

SOFTWARE FOR'
COMPUTER -CONTROL 1986

Selected Papers-from the Fourth IFAC/IFIP Symposium,
Graz, Austria, 20-23 May 1986

Edited by
D. FLORIAN

and

V. HAASE

Institut far Maschinelle Dokumentation, Forschungsgesellschaft Joanneum,
Graz, Austria

Published for the .
INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by
PERGAMON PRESS

OXFORD - NEW YORK - BEIJING - FRANKFURT
SAO PAULO - SYDNEY - TOKYO - TORONTO

U.K.
US.A.

PEOPLE'S REPUBLIC
OF CHINA

FEDERAL REPUBLIC -

OF GERMANY
BRAZIL
AUSTRALIA
JAFAN

CANADA

Pergamon Press, Headington Hill Hall, Oxford OX3 osw.‘m
Pergamon Press, Maxwell House, Fairview Park, Elmsford, New “Yori: 10523, U.S.A.

Pergamon Press, Room 4037, Qianinen Hotel, Beijing, People’s Republic of China
Pergamon Press, Hammerweg . D-6242 Kronberg, Federal Republic of Germany

Pergamon Editora, Rua E¢a de Queiros, 346, CEP 04011, Paraiso, Sao Paulo, Brazil
Pergamon Press Australia, P.O. Box 544, Potts Point, N.S.W. 2011, Australia

Pergamon Press, 8th Floor, Matsuoka Central Building, 1-7-1 Nishishinjuku, Shinjuku-ku,
Tokyo 160, Japan

Pergamon Press Canada, Suite No. 271, 253 College Street, Toronto, Ontario, Canada M5T 1R5

Copyright © 1987 IFAC

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means: electronic, electrostatic, magnelic tape, mechanical, photocopying, recording or other-
wise, without permission in writing from the copyright holders.

First edition 1987 ‘

British Library Cataloguing in Publication Data
Software for computer‘control, 1986:
selected papers from the Fourth IFAC/IFIP
symposium, Graz, Austria £0-23 May 1986.
———(IFAC proceedings series; 1987 no. 4).
1. Automatic contro———Data processing
1. Florian, D. I1. Haase, V. H.

I11. International Federation of Automatic
Control 1V. International Federation for
Information Processing V. Series.

629.8'95 Tj213

ISBN 0-08-034083-0

s v

eedings were reproduced by means of the photo-offset process using the manuscripts supplied by the
of the different papers. The manuscripts have been typed using dszerml lypewnlm and lypefaus The
lay-out, figures and tables of some papers did not agree completely with the st equi
the reproduction does not display complete uniformity. To ensure mpul publication this discrepancy could not be
changed: nor could the English be checked completely. Therefore, the readers are asked to excuse any deficiencies
of this publication which may be due to the above mentioned reasons.

mu‘m‘

Printed in Great Britain by A. Wheaton & Co. Lid., Exeter

[FAG

International Federation of Automatic Control

SOFTWARE FOR COMPUTER CONTROL 1986

ﬂl Proceedings Series, 1987. Number 4

IFAC PROCEEDINGS SERIES
Editor-in-Chief
jANOS GERTLER, Department of Computer and Electrical Engmccrmg,
George Mason University, Fairfax, Virginia, USA ;
5}
GERTLER & KEVICZKY (General Editors): A Bridge Between Control Science and Technology
(Ninth Triennial World Congress, in 6 volumes)
Analysis and Synthesis of Control Systems (1985, No. I)
Identification, Adaptive and Stochastic Control (1985, No. 2)
Large-scale Systems, Decision-making, Mathematics of Control (1985, No. 3)
Process Industries, Power Systems (1985, No. 4)
Manufacturing, Man—-Machine Systems, Computers, Components, Traffic Control,
Space Applicatioris (1985, No. 5)
Biomedical Applicatiofs, Water Resources, Environment, Energy Systems, Development, Social
Effects, SWIIS, cation (1985, No. 6) :
BARKER & YOUNG: Identificition and System Parameter Estimation (1985) (1985, No. 7)

NORRIE ‘& TURNER: Automation for Mineral Resource Development (1986, No. 1)
CHRETIEN: Automatic Control in Space =~ (1986, No. 2) 4,
DA CUNHA: Planning and Operation of Electric Energy Systems (1986, No. 3)
VALADARES TAVARES & EVARISTO DA SILVA: Systems Analysis Applied to ‘Water and Related
: Land Resources (1986, No. 4)
LARSEN & HANSEN: Computer Aided Design in Control and Engineering Systems (1986, No. 5)
PAUL: Digital Computer Applications to Process Control (1986, No. 6) ;
YANG JIACHI: Control Science and Teclthology for Development (1986, No. 7)
MANCINI, JOHANNSEN & MARTENSSON: Analysis, Design and Evaluation of Man—Machine
- Systems (1986, No. 8)
BASANEZ, FERRATE & SARIDIS: Robot Control “Syroco '85” (1986, No. 9)
JOHNSON: Modelling and Control of Biotechnological Processes * (1986, No. 10) ; #

TAL': Information Control Problems in Manufacturing Technology (1987, No. I)

SINHA & TELKSNYS: Stochastic Control (1987, No. 2)

RAUCH: Control of Distributed Parameter Systems (1987, No. 3)

FLORIAN & HAASE: Software for Computer Control (1987, No. 4)

