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PREFACE

Much of the traditional approach to linear model analysis is bound up in complex
matrix expressions revolving about the usual generalized inverse. Motivated by
this important role of the generalized inverse, the research summarized here began
as an interest in understanding, in geometric terms, the four conditions defining the
unique Moore-Penrose Inverse. Such an investigation, it was hoped, might lead to a

better understanding, and possibly a simplification of, the usual matrix expressions.

Initially this research was begun by Francis Hsuan and Pat Langenberg, without
knowledge of Kruskal’s paper published in 1975. This oversight was perhaps fortu-
nate, since if they had read his paper they may not have continued their effort. A

summary of this early research appears in Hsuan, Langenberg and Getson (1985).

This monograph is a summary of the research on {2}-inverses continued by Al
Getson, while a graduate student, in collaboration with Francis Hsuan of the Depart-
ment of Statistics, School of Business Administration, at Temple University,

Philadelphia.

The literature on generalized inverses and related topics is extensive and some
of what is present here has appeared elsewhere. Generally, this literature is not
presented from the point of view of {(2}-inverses. We have tried to do justice to
the relevant published works and appologize for those we have either overlooked or

possibly misrepresented.

While it is our intention here to present a comprehensive study of {2}-inverses
in statistics, we feel that this work is be no means exhaustive. Much work remains

to be done, particularly in the area of multivariate analysis.

We wish to thank Dr. D. Raghavarao, Chairman of the Statistics Department at
Temple University, for his encouragement of the publication of this work. We also
thank the editorial staff at Springer-Verlag for their comments and suggestions on

the preparation of the manuscript.



Finally the first author would like to thank his friends and colleagues in
CBARDS at Merck, Sharp and Dohme Research Laboratories for the support he

received in completing his research and degree.

A.J.G, F.C.H.
Philadelphia, PA
June 1988
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CHAPTER 1
INTRODUCTION

A {2}-inverse for a given matrix A is any matrix G satisfying the second

of the four conditions defining the unique Moore-Penrose Inverse of A:

(1) AGA = A (1.1)
(2) GAG =G (1.2)
(3) (AG)Y = AG (1.3)
(4) (GAY = GA. (1.4)

It is possible to construct matrices satisfying only a specified subset of
the above conditions, for example (i),(j),...,(k). Such matrices, known as
{i,d,...,k}-inverses, will be denoted A;tj,...,k. In this notation A1+ is the usual
g-inverse. Other classes of generalized inverses have been proposed in the
literature and a number of texts have treated the subject in considerable
depth. These inciude Pringle and Rayner (1971), Rao and Mitra (1971), and
Ben-Israel and Greville (1974). In these works, the focus is generally on the
{1}-inverse. In contrast, {(2})-inverses, as their name implies, remain the
stepchild of the {l}-inverse despite their importance in numerical analysis

and electrical network theory [Ben-Israel and Greville (1974), pp. 27, 76l.

The main function of the {l}-inverse is in solving a system of linear
equations, especially when the system has deficiencies in rank, or is plainly
inconsistent. [t is our intention here to provide a comprehensive study of
the {2})-inverse: its geometric characterization, algebraic properties, and
uses in statistics. As we shall demonstrate, the {2}-inverse has several
additional uses ranging from characterizing quadratic forms to computing

algorithms in linear models.

When it comes to their applications in statistics, {2}-inverses are
ubiquitous but not indispensible. In the statistical literature, {2}-inverses
have had only limited exposure. As symmetric {1,2}-inverses, their role in

least squares estimation was explored by Mazumdar et al. (1980), and by



Searle (1984). They have also been mentioned in connection with quadratic
forms by several authors, including Carpenter (1950), Khatri (1963, 1977) and
Mitra (1968). However, in these works the results were not viewed
specifically in terms of ({2}-inverses and the actual importance of ({2}-

inverses was clouded.

One reason for focusing on the {2}-inverses is that they provide an
elegant mathematical language to express many ideas and results which
otherwise involve cumbersome and laborious matrix expressions. This
monograph contains numerous examples illustrating this simplicity. In this
respect it is analogous to comparing different levels of computer
programming languages. Assembly language is powerful but cumbersome.
Even for a simple task such as counting from one to one hundred requires a
long series of statements. On the other hand, a similar program in a higher
level language such as BASIC, FORTRAN , or APL requires only a few
statements. Currently, most textbooks in linear models contain complex
matrix expressions. The language of {2}-inverses makes the expressions
much simpler and, as a consequence, makes the underlying concepts much

more transparent.

