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Preface

The primary purpose of this book is to provide a unified body of the-
ory on methods of transforming a constrained minimization problem into
a sequence of unconstrained minimizations of an appropriate auxiliary
function. The auxiliary functions considered are those that define “interior
point” and “exterior point” methods which are characterized respectively
according to whether the constraints are strictly satisfied by the minimiz-
ing sequence. Initial emphasis is on generality, and the central convergence
theorems apply to the determination of local solutions of a nonconvex
programming problem. Strong global and dual results follow for convex
programming; a particularly important example is the fact that the exterior
point methods do not require the Kuhn-Tucker constraint qualification [77]
to ensure convergence or characterize optimality.

In addition to giving a rather comprehensive exposition of the rich
theoretical foundation uncovered for this class of methods, we wish to
emphasize the demonstrated practical applicability of their various realiza-
tions. This has been brought about largely by the adaptation and further
development of effective computational algorithms for calculating an un-
constrained minimum and by the development of special extrapolation
techniques for accelerating convergence. Significant progress has also
been made in the development of computational techniques that exploit
the special structures characterizing large classes of problems. In addition
to these efficiencies, which have been effected for the method proper,
some exploration has been done in combining the present methods with
other mathematical programming algorithms to obtain even more efficient
composite algorithms. Various computer programs at the Research Analysis
Corporation, some operational since 1961, have been constantly utilized
and improved and have provided extensive computational experience.

We have also attempted to provide some historical perspective for the
basic approach with an effort toward synthesis. Formal derivations and
ample intuitive arguments and simple numerical examples are interjected
to motivate and clarify the basic techniques.

Finally, we have attempted to recapitulate the basic supporting devel-
opments in the theory of mathematical programming in a direct and sim-
ple manner. The satisfaction of the hypotheses of Farkas’ lemma [44] is the
motivation for various regularity assumptions on the problem functions.
This leads directly to deducing the usual necessary conditions for op-
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viii Preface

timality—in particular, the existence of finite Lagrange multipliers. Our
presentation is intended to clarify this point of view, which often appears
to be clouded in the literature; for example, the Kuhn-Tucker constraint
qualification [77] is one such assumption that has often been incorrectly
regarded as being essential to characterize optimality. We proceed from
those results associated with assuming continuity of the problem func-
tions to those involving first-and second-order differentiability. Several
new necessary and sufficient conditions are given for the latter.

This book is the result of several years of extensive research and com-
putational experimentation accomplished initially at The Johns Hopkins
Operations Research Office, Bethesda, Maryland, and continued at the Re-
search Analysis Corporation, McLean, Virginia. Initial efforts led to devis-
ing a variety of heuristic gradient methods, but they generally proved too
slow and unreliable. In 1961 attention was directed to an auxiliary function
idea proposed by C. W. Carroll [21]. Our theoretical validation of this ap-
proach then led to numerous extensions and generalizations and an effi-
cient computational procedure, which provided the nucleus of the frame-
work for the developments reported here.

Chapters 1, 2, and 7 contain supporting and supplementary material
and are included primarily for perspective and completeness. Most of the
results of Chapter 2, with the exception of several recently developed sec-
ond-order necessary and sufficient conditions for isolated and nonisolated
constrained minima, are well known. The basic theoretical results for the
sequential methods are contained in Chapters 3 and 4. With a few excep-
tions, the development proceeds in the direction of decreasing generality,
from the nonconvex local results of Chapters 3-5 to the convex global re-
sults of Chapter 6. Chapter 5 is essentially an in-depth analysis of con-
vergence properties when certain additional conditions hold. Chapter 6 is
virtually a recapitulation of Chapters 3-5, the results being recast and
strengthened with the important additional assumption of convexity. The
computational considerations associated with unconstrained minimiza-
tion algorithms are relegated entirely to Chapter 8.

