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PREFACE

The purpose of these Lecture Notes is twofold. On one hand, I want to
give a fairly complete and self - contained account of the results on
harmonic maps between surfaces. On the other hand, these notes should
also serve as an introduction to the theory of harmonic maps in gene-
ral; therefore, whenever appropriate, I point out which of the two -
dimensional results pertain to higher dimensions and which do not,
and I try to give some references and an idea of the respective proof.
For a more complete account in this direction, however, the reader
should consult the several excellent survey articles of Eells and Le-
maire.

An essential aim of this book is to show the variety of methods and
the interplay of different fields in the theory of harmonic maps, in
particular the calculus of variations, partial differential equations,
differential geometry, algebraic topology, and complex analysis. Thus,
the concept of this book is strongly opposed to the view of a mere
specialist. In particular, I think that a completely unified treat-
ment of the topic is neither possible nor desirable.

Nevertheless, I believe that this treatment contains several simplifi-
cations and unifications compared to the presentations available in
the existing literature. This book is not intended as a mere enumera-
tion of unrelated results. On the contrary, the sequence of the chap-
ters also reflects a logical order, and many different tools have to
be constructed, until the results of the three final chapters can be
proved. In particular, conformal mappings are used in a much more
thorough way than in the existing literature. An outline of the con-
tents now follows.

After giving an account of the history and presenting the definition
of harmonic maps from several points of view in chapter 1, we start
in chapter 2 with some geometric considerations. These concern convex
discs on surfaces, and the result is roughly that if on a disc there
are no conjugate points then there are also no cut points.

Moreover, we show the existence of local coordinates with curvature
controlled Christoffel symbols, following Jost - Karcher [JK1] .
Chapter 3 deals with conformal mappings. We first prove Theorem 9.3
in Morrey, "Multiple Integrals...", Springer, 1966, since Morrey's
proof contains a mistake. The difficulty which leads to this error is



Vi

overcome by minimizing energy in a restricted subclass of the Sobolev
space H; which is suitably adapted to the problem, so that we can ne-
vertheless conclude that the minimum is a conformal map with the de-
sired properties (we shall encounter a similar idea in chapters 4 and
11). Furthermore, we shall prove that this map is a global diffeo-
morphism and as regular as one could expect (A - priori estimates, how-
ever, will only be obtained in later chapters).

In chapter 4, we first solve the Dirichlet problem for the case that
the boundary values lie in some convex ball, a result due to Hilde-
brandt - Kaul - Widman [HKW 3]. Our proof consists of a combination of a
rather general maximum principle and a lemma due to Courant and Le-
besgue which is only valid in two dimensions. The proof also gives

a - priori estimates for the modulus of continuity of the harmonic map.
We then attack the general existence problem for harmonic maps between
compact surfaces. Using the Courant - Lebesgue Lemma again, it is not
hard to see that the limit of an energy minimizino can fall out of a
homotopy class only if a sphere splits off. If the second homotopy
group of the image vanishes, this cannot happen, however, and we thus
obtain a new proof of the fundamental existence theorems of Lemaire
[L1], [L2]. Furthermore, by a careful replacement argument, we can al-
so solve the Dirichlet problem in two different homotopy classes for
nonconstant boundary values, if the image is homeomorphic to a 2 -
sphere. In chapter 5, we deal with the guestion of uniqueness of harmonic
maps and prove the corresponding results of Hartmann [Ht] and J&dger -
Kaul [J&K1] and then examine in some more detail the case of maps be-
tween closed surfaces.

In chapter 6, we prove gl &

- a-priori -estimates for the case where
the domain is the unit disc in the plane. This latter assumption can
then be removed with the help of the results of chapter 7 where we
prove estimates for the functional determinant from below for univa-
lent harmonic mappings between surfaces. These estimates apply in par-
ticular to conformal maps, and since a conformal map composed with a
harmonic one is again harmonic, we can use the resultof chapter 3 to pass
from the unit disc to an arbitrary domain in chapter 9. The results of
chapter 6 and 7 are based on Jost - Karcher [JK1] and employ several
important ideas of E. Heinz.