MARTOS, PAU & ZIERMANN: Modelling and Control of National Economies (1987, No. 5)

GENSER, ETSCHMAIER, HASEGAWA & STROBEL: Control in Transportation Systems (1987, No. 6)

ADALI & TUNALI: Microcomputer Application in Process Control (1987, No. 7)

WANG PINGYANG: Power Systems and Power Plant Control (1987, No. 8)

'BALCHEN: Automation and Data Processing in Aquaculture (1987, No. 9)

YOSHITANI: Automation in Mining, Mineral and Metal Processing (1987, No. 10)

GEERING & MANSOUR: Large Scale Systems; Theory and Apphcauons (1987, No. 11)

ROOS: Economics and Artificial Intelligence (1987, No. 12),

TROCH, KOPACEK & BREITENECKER: Simulation of Control Systems ' (1987, No. 13)

KAYA & WILLIAMS: Instrumentation and Automation in the Paper, Rubber, Plastic and Polymcnzauon
 Industries (1987, No. 14) :

NOTICE TO READERS
If your library is not already a nandmgloonunuauon order customeér or subscriber to thix ser; may we recommend that you place a'standing/
continuation or subscription order to receive immediately upon publication all new volumes. Shouic: you find that these volumel no longer serve your
needs your order can be cancelled at any time without notice.
Copies of all previously published volumes are available. A fully descriptive catalogue will be gladly sent on request.

ROBERT MAXWELL
t . k Publisher

IFAC Related Titles

BROADBENT & MASUBUCHI: Multilingual Glossary of Automatic Control Technology
EYKHOFF: Trends and Progress in System Identification
ISERMANN: System ‘Identification Tutorials (Automatica Special Issue)

FOURTH IFAC/IFIP SYMPOSIUM ON SOFTWARE
FOR COMPUTER CONTROL

Organized by)
Institute for Information Processing, TU Graz e
Institute for Machine Aided Documentation, FG] Graz *:
Austrian Academy for Advanced Management (OAF)

Sponsored by

The International Federation of Automatic Control
Committee on Computers -
The International Federation of Automatic Control
Committee on Education

The International Federation for Information Processing
Committee on Computer Applications in Technology
The Austrian Ministry of Science and Research

The Government of Styria '

The City of Graz

International Program Committee National Organizing Commattee
G. Bull, UK . K. Bermann

B. Cronhjort, Sweden ; : V. H. Haase (Chairman)
P. Elzer, FRG : R. Hammer

G. Ferrate, Spain , k H. Kraus -

C. Foulard, France: E. Pillhofer

R. Gellie, Australia A ‘E. Sos

J. Gertler, Hungary
T. Harrison, USA
~ R. N. Henry, UK
H. Holt, Denmark
R. Isermann, FRG
E. Knuth, Hungary (Chairman)
N. Kopacek, Austria
H. Kopetz, Austria
J. Kramer, UK
T. Lalive, Switzerland
R. Lauber, FRG
N. Malagardis, France
M. Mansour, Switzerland
E. A. Puente, Spain
. M. Rodd, South Africa
W. Schaufelberger, Switzerland
J. Sedlak, Czechoslovakia
B. Tamm, USSR
J. D. N. van Wyk, South Africa
N. Weinmann, Austria
T. J. Williams, USA

FOREWORD

These proceedings of the fourth IFAC/IFIP Symposium on Software for
Computer Control contein 4 invited, 6 plenary and 27 submitted papers
presented at the event in Gra_z/Auct.rie in May 1986. The records of 4 panel
discussions complete the scientific material. Because of a non-functioning tape,
recorder we were unable to prepare the panel discussion on distributed control
systems chaired by G. Suski. s

The main topics are artificial intelligence methods in control-software, real-
time languages, CAD-techniques, distributed control systems, control system
design, theoretical foundations and industrial applications. Of special
importance were papers and dincussions dealing u}lth 'MAP, as well as the
closing panel on the position of control engineers in society.

The symposium was attended by approx. 100 experts from more thean 20
countries. Many individuals and imtitutior:e have contributed to make the event
a successful one, especially members of the Organizing Committee and the
International Programme Committee chaired by El8d Knuth, the Austrian
Academy for Advanced Management and the Institutes for Information
Processing (IIG) and for Machine Aided Documentation (IMD). The symposium
was supported by the Austrian Ministry of Science and Research, the
Government of Styria, the City of Graz, the Technical University of Graz, the
Forschungsgesellschaft Joanneum, by IBM UOsterreich GesmbH and ITT Austria
GesmbH. '

The . :eting was an event where personal friendships could be established and
valuable technical discussions held. The editors hope that this volume will make
a major contribution to the scientific community.