In addition to giving many new and more general results, we hope that
the book may provide some much-needed clarification and unification in
auxiliary function methodology, which only recently has been under signif-
icant development. The results for nonconvex problems are among the few
that exist in this relatively intractable area and may hopefully be followed
by computational breakthroughs as well. Finally, we hope that this exposi-
tion will lead to wider recognition of the extremely rich and fertile theoret-
ical basis and the generally proved effective computational applicability of
the methods in this class of procedures.
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This book is intended for use by virtually anyone involved with mathe-
matical programming theory or computations as a comprehensive refer-
ence for the evolution, theory, and computational implementation of auxil-
iary function sequential unconstrained methods and a concise reference
for mathematical programming theory, several other interesting and effec-
tive methods, and some of the most recent advances in the theory and
implementation of methods for unconstrained minimization. It could pro-
vide a fairly complete basis for an extensive course in mathematical pro-
gramming or optimization at a wide variety of levels. The nature of the
approach generally makes it possible to apply classical methods of analy-
sis, a feature not shared by most techniques and one that can be easily
exploited for pedagogical purposes. A complete understanding of the
proofs and developments probably requires a solid introduction to analysis
and linear algebra. A great portion of the text, however, is motivational and
discursive material and requires little more than a brief exposure to ele-
mentary algebra. A significant portion depends only on basic notions en-
countered in first-year calculus and matrix theory.

Many of the results have appeared in previous publications [47-54, 84,
85] as the theory was developed, but a considerable number of significant
results appear here for the first time.

Applications of these theoretical developments to the solution of
important practical nonlinear programming models are contained in an-
other RAC Research Series book by Jerome Bracken and Garth P McCor-
mick, “Selected Applications of Nonlinear Programming”.

We should like to thank Dr. Nicholas M. Smith for his continued per-
sonal interest and effective technical direction. Sustained support for this
work has come from the Army Research Office. Professor J.B. Rosen, Dr.
James E. Falk, Professor A. Charnes, Dr. Jerome Bracken, Mr. W. Charles
Mylander, III, and Professor C.E. Lemke have contributed to the develop-
ment of this work, particularly Professor Lemke, who reviewed an earlier
version of the manuscript and gave numerous helpful suggestions. Special
thanks go to Mrs. L. Zazove, who patiently typed several versions of the
manuscript.

Anthony V. Fiacco
Garth P McCormick
McLean, Virginia



Preface to the Classic Edition

The first edition of this book has long been out of print. The primary
motivation for its reissue is the current interest in interior point methods
for linear programming sparked by the 1984 work of N. Karmarkar. The
connection of his projective scaling method with SUMT was pointed out
early by Gill and others. The recent work in affine scaling, path following
and primal-dual methods bears even more resemblance to our earlier
work.

Our initial intent was not to develop a method for linear programming,
but for the general nonlinear programming problem. The original book
contains some material which was published elsewhere in the open liter-
ature, but much of it appears only in the book. In particular, the analysis
concerning the trajectory of unconstrained minimizers of the logarithmic
barrier function is similar to recent work and appears only here.

Many areas of research were started in this book: e.g. the relationship
of penalty function theory to duality theory; use of directions of non-
positive curvature to modify Newton’s method when the Hessian matrix is
indefinite; integration of the first and second order optimality conditions
into convergence and rate of convergence analysis of algorithms; the iden-
tification of factorable functions as an important class in applied mathe-
matics; and the beginning of the very important area of sensitivity analysis
in nonlinear programming.

Except for corrections, the revision is exactly as originally published.
The most important corrections are the proofs of Theorems 6 and 7. Since
its original publication the term “penalty function” is now commonly
called a “barrier function”. This and a few other usages were kept as in the
original.

The book was awarded the Lanchester Prize in Operations Research
for the year 1968. We hope that readers will find it as fresh and interesting
and valuable now as it was then.

Anthony V. Fiacco

Garth P McCormick

Department of Operations Research
School of Engineering and Applied Science
George Washington University

Washington, D. C.
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Symbols and Notations

x = (#;,...,2,7, an n by 1 vector of variables.
(E™*+ the nonnegative orthant of Euclidian n-space.
Iz = (3, %", the usual Euclidian norm.

V. f("), (sometimes written Vf*) is the n by 1 vector whose jth element
is 3f (+*)/0x,.

V.2 f(x%), (sometimes written V?f*) is the n by n matrix whose i, jth ele-
ment is 8°/(x*)/dx; dx;, the Hessian of fat x*.

Problem A, minimize f(z) subject to g,(x) >0, i=1,...,m, h(x) =
0,j=1,...,p.