In chapter 8, we prove the existence of harmonic diffeomorphisms as
solutions of the Dirichlet problem, if the boundary values map the
boundary of the domain homeomorphically onto a convex curve inside a
convex disc. This result is taken from [J3] and uses in particular

the results of chapter 7.
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We can also use the a-priori - estimates to provide non - variational
proofs of Thms. 4.1 and 8.1 in chapter 9, using Leray - Schauder degree
theory.

We then apply Theorem 8.1 in chapter 10 to prove the existence of har-
monic coordinates on arbitrary discs on a surface according to Jost -
Karcher [JK1]. These coordinates possess best possible regularity pro-
perties and can be used to prove C2,a - a-priori estimates for harmo-
nic maps between surfaces depending only on curvature bounds and in-
jectivity radii, once the modulus of continuity is known.

Theorem 8.1 will again be applied in chapter 11 where we prove the
existence of harmonic diffeomorphisms between closed surfaces, due to
Jost - Schoen [JS]. We minimize energy in the class of diffeomorphisms
and then apply a rather delicate replacement argument to show that the
limit is a harmonic diffeomorphism.

The final chapter gives some applications of harmonic maps between
surfaces. First, we give the analytic proof of Eells - Wood of a well
known result of Kneser concerning mappings between closed surfaces,
and then we give some applications of Earle - Eells and Tromba of har-
monic maps to Teichmiiller theory.

Furthermore, we discuss the Theorem of Ruh - Vilms stating that the
Gauss map of a submanifold of Euclidean space with constant mean curv-
ature is harmonic,as well as immersed surfaces in 3 - space of constant
Gauss curvature.

Among the omissions of the present book are results on the explicit
construction and classification of harmonic maps between manifolds
with canonical metrics. We refer the reader to [L 11, [Ew 2], [EW 31,
[EL 3] instead, since we do not feel that we can contribute anything
new to the presentation of this area.

My work is indebted to several persons. To Hermann Karcher, I owe many
insights into the geometric aspects of the field which he generously
communicated to me. Furthermore, I benefitted much from collaboration
or conversations with Jim Eells, Bob Gulliver, Luc Lemaire, Rick
Schoen (in particular, Chapter 11 represents joint work with him),
John Wood and Shing-Tung Yau. But most of all, I am indebted to

Stefan Hildebrandt for his continous advice and encouragement over
many years, and for supporting my research in every possible way
through the means of the Sonderforschungsbereich 72 at the University
of Bonn. Finally, I am grateful to Alfred Baldes for some useful
comments on my manuscript and to Monika Zimmermann for typing it

with great care and patience.
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1. Introduction

1.1. A short history of variational principles

Among the first persons to realize the importance of variational pro-
blems and the physical significance of their solutions was G. W. Leib-
niz (1646 -1716). In his work, however, mathematical and physical rea-
soning was closely interwoven with philosophical and theological argu-
ments. One of the aims of his philosophy was to solve the problem of
theodizee, i.e. to reconcile the evil in the world with God's goodness
and almightiness (cf. [Lz]).Leibniz' answer was that God has chosen
from the innumerable possible worlds the best possible, but that a
perfect world is not possible. (This infinite multitude can only be
conceived by an infinite understanding, which provided a proof of the
existence of God for Leibniz.) This best possible world is distin-
guished by a pre - establishe harmony between itself, the kingdom of
nature, c: one hand and the heavenly kingdom of grace and freedom on
the other hand. Through this the effective causes unite with the pur-
posive causes. Thus bodies move due to their own internal laws in ac-
cordance with the thoughts and desires of the soul. In this way, the
contradiction between the predetermination of the physical world fol-
lowing strict laws and the constantly experienced spontaneity and
freedom of the individual is removed. The best possible world must
here obey specific laws since an ordered world is better than a chao-
tic one. This proves therefore the necessity of the existence of natu-
ral laws. The contents of the natural laws, however, are not complete-
ly determined as is the case for geometric laws but are only deter-
mined in a moral sense, since they must satisfy the criteria of beauty
and simplicity in the best of all possible worlds. This leads Leibniz
even to variational principles. This is because if a physical process
did not yield an extreme value, a maximum or minimum, for a particular
energy or action integral, the world could be improved and would there-
fore not be the best possible one. Conversely, Leibniz also uses the
beauty and simplicity of natural laws as evidence for his thesis of
pre —established harmony. (The notion that we live in the best possi-
ble world was frequently rejected and even ridiculed by subsequent cri-
tics, in particular Voltaire, on account of the apparent flaws of this
world, but Leibniz' point that a perfectly good world is not possible
was beyond reach of these arguments.)