We are indebted to Ms. A. Werner for her patience during the preparation of
this volume. '

Doris Florian -
Volkmar H. Haase

vii

CONTENTS

INVITED PAPERS

Software Project Management 1
P.F. ELZER

Panel Discussion: Software Project Management " 13
E. KNUTH, B.T. CRONHJORT, H. HUBMER, G. KOVACS, L. KRZANIK

Use of Qualitative Knowledge in Learning System Behaviour and Discovering 15
Control Strategy
Y.-H. PAO

Panel Discussion: Use of Expert Systems in Process Control 19
M.G. RODD, B.T. CRONEJORT, K. GIDWANI, Y. ISHIDA, E. KNUTH, L. MOTUS

MAP - Manufacturing Automation Protocol ' ' 21
K. ZWOLL, H. HALLING

Panel Discussion: Manufacturing Automation Protocol 35
V. HAASE, J. CSER,"H. HALLING, S. KERESTHELY, G. KOVACS

Software Development for Distributed Systems 37
G.M. BULL

PLENARY PAPERS

A Dynamically Configurable General Purpose Automation Controller 47
G.E. MAIER, R.H. TAYLOR, J.U. KOREIN

Rule-based Control Software System for Factory Automation - 53
Its Rule Correctness Check Support and Response-time Estimation
T. TASHIRO, N. KOMODA, I. TSUSHIMA, K. MATSUMOTO

Abstractions with Explicit Performance Attributes for Process-control 59
Software Development

- L. KRZANIK
Innovative Knowledge Engineering for Real-time Expert Systems 65
K.K. GIDWANI, W.S. DALTON

MUSIC: A Tool for Simulation and Real-time Control 75
J. CSER, P.M. BRUIJN, H.B. VERBRUGGEN

HCDM: A Hierarchical Design Method for Chill Based Systems 81
N. THEURETZBACHER

REAL TIME LANGUAGES
-

Automatic Control Systems Programming Using a Real Time Declarative Language 89
J.L. BERGERAND, P. CASPI, H. HALBWACHS, J.A. PLAICE

M.L.C.: A Language for the Specification of the FMS ~ utrol Systems 95
C. DESCLAUX, R. VALETTE, M. COURVOISIER, A. SAHRAOU. , D. BARBALHO

COMO: A Modula-2 Program for Real-time Control of a Raw Material Mill 101
P. ALBERTOS, F. MORANT, J.A. DE LA PUENTE, A. CRESPO

A Programming Language for Distributed Systems 109
J.A. CERRADA, M. COLLADO '

Parallel Progrémming in Ada and in the Hungarian Ada Compiler 113
J. BOD

ix

X Contents

Realization of a Process Control Language Based on Macroassembler
G. GODENA, J. CERNETIC, M. JOVAN, S. STRMCNIK

The Real Time Language PLZRTC and its Application
ST. BURKHARDT

COMPUTER AIDED DESIGN TECHNIQUES

An Interactive Graphical PC Program Package for Identification, Design and
Simulation of Control Systems
R. BARS, M. HABERMAYER, J. HETTHESSY, R. HABER

Computer Aided Design of Robust Multivariable Control Systems
DJ.B. PETKOVSKI

AL AND LOGIC BASED APPROACHES

The Identification and Control, Partially Added with the Artificial
Intelligence Approach
T. NAKAGAWA, H. OGAWA

Graphics in an Artificial Intelligence Language, PROLOG
A. DOMAN

On the Model for the Construction of Knowledge-based Diagnostic Systems
Y. ISHIDA, H. TOKUMARU

A Language and a Calculus for Distributed Computer Control Systems Description
and Analysis
P. LORENTS, L. MOTUS, J. TEKKO

Knowledge Based Support for Online Program Changes
R.J. WHIDDETT

A Correctness Verification of Parallel Control Programs

T. SZMUC

DISTRIBUTED CONTROL SYSTEMS

Software and Hardware to Support the Teaching of Real—t;ine Distributed
Systems

G.M. BULL, D.A. FENSOME

INDUSTRIAL APPLICATIONS

Design of a Man-machine Interface for Process Control on the Bridge of a Ship
A.M. HEINECKE

Concurrent Architectures for Power System Control
A. VIEGAS DE VASCONCELOS

A Distributed Control System for the Soda Ash Prof=uction Plant Automation -
Architecture, Software Design and Engineering
G.N. NIKIFOROV, E.N. EVANGELATOV, Z.C. BRANKO¥aA, CRINAL L

Leak Detection Methods for Gas Pipelines
A. BENKHEROUF, A.Y. ALLIDINA
CONTROL SYSTEM DESIGN AND DEVELOPMENT

A Flexible Interpreter and Management System for Control Engineering Purposes
H. HENSEL

Methods and Tools for the Development of Software for Complex Realtime
Control Systems '
M. BRUNS, H. RAKE

Man-machine Interaction and Supervisory Functions of HAHSS - A Software Package

for CAD of High Accuracy and High Speed Servo *
T.P. WANG, R.L. YANG, S.W. WANG, Y.G. LI

THEORETICAL FOUNDATIONS ’

A New Methodology for Modelling, Analysis and Control Design of Non-conventional

Sampled Data Systems
J. TORNERO, P. ALBERTOS

119

125

129

135

139

147

153

159

167

173

179

185

191

197

205

217

223

227

Contents
Synthesis of Well Behaved Synchronized Processes
C. HAO

Improved Time Domain Robustness Criteria for Multivariable Control Systems
DJ.B. PETKOVSKI

Traffic Control and Optimization in Process Control Communication Systems
E.I. STOILOV, M.P. KISS',[,QV, M.S. STRUGAROVA

Closing Panel Discussion
V. HAASE, P. ELZER, V. IGNATUSCHENKO, E. KNUTH, M. kome, G. SUSKIL
Author Index

Subject Index

233

239

245

251

253

255

xi

Copyright © IFAC Software for Computer
Control, Graz, Austria 1986

INVITED PAPERS

SOFTWARE PROJECT MANAGEMENT

P. F. Elzer

Brown, Boveri & Cie., Central Research Laboratory (ZFL/L3), P;OB 101332,
Heidelberg, FRG

-~

Abstract. The paper gives an overview over methods and tools for

the management of the software life cycle and a report ongthe

'First IFAC/IFIP Workshop on Experience with the Management of
Software Projects' in Heidelberg, May 14 - 16, 1986. It mainly
emphasizes non-technical aspects, like e.qg. cost—estimation,'prqduc-
tivity, planning, and human factors. In the technical parts it is
tried to draw attention to aspects which are usually neglected,

like e.g. test and verification or application dependent selection
of tools and languages. Finally an attempt is made to identify tech-
nological trends in the development of software tools.