This work is organized into five chapters beginning with this
Introduction. In each of the next four chapters a different aspect of {2}-
inverses is explored. Consequently each chapter is somewhat, but not
totally, independent of the others. The first section of each chapter
introduces the problem considered there, reviews the relevant literature, and
contains a detailed outline of the chapter. To aid the reader in

understanding how these chapters relate, the following overview is offered.

A many-to-one mapping does not have an inverse in the traditional sense.
In Chapter II, a functional approach is given for constructing generalized
inverses of such a mapping, The Three Phase Inversion Procedure. As
applied to a linear mapping over a real vector space, the procedure makes
the {2})-inverse the focal point for a series of definitions of generalized
inverses which is broader than the traditional. These include not only the
usual g-inverses but also projection operators and constrained inverses.
Such a {2)}-inverse approach provides a conceptual framework unifying these

various notions. This is due in part to the natural association {2}-inverses



have with certain well defined vector spaces. The chapter continues with
an investigation of several specific properties of {2})-inverses which suggest
their usefulness in statistics. The first of these deals with the
decomposition of a {2}-inverse into a sum of {2}-inverses of lesser rank and
the joint decomposition of a pair of matrices into a weighted sum of {2}-
inverses. Both of these results will be used in Chapter III to establish {2}-
inverses as the natural coefficient matrix in a quadratic form assuring a x2
distribution. Next, as a generalization of projection operators, {2}-inverses
are shown to have a key role in solving a system of linear equations. This
role is further explored in Chapter IV in connection with least squares.
Chapter II concludes with an algorithm for the easy computation of any {(2}-

inverse.

Given x~N(y,2) with ¥ nonsingular, then the well known necessary and
sufficient condition for the x? distribution of x’Ax can be restated to
require A to be a {2}-inverse of 3. In Chapter IIl, it is argued that the G
distribution of x’Ax naturally forces A to be a {2}-inverse of ¥. With this
as a basis, it is shown that for ¥ singular, or otherwise, it is possible to
represent, in a canonical way, all x? distributed quadratic forms as x’Ax,
where A is a {2}-inverse of X. Quadratic forms are a special case of second
degree polynomials, x’Ax+2b’x + c. The distribution of second degree poly-
nomials has been given by Khatri (1977); however, his approach for obtaining
the parameters of the distribution is computationally difficult. By an
application of the joint {2}-inverse decomposition of a pair of matrices, the
notion of a canonical representation is expanded to include all second degree
polynomials. In terms of this canonical representation, the parameters of
the distribution may be easily expressed, and independent polynomials or

polynomials following a x? distribution can be readily identified.

In solving for least squares solutions (LSS’s), a common approach is to
assume a set of nonestimable constraints in addition to the normal equations
so that a unique LSS may be found. The use of nonestimable constraints is
usually viewed as a matter of convenience but not as a matter of necessity.
On the other hand, the use of a g-inverse is viewed as necessary and
sufficient to obtain a solution. In Chapter IV it is shown that, whether one

realizes it or not, by choosing a g-inverse to obtain a solution, one is in



fact imposing a set of constraints on the LSS. In particular, it is shown
that every LSS may be expressed in the usual way as 3 = GX’y where X is
the design matrix and G is a symmetric {1,2}-inverse of X’X. In turn each
symmetric {1,2}-inverse is uniquely associated with a set of nonestimable con-
straints. Expanding upon this result, it is shown that for any set of con-
straints, regardless of their rank or estimability, the corresponding con-
strained LSS’s may be found in an analogous way by an appropriate choice
of a {2}-inverse of X’X. By appropriately identifying a set of constaints,
the constrained LSS with the smallest norm may be easily identified. Since
{2}-inverses may be easily calculated, the approach advocated in Chapter IV
leads to a computational algorithm for obtaining LSS’s. This approach does
not depend on factorization of X or on solving for the eigenvalues of X'X.

Furthermore, the approach is easily extended to weighted least squares.

For a designed experiment with an equal number of replications in each
cell, there is little controversy concerning the sums of squares to be used
in testing the various effects. However, when the data are imbalanced there
is no concensus on what the appropriate sum of squares is for testing an
effect. There are at least four alternative formulations of a linear model:
the Unconstrained Model, the Constrained Model where the parameters are
assumed to satisfy a set of known constraints, the Reparameterized Model
where the constraints are used to reduce the model to one of full column
rank, and the Cell Means Model in which a set of constraints is forced on
the cell means to assure the equivalence of this model to some parameteric

one.