Leibniz, however, did not elaborate his argument concerning variatio-
nal principles in his publications, but only in a private letter. Thus,
it happened that a principle of least (and not only stationary) action



was later rediscovered by Maupertuis (1698 - 1759), without knowing of
Leibniz' idea. When.S. Konig (1712 -1757) then claimed priority for
Leibniz on account of his letter that he was not able to show however
to the Prussian Academy of Sciences (whose president was Maupertuis)
this led to one of the most famous priority controversies in scientific
history in which even Voltaire, Euler, and Frederick the Great became
involved. It was also pointed out that Maupertuis' principle of least
action should be replaced by a principle of stationary action since
physical equilibria need only be stationary points but not necessarily

minima of variational problems.

1.2. The concept of geodesics

One of the variational problems of most physical importance and mathe-
matical interest was the problem of geodesics, i.e. to find the shortest
(or at least locally shortest) connections between two points in a me-
tric continuum, e.g. a Riemannian manifold. Applications of this con-
cept range from general relativity, where geodesics describe the paths
of moving bodies , to many innermathematical applications.
Geodesics are critical points of the length integral

L

9

[|l+7% clat

0 ot
where c:[0,1] - N is the parametrization,as well as,if they are para-

metrized proportionally to arclength, of the energy integral

Here, unfortunately, we find some ambiguity of terminology, since the

mathematical term "energy" corresponds to the physical concept of "ac-
tion", while in physics "energy" has a different meaning.

Because of the many applications of geodesics, it was rather natural

to generalize this concept. While minimal surfaces are critical points
of a twodimensional analogue of the length integral, namely the area
integral, the generalization of the energy integral for maps between
Riemannian manifolds led to the concept of harmonic maps. They are cri-
tical points of the corresponding integral where the squared norm of
the gradient or energy density has to be defined in terms intrinsic to
the geometry of the domain and target manifold and the map between

them.



1.3. Definition of harmonic maps

Suppose that X and Y are Riemannian manifolds of dimensions n and N ,

resp., with metric tensors (y 8) and (g,.), resp., in some local co-

1]
ordinate charts x = (x1,...,x ) and f = (f1,...,fN) on X and Y , resp.
Let (YGB) = (YQB)-1' If f: X > Y is a C1-map, we can define the ener-
gy density
4 j
e(f): = 3*F ) g, (6) 2 AL
J ax® ox

where we use the standard summation convention (greek minuscules oc-
curing twice are summed from 1 to n , while latin ones are summed from
1 to N) and express everything in terms of local coordinates. Then the

energy of f is simply
E(f) = fe(f)ax
X

i ; 1
If f is of class C2 and E(f) < » and f is a critical point of E ),

then f is called harmonic and satisfies the corresponding Euler -

Lagrange -equations. These are of the form

(1.3.1) £+ oBpl 2 fd an oo

R 3k
5 x% 9xX

1 2
Ay ax” 538
in local coordinates, where Y = det (yop ) and the r%k are the Christof-
fel symbols of the second kind on Y .

We thus obtain a nonlinear elliptic system of partial differential
equations, where the principal part is the Laplace - Beltrami operator
on X and is therefore in divergence form, while the nonlinearity is
quadratic in the gradient of the solution.