Keywords.

Computer organization, Computer

applications, Computer software, Human Factors, Programming languages,
Programming tools, Software development, Software management,
Software specification, Software testing.

1. INTRODUCTION .

This paper has a twofold origin. It is a
summary of the author’s experience and obser-
vations in the field of software project
management as well as a report on the ‘First
IFAC/IFIP Workshop on Experience with the
Management of Software Projects’, which had
been initiated by the author and held in .
Heidelberg from May 14 to 16, 1986 and which
‘yielded some gquite interesting results.

Some of the ideas presented here can be tra-
ced back to discussions at the first workshop
on the Software Environment for Ada at the
University of Southern California at Irvine
(lit.1). This event was intended to be a
source of technical ideas for features and
components of a common ‘Ada programming en-—
vironment’ for all Ada applications.

But already during that workshop several of
the speakers criticized its technologlcal
point of view and argued strongly in favour
of approaches which should also take into ac-
count non-technical aspects of software ma-
nagement. But at that time this remained a
minority opinion. The majority of the soft-
ware specialists at the workshop strongly
favoured a purely technological solution and
especially one which provided complete co-
verage of the software life cycle by computer
based tools. Nevertheless, the author, who
had had some previous experience with the
design and application of software tools,
used the opportunity of a study trip through
the USA in order to investigate further into
problems of the 1nteract;on between software
tools and the economic and social environment
in which they were used. He summarized his
impressions in a paper: ‘Observations on
Existing Software Environments’ (lit.2). A
small part of his findings was also incorpo-
rated in the official requirements specifi-

cation for the Ada software environment:
"Pebbleman’ and ‘Pebbleman revised’ (lit.3,
4). But unfortunately time was not yet rlpe
for such ideas and therefore the ‘“official’
position had to remain purely technology
oriented for some years to come.

In the meantime the author continued to col-
lect material and experience with the subject
and, to his satisfaction, saw similar views
emerge in many places in the ’‘software sce-
ne’. Finally, IFAC got interested in the
subject and agreed to sponsor tha;ﬁirlt
workshop on this matter.

It turned out to be a success. It not only
demonstrated the feasibility of assembling
enough managers and have them present and
discuss their experience, but it also showed
that by far the majority of them liked this
opportunity and expressed the wish to make
this type of conference an established and
regular event. The organizers of the workshop
have therefore started the necessary steps
towards this goal.

2 RESULTS OF THE WORKSHOP

21 Invited Papers

There were four invited papers. Their con-
tents had been discussed beforehand with the
authors in order to make them fit together
and to highlight certain topics out of the.
broad area of software management. They were:

Heidi Hennenberg, Krupp-Atlas-Electronics,
Bremen, FRG:

Software Project Management - there is more

to it than just technology.

. L
This paper really ‘Set the tone’ for the

2 P. F. Elzer

whole workshop. It showed that there is no
technological “catch-all’ for the solution of
all problems in the development of systems
and software. One has to see them in context
and to try to solve them by means of a ba-
lanced and consciously chosen system of me-
thods and tools. ’

David J.L.Martin, Brown,Boveri & Cie, Mann-

heim, FRG: °

Practical Improvements in the Management of
Real-Time Software Projects. — o oot
D.Martin gave a very clear and well worked-
out summary of one big project he had lead
to success and another one he was just pre-
paring. The paper was so well prepared and
presented that it was afterwards rated by the

audience as ‘best paper’ and proposed for
publication in “Automatica’.

Malcolm Key, British Telecom, Ipswich, UK:

The Reasons why Software has a Bad Name. '

In this presentation the author gave an
overview over various management tools and
techniques which are necessary for the con-
duct of large projects. It was an important
paper insofar as it highlighted some of the
points which are usually forgotten when a
project is prepared.

Per Svensson, Swedish Defense Res. Inst.,
Stockholm, Swegien: »

Creative Research and Product Development in
Software Projects - the CANTOR Experience.

This paper was fascinating because it des-
cribed in a completely honest way the view of
a person who actually had to do the produc-
tion work and who had to live with the mana-
gement theories and methods about which
others talk.

2.2 Submitted Papers

In total there were sixteen submitted papers,
covering e.g. the following topics:

- Differences between the mentality of mana-
gers and that of engineers

- The reaction of people to new rules and
guidelines

- Aspects of embedding a software development
organization into a large user organization

- Experience with the use of special tools
in real application projects

- Validation of Software

- Summaries of the experience with several
completed projects

- Interrelations between technical develop-
ment and its political and economic envi-
ronment

2.3 Subgroup Discussions

Triggered by the intensive interest of the
participants it was spontaneously decided to
organize subgroup discussions on the follo-
wing topics:

- Re-use of Software, chaired by Dr.P.J.L.
Wallis frowm the University of Bath, UK

- Human Factors,
chaired by Dr.W.Bergstroem from Elkraft
Power Co.,Denmark .