Hypotheses may be expressed in terms of the parameters of one of these
four models or in terms of the sample cell means alone. When there is
imbalance, these five analytical approaches may each lead to a different
numerator sum of squares for testing an effect. In Chapter V, the focus is
on the development of an algorithm for identifying the hypotheses in each
of the five approaches which results in algebraically identical numerator
sum of squares. The algorithm, which is based upon {2}-inverses, is
computationally simpler and covers a broader spectrum than other
algorithms found in the literature. The algorithm is illustrated by its

application to the SAS Type II and IIl Sums of Squares.



CHAPTER II
TIME FOR ({2)-INVERSES

2.0 Introduction

As noted in the previous chapter, various classes of generalized inverses
have been proposed in the literature. Geometric characterizations of
generalized inverses were presented by Kruskal (1975) and, more recently, by
Rao and Yanai (1985). The principal aim of this chapter is to unify and

expand upon these diverse approaches in a consistent way.

The approach presented here begins with a geometric characterization of
generalized inverses proposed by Hsuan, Langenberg and Getson (1985), the
Three Phase Inversion Procedure. Their approach, which differs from the
traditional, makes the {2}-inverse the natural starting point for a series of
definitions of generalized inverses. The construction of various types of
such generalized inverses are outlined. Included in this class are
generalized inverses not defined entirely through the Moore-Penrose
conditions. Some of these non-Penrose type inverses have statistical

applications which will be explored in later chapters.

Of particular importance in statistics are symmetric {2})-inverses, a point
of view defended in subsequent chapters. Symmetric {2}-inverses are a
particular case of Bott-Duffin Inverses after a paper by Bott and Duffin
who described their application in electrical network theory. {2}-inverses in
general and Bott-Duffin Inverses in particular have several interesting
properties and characterizations which will be wuseful in the following
chapters and which are summarized in this chapter. The discussion of these
begins with a few observations which suggest the role of Bott-Duffin
Inverses in statistics. The discussion continues with an examination of the
relationship between {2}-inverses and projection operators. This latter
relationship leads to a decomposition theorem of symmetric matrices in terms

of Bott-Duffin Inverses which is a generalization of the well known spectral



decomposition. This chapter concludes with a discusssion of a procedure

for efficient computation of any specified {2}-inverse.

This chapter 1is organized into eleven sections following this
introduction. A brief description of the highlights of each section follows.
2.1 A functional definition of a generalized inverse is given in Definition

2.1 in terms of the Three Phase Inversion Procedure. Two types are
identified: null and nonnull augmented generalized inverses.

2.2 The Three Phase Inversion Procedure is applied to linear mappings
A: R® — R™. In Corollary 2.1.1, the constrained inverses of Rao are
shown to be equivalent to the null and nonnull augmented generalized
inverses of A.

2.3 The null augmented generalized inverses are identified to be exactly
the class of {2}-inverses. In Theorem 2.2 and its Corollary 2.2.1, the
correspondence between {2}-inverses and a pair of spaces § c¢c R™ and
F c R™ is established.

2.4 Theorem 2.3 describes the construction of any generalized inverse by
augmenting a {2}-inverse in a nonnull way. As a particular case, the
construction of the {l}-inverse, or usual g-inverse, is given in
Corollary 2.3.1.

2.5 The construction of any Moore-Penrose Type generalized inverse by
an appropriate choice of spaces & and ¥F is detailed in Theorem 2.4.

2.6 The geometric relationships existing among the various subspaces
associated with generalized inverses are summarized in Figure 2.1.

2.7 The usual projectors and their generalization by Rao are shown to be
generalized inverses of the identity matrix in Lemma 2.5. As a
converse, generalized inverses, which are not themselves projectors,
have associated with themselves a pair of projectors. This association
is outlined in Theorem 2.6.

2.8 The role of the usual g-inverse in solving a consistent set of linear
equations is well known. As an extension, the role of generalized
inverses in solving a broader system of equations is outlined in
Theorem 2.7.

2.9 {2)-inverses can be decomposed into a sum of {2}-inverses of lesser

rank. This decomposition, given in Lemma 2.8 and its corollaries, will



be used repeatedly in subsequent chapters.

2.10 Theorem 2.9 details the Joint {2}-Inverse Decomposition of a pair of
matrices, A and B, into a weighted sum of ({2}-inverses. This
decomposition may be viewed as a generalization of both the spectral
and singular value decompositions. In Chapter III, the Joint {2}-Inverse
Decomposition will lead to the characterization of the distribution of
arbitrary quadratic forms.

2.11 {2}-inverses may be easily calculated. One approach, an application of

the G2SWEEP operator, is discussed in this section.