We now want to look at the definition of harmonic maps from a more in-
trinsic point of view. The differential df of £ , given in local coor-

dinates by

can be considered as a section of the bundle T"‘X(}:}f_1 TY. Then

=1 _aB of of =
e(f) =35y <3xa'ax6>f1TY

1

=3 < df, df > o *vert oy

M w.r.t. variations vanishing on 3X , in case X # @ .



i.e. e(f) is the trace of the pullback via f of the metric tensor of
Y . In particular, e(f) and hence also E(f) are independant of the
choice of local coordinates and thus intrinsically defined.

f is harmonic, if
(1.3.2)  1(f) =0,

where 1 (f) = trace ydf , and V here denotes the covariant derivative
in the bundle T*XQ}f—1 TY .
Let us quickly show, why (1.3.1) and (1.3.2) are equivalent (cf.

[EL 4 ]).

i
Vo, (af) =V , G ax* 2y
Ix o9x , .
£t T*x 13
@A) ax® A+ (v T ax i oo
axP ax® of —% ax% of
BX
£ oy =
@ 2y AL ax® =
- - afT ax®
2P
2¢i i s
£ v 3
- _0 : ax® ai _ xrg axY of ai - Fi‘ ak of° of ax® 1)
ax%ox of Y ax® of I 9% oxP ogx®
and thus, since t(f) = trace vdf ,
Kigy = o8 22e% (B XrY a £ (o8 vk af af)
= e ————— oo ’
ax%yx? af axY 1] 4x® axB

and we see that (1.3.1) and (1.3.2) are equivalent.

From the preceding calculation, we see that the Laplace - Beltrami ope-
rator is the contribution of the connection in T*X , while the connec-
tion in f_‘| TY gives rise to the nonlinear term involving the Chris-
toffel symbols of the image.

With the preceding notations, we can also calculate the Hessian of a

harmonic map f for vector fields v , w along f (i.e. v and w are sec-
1

tions of £ ' TY ). For this purpose, we consider a two - parameter va-
riation £ _ with
st
Y - afst Y- 8fst
s | sat =0 3t | s,t =0

2 Here, we distinguish the Christoffel symbpls of X and Y by the

superscript X or Y , resp.



We then want to calculate

2
J E(fst)

He (Vow): = =53¢ | s,t =0

We have, writing f instead of fs , and taking scalar products (-,-)

t

* -
in T"X®f ' TY , if not otherwise indicated,
B0 1 (BE g0 BE g8
ot 9s 2 Bxa BXB
=i<v of ax® _B_f_dx8> =
7t 3 o '
— 90X X
oS
_ 9 £ Ty 3f o of BY -
_8t<v8 3s) 4 ’axsdx>
ax“
:
= (v, v TVED ax®, —8—%de> +
EC e

3s 3 9t
Bxu X
£y §f o 3 f B
- (v v, & ax*, 2L af)
3 ii 9s BXB
Bxa ot
N 8 f o of, 9f of B
+ <R ( 5 d ¥ —T_:) 3s ! 8 dx >
X 3x
vf'1 T a® - of Ty B >
+ < 5 v i 5 w dx i
ax™ BXB
Now
f gE Ty BE ga D 4B\ gy
< ) 3§ 98 ¥ + B )
X — 9xX
axu ot
= J ( Ty G v ~—F _ VY ) dx dx
Bxa < 2 3s ox f 1TY



of o of B
+ j(vaa—sdx,vaaed>
3t a °%
9x
B} 3f B ot
= < 2 %5 "o axt > £ 1y
ot o
ax
by Stokes' Theorem
; aB 9f : g
= 0 , since Yy TV —5 = trace V df = 0, as f is harmonic.
_a_ IxX
3xa
Thus
aB £y £y N
H_(v,w) = [ ¥ <V v,V w>
£ 3 3 -1
X == = £ TY
X 9x

—IYQB <RN(a_fa' v) LfB'w> 1
X ax 9x f TY

-1
£ £
=j<v Y, v Ta )
X f TY

N
f trace <R (df,v) df , w> f_1

X TY

For the preceding calculations cf. also [EL 4]
We now want to look at the definition of harmonic maps from a some-

what different point of view. By the famous embedding theorem of Nash
([Nal), Y can be isometrically embedded in some Euclidean space IRl .

We define the Sobolev space
1 1 1
W, (X,y) = {f € W, (X,R") : £(x) €Y a.e.}

Since W12(X,1Rl) = H;(X,Ikl) by a well-known theorem of Meyers and Serrin