- Future Trends, chaired by the author of
this paper

The results of the subgroup discussions were
presented to the plenum by the respective
chairmen and discussed there. They will be
included in the proceedings of the workshop.

2. 4_ . Questjonnaires

T)uring the workshop two questionnaires were.
distributed in order ta sound the opinion of
the participants and to collect some data on
tools used, productivity factors etc. This
action also turned out to be a remarkable
success. The general criticisms were very
positive and constriuctive and the data col-
lected were so numerous that it will take
some time to evaluate them.properly. There-
fore only part of them will be included in
the proceedings. However, a few of them
have already been evaluated for this report
in order to give an impression of the re-
sults. R

2.5 Conclusions

- In the closing session of the workshop it was

tried to formulate some conclusions. The
following positive findings were generally
agreed upon by the participants:

- Good management of software projects has
to take into account more aspects than just
tools and technology

~- During the past years there has been a
significant evolution in the technology and
it is still going on.

- The motivation of the people who are in-
volved in a project is extremely important.

- With a balanced system of tools, manage-
ment and motivation successes have been
achieved and can be proved.

But there were also negative results:

- As far as tools are concerned, still more
evolution is necessary; the current tools
all are not quite sufficient. In particular
there are problems with interfaces between
tools.)

- Overly rigid (top-down) phase models have
turned out to be counterproductive.

- There is a lack of quantitative data on
productivity in software development and
too little knowledge of the factors which
influence it.

In the following sections it shall now be
tried to give a very condensed overview over
the whole software development process. As,
of course, a thorough discussion of the sub-
ject would easily fill a book, the author
had to concentrate on a few specific points
which he thought to be of prime importance.
Thus, this presentation has a strongly sub-
jective character, but many discussions have
convinced the author that his ideas are a
quite good approximation of the opinion of
many practitioners in the field.

3 ESSENTIAL ASPECTS OF SOFTWARE DEVE-
LOPMENT .
3.1 The Ingredients of a Successful

Software Project

The following list comprises some of the im-
portant aspects of software development,
which have to be considered if a project is
to be successful:

Software Project Management

Technology
The Design
- Adequacy
= Modularity
- Adaptability

The Software Development Environment

- Specification Tools

- Programming Languages
- Test and Verification
- Documentation

Support Hardware

- Development Machines
- Special Test Environment

Management

Or: zation

- Project phases

- Planning

- Cost Estimation

- Teams and Structures
= Influencing Factors

"Human Factors »

Support Tools

= Documentation
- Reporting
- Checkpoints

It should always be borne in mind that the
technological and the management aspects are
of equal importance. It is also a fact that
most of them have been individually investi-
gated and are well known and covered by 1li-
terature, courses, etc. But obviously it is
not yet common knowledge that they all to-
gether have to form a 'management system’ and
that in general they are even interrelated.

This can e.g. be exemplified by the develop-
ment of the phase model:

3.2 The Phase Model

The phase model was originally derived from
management considerations and later turned
out to be a useful framework for the con-
struction and classification of tools. For
some time it was even considered as a tech-
nological dogma. People now begin to under-
stand that both aspocts are interwoven and
interdependent.

During the workshop .it was confirmed that an
overly rigid phase plannjng was counterpro-
ductive, but that a reasonably phased struc-
ture of a project is necessary and useful. It
was stressed that the usual phase plan has
to be extended by a phase of thorough plan-
ning. The recommended phase model therefore
looks approximately as follows (cf.lit.5):

- Planning and establishment of the manage-
ment structure

- Establishment of quality assurance
mechanisms

- Definition of the requirements

- Design specification

- Design and coding

- Unit test

- Integration

- System test and validation

- Maintenance

3.3 The Importance of Good Design

With good reasons the design has been mentio-
ned first on the list in section 3.1. In
principle it should be a matter of self-
understanding that for the development of
computer and software systems good-design is
as important as for any other technical pro-
duct. The best tools and the most capaple
manager can not save a project in which

the design of the product is bad or even
wrong. But until now software development has
mainly been regarded under the aspect of the
development (or production) environment,
i.e. programming languages, specification
tools, test and verification, and, maybe, a
little documentation. Such a view would ap-
pear utterly strange to e.g. a mechanical
engineer. Of course he also has to think
about the tools with which to produce e.g. a
car, but primarily he is concerned with de-
signing a good and affordable car. The pro-
duction facilities are then constructed ac-
cording to the requirements of the product
and financial considerations.

But unfortunately very little is known about
what is really good software designl Besi-
des, the author believes that this problem
can not be solved by software specialists. In
the first place the quality of software is
determined by the properties and the requi-
rements of the application. To stay within
the abovementioned example, knowledge about
production methods may help to make a car
cheaper or, maybe, less prone to rust, but it
will certainly not improve e.g. its roadhol-

" ding or the fuel consumption. So the manager

will have to apply a few principles against
which to check the quality of a design. The
most important ones seem to be those listed
in section 3.1.

In the first place the design has to be ade-
quate to the problem. It must neither be too
futuristic nor overly conservative. One must
not take unnecessary development risks by

trying an unknown problem solution on, let’s

say, a new generation of computers. But one
must also avoid “obsolescence on delivery’.