R = {z|gx) >0, i=1,...,m}, the region defined by the in-
equalities of Problem A.

R° = {x [ g:(x) > 0,i=1,...,m}, the interior of R.

Clx,u, w) = f(x) — 2™, u, g:(x) + D2, w; h;(x), the Lagrangian associated
with Problem A.
o(0), an arc in E™ parameterized by 6 whose tangent at 6 = 7 is

denoted by Da(7) and whose vector of second derivatives is
denoted by D? a(7).

A# a pseudoinverse of the matrix A that satisfies A4#A4 = A.
diag(g,), a diagonal matrix whose ith diagonal element is g;.

L(z,r) =f(x)—r>™, Ing/z), the logarithmic interior point penalty
function for Problem B (Problem A with no equality con-
straints).

xiii



xiv Symbols and Notations

P(z,r) =f(x)+ r 27, 1/g,(x), the inverse interior point penalty function
for Problem B (P-function).

U(,r) =f(x)+ s(r)I(x), general interior unconstrained minimization
function.

T(x,t) =f(x)+ p(t)O(x), general exterior unconstrained minimization
function.

V(x,r,t) =f(x)+ s(r)l(x)+ p(1)O(x), general mixed interior-exterior un-
constrained minimization function.
i & {min[0, g,()]}*
We,r) =f@—r3hng@+ > TI8ET
i=1 i=m+1
the W-function, a mixed interior-exterior unconstrained mini-
mization function for Problem M.

*—y the sequence {z*} converges (strongly, i.e., in norm) to .
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Introduction

1.1 STATEMENT OF THE MATHEMATICAL
PROGRAMMING PROBLEM

The mathematical programming problem is to determine a vector x* =

(«F, ..., 2*)7 that solves the problem
minimize f(x) (A)
smbject to g@>0, i=1,...,m, (1.1)
hy(x) =0, j=1,...,p. (1.2)

When the problem functions f, {g;}, and {A,} are all linear Problem A is
called a linear programming problem. 1f any of the functions is nonlinear the
problem is called a nonlinear programming problem. There are other terms,
such as convex, concave, separable, quadratic, and factorable, which may
apply to special cases of Problem A, and these will be defined later. While all
the remarks in this book apply in particular to these special cases, we shall
at the outset concern ourselves with problems where £, {g,}, and {/,} can take
on any form of nonlinearity subject only to continuity and differentiability
requirements.

The following is a simple example of a nonlinear programming problem.

Example.

minimize f(x) = |v; — 2| 4 |2y — 2]
subject to
&) =z — x,* > 0,

hz) =224 2,2 —1=0.
The dashed lines in Figure 1 represent isovalue contours of the objective

function; that is, points at which the objective function f(x) has constant
value. The feasible region is the set of points that satisfy the constraints of

1



2 Introduction

’ f\
N G N
2,7 Objective function ™\

isovalue.\contours N

hi(x) =0

g1(x) 20

-2
Figure 1 Nonlinear programming example.

the problem. In this example the feasible region is the arc of the circle lying
within the parabola. A solution to the problem is any point in the feasible
region with smallest objective function isocontour value. This is seen by

inspection to be (\/5/2, \/5/2). If the equality constraint is removed the solu-

tion is seen to be at (2, \/5.) If both constraints are removed the solution is
at (2, 2). In the latter case (2, 2) is called an unconstrained minimum.

Usually the functions of Problem A are required to be continuous. Much
of the theory of nonlinear programming concerns the case when the functions
are continuously differentiable, or twice continuously differentiable. In these
instances it is possible to prove theorems which characterize solutions to
Problem A. These theorems in turn influence the development of algorithms
for solving the programming problems.

Several classes of mathematical programming problems have been dealt
with in recent years. We briefly mention some of these and give a number of
standard references that develop theoretical results and computational



1.1 Statement of the Mathematical Programming Problem 3

methods for solving the corresponding problem. The linear programming
problem has been treated extensively, and many significant results have been
forthcoming, such as effective methods for problems having a particular
structure. There exists an enormous literature on the subject. For basic
results refer to the list of annotated references given in [96] and to the
developments and additional bibliography given in [25, 26, 34, 62].

