PV" = [So(A) + Po(V — Fo)
== So(A)pV + })()V - P()
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is bounded and compact for p = 1. Thus, replacing Hy and V by Hj and V', we can
assume A ¢ o,(Hp), and hence that 7 + Ro(A)V has a bounded inverse.
For part (a), observe that (suppressing \)

(3.4) R —R*=) RER**— RE'R -+
k=1
=Y RE'Ro— RIR** =) REVR -+
k=1

k=1

= RoVR™ + ) REVR**+1.
k=2

Solving for R™ gives
(83.) R*V = [I+ RoV]'REV = 3 " REVR"**1V.
k=2

It follows by induction that REV bounded implies R?V bounded.
For (b), suppose that A € g,(H). Then every eigenvector 9 satisfies

(3.6) ¥ = —Ro(A)V'9
so that
(3.7) Ro(A)P ™'y = Ro(A) V9

or, in other words,

Ro(A)P~1P(X)

is bounded. As above, write
H=H+P=Ho+(V+P)=Ho+ V"

Then

(3.8) RC'W' =RCW 4 RE'P

is bounded, while

(3.9) (RYP~W' =8P~V 4+ (PV + P).

The last two terms are bounded, so SP~! is bounded iff (R')?~'V' is. Applying (a)
now yields the result. |