Then a design must be modular. This has
technical reasons as well as organisational
ones. From a technical point of view it is
well known that a modular system is easier to
design, to understand and to maintain than a
monolithic one. Under managerial aspects it
is necessary to prepare for the necessity to
develop a system in a team, i.e. to be able
to assign well separated work modules to
different people or subgroups.

Finally a design has to be adaptable to
change. This does not only relate to changes
after delivery’, which Parnas may have had

in mlnd when he postulated his ‘Design for
Change’, but also with changes which will,
inevitably, occur already in the development
phase. Inevitably, because software projects
usually take much longer than people expect.
Everybody talks about an ’innovation rate’
which is supposed to be between 2-3 years,
but statistics teach us that the average
software project of nontrivial size takes
between 5-8 years! And - that was the remark
of one of the speakers at the workshop - the
lifetime of a government is usually four
vears. So one may well face drastic changes
v the environment in the middle of the de-

4 P. F. Elzer,

velopment phase.

4 ORGANISATIONAL ASPECTS

4.1 Planning

Everybody agrees that planning is necessary,
and in every. project it is done in some way.
But some mistakes are quite common.

Firstly, planning is obviqusly not. taken se-
riously enough. This observation has already
been described in the book -‘The Mythical Man-
Month” by F.Brooks (lit.6). Brooks describes
how project teams are usuglly built up too
fast and planning is regarded as a Kind of
“side-activity’ for the manager during the
early project phases. But the bulk of hig_
time is consumed by instructing all the new
people and assigning work packages to them,
which consequently are only partially thought
out and often uncoherent because planning has
not been completed. From this an important
rule can be derived: Do not start a software
grog'ect of non-trivial size with a fully
staffed team, but all for a planning pha-
se, in whic¢h a few - but very good - people
prepare the project by thorpugh planning and
architectural designl v

Secondly, planning tools are not used pro-
perly. They are either not used at all or -
to the contrary - adhered to too strictl
which, in turn, leads to inevitable frustra-
tions and to abandoning them after some
time. It was generally agreed that it was
better to use planning tools than to work
without them, but that they should only be
loosely connected to the project and used as
“guidelines’ and ‘early wvarning systems’. So
e.g. PERT-diagrams were'not ‘fated very high-
ly, because they led too .fmacH into detail
and were difficult to adapt, but bar-charts
were generally regarded as.very helpful.

4.2 Cost Estimation

4.2.1 Productivity and Cost Models

This was generally regarded as one of the
most important issues in the management of
software projects. In the USA it has been
discussed in conferences for several years
and there is a lot of literature dealing with
this subject. A number of ‘cost-models’ have
been developed which try to take into account
as many influencing factors as reasonably
possible and therefore sometimes have become
quite complex. But obviously none of them has
succeeded in really giving precise and relia-
ble forecasts.

On one occasiorf the author has undertaken a
comparison o‘f such cost—modelg and found out
that a ‘rufe-of-thumb’, i.e. “estimate the
possible sizg-of the code in your project’and
divide it by the productivity of our team ,
yields nearly exactly the mean value of the
forecasts of a number of more or less com-
plicated cost-models. The rule-of-thumb per-
formed even better if one applied the usual
statistical error boundaries to the estima-
tes of code size..®f course it is common
knowledge by now thhat the linear relation
between code size and project cost does not
hold any more for really big software, but
the cost models did not do any better there.
But this difficulty can be overcome by a
modular design with loosely coupled com-
ponents. The explanation for this can be
found in the work of Halstead (1it.7), who

.

had discovered that the effort - which is' ex-
pressed by cost - for the development of a
piece of software is not a linear function
of the size of the software, but grows ac-
cording to some exponential relation. The
reason for this is that the true cause for
the effort necessary is the internal complex-
ity of the software, which also grows ex-
ponentially with the size. But he also showed
that modularization can drastically reduce
the effort, because the total effort neces-
sary for some big software system can be

‘computed as the sum of the effort necessary

for all the modules instead of the exponen-
tial result one would.get from applying his
formulas ‘to the whole piece of software.

Another important principle, which has first
been described in great detail by Brooks
(1it.6), but which is forgotten every time-a
project becomés critical, is: ‘Addin -
wer to a late project makes it later , or
more generally: there is an optimal team .
size which must not be exceeded if the pro-
ject is to be completed in a reasonable

time. The reason for this is that humans, who
work together in a team, have to communicate
in order to get the common work properly
done. This communication takes time and this
time decreases the ‘productivity’ (e.g. mea-
sured in lines of code per man-year). But as
it is clearly impossible to realize a 100
man-year project by one- person who is allowed
to work 100 years, one has to allow for these
‘communication losses’. But one has to know
that they exist and to organize the-team in
such a way that they do not exceed a tole-
rable amount of the total time budget: Modern
cost models obviously take this into account,
as Fig.l shows. This figure is taken from
(1it.5) and has been computed using the SLIM
model (1lit.8). .

v

Dev. time (years)
w -~

~
>

“Impossible region”

0i - ——f— v + v 2 v ~ -
0 00 200 300 400 500 600 700 800 900 1000
; Example System Size (KLOC) ——e=

Fig.l: SLIM - Diagram (from: M.Key (lit.5))

An important aspect of this figure is des-
cribed by M.Key as follows: ‘It also shows an
Impossible Region. Faced with this evidence
it is more difficult for the senior manager
to say: "Well, if you can’t do it, I will
find someone who canl!". Clearly, management
must attempt to achieve an end date determi-
ned by a market window; what it must not do
is go into the “impossible’ region of the
graph! Therefore, the plans must be realistic
in their timescales and have a degree of fle-
xibility which can accommodate slip.’