Particular results and algorithms have been obtained for ‘“‘quadratic
programming,” where f(x) is a positive semidefinite quadratic form, and the
constraints are linear [7, 8, 110]. Special methods have been developed when
f(=x) is a convex separable function and the constraints are linear [27, 88].
Special-purpose algorithms also exist for the case where f(z) is convex and
the constraints are linear [45, 98].

The case where f(x) is convex, the g,(x) concave, and the A,(x) linear has
received particular attention. When these conditions prevail (A) is called a
convex programming problem. The smoothness of the problem functions
makes the problem well behaved, and the convexity-concavity assumptions
assure that the feasible region (set of points satisfying the constraints) is
convex and, most importantly, that any local solution is also global. The
basic optimality conditions for the problem were given in [77]. Numerous
other contributions to the theory and development of computational
algorithms have appeared, largely in the last decade [1, 6, 28, 39, 49, 50, 65,
70, 74,99, 111, 118].

The developments mentioned above are often applicable in a “local”
sense; that is, they hold if « is restricted to a suitable domain such that the
requisite conditions hold in that domain. This means that some results are
easily extended to apply to the characterization of /ocal solutions of (A),
when (A) is a nonconvex problem. The ‘“‘general’” nonconvex problem, where
(A) is not even necessarily “locally convex’ in any neighborhood of a relative
minimum, has remained rather intractable. Most of the results in this
important problem area have been theoretical and are quite recent [16, 17,
101, 104, 117].

The group of algorithms called sequential unconstrained minimization
techniques has given rise to numerous theoretical results and effective com-
putational procedures for solving the convex programming problem. Recent
developments indicate that these results can be generalized and extended
significantly, since the basic technique can be validated under very general
and weak conditions. Thus a number of important results have been obtained
for nonconvex programming, as well as additional generality and a finer
characterization for problems having a special structure. A history of
sequential unconstrained methodology is contained in the next section.

This book pursues the development of these sequential unconstrained
methods.



4 Introduction

1.2 HISTORICAL SURVEY OF SEQUENTIAL UNCONSTRAINED
METHODS FOR SOLVING CONSTRAINED MINIMIZATION
PROBLEMS

The Transformation Approach

The methods we shall discuss are based on transforming a given constrained
minimization problem into a sequence of unconstrained minimization
problems. This transformation is accomplished by defining an appropriate
auxiliary function, in terms of the problem functions, to define a new
objective function whose minima are unconstrained in some domain of
interest. By gradually removing the effect of the constraints in the auxiliary
function by controlled changes in the value of a parameter, a sequence or
family of unconstrained problems is generated that have solutions converging
to a solution of the original constrained problem.

For simplicity in the present discussion, we proceed formally to sketch
the basic idea. The problem is to find a solution z* of

minimize f(x) (B)
subject to
gi(x) >0, i=1,2,...,m,
where z € E™
A typical unconstrained auxiliary function may have the form

olz, D] = f(2) + ﬁ 2(1Glg()],

where ¢ is a parameter, the {1,(1)} are weighting factors, and G(y) is generally
a monotonic function of y that behaves in some well-chosen manner at
y = 0. Typical choices are either that G(y) > 0 for y < 0 and G(y) = 0 for
y > 0, or that G(y) — + o as y — 0". The former choice usually is associ-
ated with procedures that are not concerned with constraint satisfaction
except at the solution, and the latter, where constraint satisfaction is enforced
throughout.

When successful, the method generally proceeds computationally as
follows. Select a sequence {r,} such that ¢, > 0, and 7, — © as k — .
Compute a minimum 2* of ¢[x, A(#;)] for k = 1,2, .. .. Under appropriate
conditions such an z* exists and is an unconstrained minimum of @[z, A(#,)].
Usually the most desirable result is that lim,_, , ¥ = «*, a solution of (B). A
weaker result, often adequate, is that f(2*) — f(x*), a minimum value
of the objective function. Invariably, the result follows that

lim i 2{(t)Glg(2¥)] = 0,

k= o i=1
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so that also

lim gla%, 2(1)] — f(2*) = 0;

k=
that is, the modified objective function converges to the same minimal value
as the original objective function. This means, in effect, that the influence of
the constraints on the modified objective or auxiliary function is gradually
relinquished and finally removed in the limit.