2.1 The Three Phase Inversion Procedure

Classically the inverse of a mapping exists if and only if the mapping is
bijective, i.e. one-to-one and onto. A many-to-one mapping f: D — R does
not have an inverse in the strict sense. Nevertheless, generalized inverses

can be defined in terms of the Three Phase Inversion Procedure as follows:

1. The reduction phase, in which a subset D, of D is chosen such that f

restricted to Dy is bijective. Let the resulting mapping be denoted by
h: Dy —~ Ry.

2. The inversion phase, in which the unique inverse of h is determined,
say h™': Ry — Dg.

3. The augmentation phase, in which a mapping g: D — R is defined so that

g = h!onR,.

The resulting g: R — D can be called a generalized inverse of f.

The nonuniqueness of a generalized inverse arises in two possible ways:
the choice of Dy in the reduction phase, and in the definition of g on the

portion of the range space outside R, in the augmentation phase.

In practice, the choice of Dy is not completely arbitrary, nor is the
manner in which h™! is augmented. For example, if D and R are vector
spaces and f a linear mapping, it is natural to require in the reduction phase
that D, be a subspace of D. Under this restriction, R, is a subspace of R
and in the inversion phase h™! is also a linear mapping of Ry onto Dgy. In
the augmentation phase, h™! may be extended to R in a number of ways. If

R, is a complementary subspace of R, in R, then h™' may be extended by



either mapping R, trivially to the null vector or onto some nonnull space.

The above discussion leads to the following definition.

Definition 2.1: For vector spaces D and R and a linear mapping f: D —~ R
then

1. a linear mapping g: R — D is a Generalized Inverse of f, if there exists

a subspace Dy c D such that f: D, —~ f(Dg) is bijective, and
gof(d) = d if and only if d = Dg; (2.1)

2. a generalized inverse is a Null Augmented Generalized Inverse if g

maps some complementary subspace of f(D,) to the null vector;
3. a generalized inverse which is not null augmented is a Nonnull

Augmented Generalized Inverse.

The above definition of generalized inverse is broader than the
traditional one. It includes not only the usual g-inverse and other inverses
defined through the Moore-Penrose conditions, but also the usual projectors

and the projectors defined by Rao (1974).

Null and nonnull augmented generalized inverses have appeared in the
guise of constrained inverses as defined by Rao and Mitra (1971). The
relationship between constrained and generalized inverses is outlined in the

next section.

2.2 Constrained Inverses

Although the Three Phase Inversion Procedure is quite general, attention
will be focused on linear operators on real vector spaces. A real mxn matrix
A of rank r defines two linear mappings,

AR — R" (2.2)
and its transpose

AV R™ — R, (2.3)
For these mappings Rao and Mitra [(1971), p. 99] defined various Constrained

Inverses, G, satisfying different combinations of the following constraints:

Type 1 Constraints
c: G maps vectors of R™ into § c R" 2.4)
r: G’ maps vectors of R" into F ¢ R™ (2.5)




Type 2 Constraints

C: GA is an identity in § (2.6)
R: G’A’ is an identity in &. 2.7

Table 2.1, on the next page, summarizes their results. It is not clear from
an examination of Table 2.1, what relationships, if any, exist among the
various constrained inverses. However, simple relationships do exist among
these classes of inverses, which are easily seen through the Three Phase

Inversion Procedure.

The existence of a generalized inverse G of A, as defined in the
previous section, implies the existence of an s-dimension subspace § c R"
such that:

GAe = e if and only if e = &. (2.8)
In what follows, it will be shown that (2.13) implies the existence of a
unique s-dimensional subspace ¥ ¢ R”™

G’A’f = f if and only if f ¢ F. (2.9)

Thus as a consequence, the Type 2 constraints (2.6) and (2.7) are equivalent.

Let ¥ be the eigenspace of AG corresponding to the eigenvalue 1, then

(2.13) implies

A8) c 7. (2.10)
If v £ ¥, then
GAGv = Gv (2.11)
which in turn implies
Gv ¢ & (2.12)
and Gv # 0. (2.13)

Thus Dim(Y") = s, which implies A(8) = ¥. Since the eigenvalues of a matrix
and its transpose are identical with the same multiplicity, the eigenspace of
G’A’ corresponding to the eigenvalue 1, ¥§ < R™, is nonempty with
Dim(¥) = s. Thus for no larger space

G'A’'f =f forall f ¢ &. (2.14)
Notice that G’ is the generalized inverse of A’ corresponding to the space

F.

A further relationship exists between & and ¥. Since ¥ and A(8) are the

left and right eigenspaces of AG corresponding to the eigenvalue 1, then