But Fig.l also shows another, very impor-
tant, aspect. From the manpower curves one
can see how to do the same work with much
less effort just by allowing for a little

Software Project Mar-nagement

more timel E.g. one can produce 250 K of
software using 25 man-years or 100 man-
*'years. In the latter case one has even slip-

ped slightly into the impossible region,

i.e. it will be a very tough project. And the
saving of time is less than 30%, whereas from
a naive point of view one would expect 75%.
This observation .is confirmed by Fig.2, which
has been taken from a study by IBM (1lit.9).

1
°
3 — FORTRAN
@ .
VA oPL/1
example 6 / . / 2
300 s 77 \"\
/ s team size
1% /
I | : “
I |
gwo- N vy
= Length of program
> =20.000 Lines
£ (FORTRAN)
k]
g 6L Qg4
301
}2! 120
3 0 30 100

Duration of project (months) ——e=

Fig.2: Dependence of Productivity on team
size (adapted from (1lit.9))

If in Fig.2 one locates the team sizes which
result from the above figures, i.e. approx.
6, resp. 33 people, on the curve for FORTRAN
(empty circles), and looks at the resulting
values for productivity and project duration
the values of Fig.l are confirmed: the pro-
ductivity of an individual in team of 6 is
four times that of one in a team of 33, and
the gain in project time is approx. 30%. Thus
one obviously has detected a rather solid

law of nature’. This law has first been des-
cribed by Brooks, too, who also found an
explanation for it: It is the communication
of people which is necessary in a teaml ‘He
also gave a formula describing this effect in
quantitative terms. This formula and some of
its results are plotted in Fig.3, which il-
lustrates in a nearly dramatic way one of the
central problems of management of programming
teams. ‘

o

K= 4% (296min/ week)

05 -
g X\\ ’/ﬁ
\g—-x K=1% [824min/week)
§8:6—A—A_o-°"°

o \O~O—o_ OO0 =0
0.1 K=0

Lz T B v T T T T v T

2 4 6) 0 1
team size ——o=

L (alal)

* Brooks's Formula®
-n
2

Ny=
n :Number of team members
N : Number of un-organized c ication ch, s within team
t :Normalized duration of a project
K :Percentage of communication
Fig.3: Dependence of project duration on team
size

Even with the modest amount of 13 of her or
his time for one team member talking to
another one the optimal team size is as small
as 6 - 81 Even with this team size there are
15 - 28 ‘communications’ per person and week,
which consume 6 - approx.ll hours per week of
each person’s time. Brooks ludes that, as
you can neither forbid communication comple-
tely nor have every project been conducted by
just one person, one has to organize commu-
nication. He describes several methods for
this purpose, but it would by far exceed the
framework of this paper to describe them
here. Thus the author would really encourage
the reader to study the book of Brooks and to
try to map the solutions described there on
the own management problem. Of course a ge-
neral principle should be applied in this
case as well as in every other one: Do not
try to adapt other people’s methods or ex-
perience to your problems without reflection
and proper adaptationl- e

But even if one has thoroughly understood the
problems connected with the management of
sizeable teams and on top of this is a gifted
‘leader’ who really can get his people to
work, the problem of a reliable original
estimate of the costs of a project remains.
Obviously there do not exist really reliable
data on programmer productivity, etc. The

.manager normally hag to take recourse to hf:i“

own experience. But. there are possiblities tq
check this experince for plausibility and to
compare the performance of the own team or
company with the outside world. First one can
browse through published literature for f£i-
gures, can talk to colleagues and calculate
backwards from competitor’s prices and/or
project durations. But there is also compiled
material: Nearly everything which Barry Boehm
publishes (e.g (lit.l1,12)) contains valuable
figures and reference information. But a less
widely known book has turned out to be a
really invaluable source of raw data: Mont-
gomery Phister: Data processing, Technology'
and Economics (lit.9). This book contains
innumerable statistics, collected over a pe-
riod of approx. 15 years and covers all .
aspects of data processing from computer
production to program development. Besides it
is apparently updated in regular intervals.

Workshops like that in Heidelberg serve two .
purposes in this context: They allow rapid
collection of data and they provide a forum
for organized communication. How well this
works, is shown in Fig.4* which is a plot of
productivity figures collected by means of a
questionnaire during the Heidelberg workshop.

The bandwidth of the results corresponds very
well with values obtained from other sources:

2500 - 3500 LOC/MY WOrkahog_average,
1986 (*
4000 LOC/MY author’s own experi-

ence, difficult
FORTRAN code, 1984

2000 Loc/MY author’s own experi-
ence, difficult As-
sembler code, 1982
3200 LSC/MY (1it.12), 1977

*see page 11

6 P. F. Elzer

(* s+ A later, more thorough evaluation of
the workshop results showed a wider distri-
bution: 2700 +/- 900 LOC/MY)

4.2.2 Influenc Factors

But these figures cannot be applied uncriti-
cally and schematically. One also has to take
into account the most important factors which
influence the productivity of program des-
igners. The most complete collection and
evaluation of such factors can also be found
in (1it.12). There 30 influ factors
have beén listed and their. effect evaluated.