This, then, is the general idea of the approach. Its great advantage lies in
the fact that the constraints need not be dealt with separately and that
classical theory and modern methods for computing unconstrained extrema
can be brought to bear. The theoretical difficulties are in such areas as
prescribing general conditions that guarantee convergence of either the
minimizing sequence or the associated modified objective function values,
and in validating acceleration procedures. Computationally, obtaining rapid
convergence is a central concern and depends on the efficacy of methods for
unconstrained minimization and on procedures for effective extrapolation.
In recent years a substantial body of theory has been established and effective
computational algorithms have been implemented [49, 51].

We turn to a chronological account of the origin and development of the
technique of solving a constrained problem by transforming it into a sequence
of unconstrained problems. Before pursuing this relatively recent history, a
note on the classical Lagrange multiplier procedure is particularly in order.

The Lagrange Muitiplier Technique

Our primary interest is in sequential unconstrained methods for solving a
problem of type (B). However, it should be remarked at the outset that the
Lagrange multiplier technique (see [108], for example) for handling problems
of type (E) [minimize f(x) subject to hy(x) =0, j=1,...,m]is surely a
technique for transforming the problem into an unconstrained problem.
Note that this simply amounts to the choices 4,(t) = A; (constant) and
G(y) =y in @[x, A(1)]. In fact, by introducing appropriate slack variables,
we can transform any problem of type (B) into a problem of type (E) and
then formulate the associated Lagrangian problem. This procedure has been
applied to variational problems [11, 63, 106].

We do not propose to delve into a detailed description of the classical
Lagrange multiplier technique, or into a discussion of the relative merits of the
procedure or of the computational difficulties inherent in a direct application
of it to a particular example. These matters have been treated in some detail
elsewhere [23, 37, 76]. We simply wish to indicate here that the Lagrangian
is a classical example of the unconstrained auxiliary function approach.
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Recent developments on the Lagrange multiplier technique are discussed in
Sections 7.4 and 7.5. This is based on the work in [40] and [43].

Besides being viewed directly as a special case of the type of auxiliary
function we are considering, it follows that the Lagrangian is inextricably
associated with every method for mathematical programming, because
conditions for characterizing solutions of mathematical programming
problems such as (B) or (E) directly involve the associated Lagrangian.
This may be viewed as a direct consequence of the fact that, assuming
differentiability, a necessary condition that z* solve (E) is that z* be a station-
ary point of the associated Lagrangian for some real 4;, constants to be
determined from the requirement of stationarity and the relations 4;(z) = 0,
j=1,...,m. Thus the Lagrangian will always be very much involved in
our theoretical results, as much of the text will amply testify.

Owing to the additional fact that the Lagrangian may be viewed as a
special case of the auxiliary unconstrained function, @[z, A(7)], it is not
surprising that we shall see extremely close connections throughout between
the associated Lagrangian of a mathematical programming problem and the
particular auxiliary function being utilized to transform that problem into a
sequence of unconstrained minimizations.

The following historical account is intended to be indicative of the main
stream of developments. Inclusions and omissions reflect the authors’ point
of view and, likewise, interpretations and appraisals are subjective.

Chronological Survey of Developments

In 1943 R. Courant [29] suggested studying the conditions for stationarity of
f(x) + 1g%(x) as t — oo, to analyze motion constrained to satisfy g(z) = 0 in
terms of unconstrained motion. The suggestion was motivated by physical
considerations and was not offered directly as a technique for solving a
mathematical programming problem. The idea was apparently not rigorously
pursued for over a decade.

In the interim several important theoretical developments took place. In
1951 Dantzig [33] formalized the linear programming problem and offered
a first version of the simplex method. An enormous amount of effort was
subsequently directed toward the development and implementation of linear
programming algorithms. Shortly thereafter, in 1951, Kuhn and Tucker [77]
published their results on necessary and sufficient conditions characterizing
the solution of the nonlinear convex programming problem and gave an
equivalence between this problem and the saddle-point problem of the
Lagrangian. In 1950 Arrow and Hurwicz [5] treated this latter equivalence
as well.

Arrow [4] in 1951 devised a gradient technique for approximating saddle