Those with the highest values have been 1li-
cted below:

1 Complexigy of customer interface

. 4.0/1.0 = :

2 Exp;rioneo with programming language
1.0/3.2 B

3 General qualification of personel
1.0/3.2

4 Experience with application
1.0/2.8 . : -

5 Du;gmr participation in specification
1.0/2.6

6 User participation in requ.def.
2.4/1.0 (1) ; :

7 Experience with computer used
1.0/2.1

8 gaq/)loxity of application algorithm

«1/1.0

9 Percentage of delivered code

’ 1.0/2.1/1.7 (1) v

10 Limitations of working memory

2.1/1.9

Some other factors, which usually enjoy high
estimation among theorists are of less influ-
- ence th'an expected, e.g.:

29 Complexity of control flow
30 Module size

1.4/1.0(1)
1.25/1.0/1.35

The figures indicate productivity and are to
be read as follows: The first figure holds if
the respective factor is smaller than normal,
the last one, if it is greater than normal.
The middle figure (if given) describés pro-
ductivity under normal conditions. So e.g.
can very complex relations to'a customer,
i.e. something which depends on talent for
negotiations and on the quality of contrac-
ting department; decrease productivity to a
quarter of a good valuel n the other hand,
if one can assemble a team of gualified peo-
ple who are familiar with the application
and the programming language (factors 2, 3
and 4), bne theoretically has a chance to
complete a given project 25 times as- fast as
under adverse conditions. The purely techno-
logical factors, e.g. 29:and 30 are of re-
markably small influence. The effect of the
factors 6, 9 and 29 is counterintuitive, i.e.
experience and statistics show different
results than what has always been expected
from theoretical discussions.

In general this list easily explains why the
reported productivity figures of programmers .
can vary by a factor of. 20! And for a mana-

ger, who wants to do reliable planning, this

means: Observe your team, Kkee r own sta-
tistics,. monitor your Influoncfgg factors and
apply a reasonable safety margin in your]

estimates! :

D.Martin (lit.l1l3).'also described and evalua-
ted the influencing factors which had been
relevant to his projects. Though he did this

only qualitatively, the results confirmed the
values given in the above 1;Lat. 3

4.2.3 Distribution of Effort over

Project Duration .

As already mentioned above, one should never
start a sizeable project with a fully staffed
team. But what, then, is a reasonable distri-
bution of manpcwer over the duration of a
project?

One curve actually observed in a successful
project is shown in: Fig.5* which is taken
from (lit.13). It shows that a successful
Project of over 100 man-years has actually
been prepared by twc people over one yearl A
more qualitative approach is used in Fig.6%*.
This diagram, however, illustrates the rea-
sons for such a curve by indicating the order
and the overlapping of activities in a soft-
ware project. Less detailed, but supported by
?ood s;.atistics, are the values given in
1it.9):

N

Program design: 26 ' (% of total
Coding: ¢ ‘24 project
Testing: 36 effort)
Documentation: 14 s

The author found that this subject is quite
well covered by statistics from various sour-
ces, but to mention them all would also ex-
ceed the framework of this paper.

However; two aspects shall be emphasized here:

Firstly, it is important to know about the
average values of such distributions, because
one needs them for reliable estimates. The
reason for this is that reliable productivity
figures can usually only be obtained for
certain phases of the development cycle. One
therefore has to extrapolate the total pro-
ject costs from known figures for certain
phases by using the statistical values for
the other phases given in such distribution
curves. : g

Secondly, the usual curves illustrate the
maintenance problem. In whatever statistics
one consults, maintenance costs usually amount
to 50 % of the total lifecycle cost of soft-
ware. 50, one has to be prepared to set
aside a group of 10 people for the mainte-
nance of a software system which cost 100
man-years to developl Of course this situa-
tion is by no means acceptable and therefore
every effort should be made to reduce the
maintenance costs of software by better de-
sign and good tools.

4.3 Human Factors
4.3. General

It may look surprising to find this subject
in a paper which started out with cost models
and statistics. But it is one of the most
important points a manager has to observe. '
All his planning and statistics will be '
utterly ian vain if he does not succeed in
keeping his team together and in maintaining
a reasonable degree of job satisfaction and
productivity.

There are many factors which influence this.

H. Hennenberg already described some of them
in her overview paper (c.f. 2.1). The ‘Human

Factors’ subgroup then discussed the matter |
in greater depth and came up with a series of
recommendations, the most important of which

*sece page 11

Software Project/fManagemcm»

shall be expla.iqod in the following para-
graphs

4.3. 2 Motivation of t.he Team

~To achievo this, the following faqtors were
Judgod to be most iwortant.:

-\.'mcteamhaato have a fair | e of
success. That means that p e-
dules have to be foasiple and' realistxc.

- The individual team r has to hav¢g
a feeling of importance. Never let
feeling arise that she or he is]ulrjh re-
garded as a cogwheel which can be thrown
away and replaced at any time.

= The manager has to show an adequate
response to the needs of his team. This
means in the first place a proper working
environment, but also includes the neces-

. 1sity to, be able and willing to help people
“with their private problems as far as rea-
-onably ' possible.

- Alway- maintain a sl;g:t overload. This
aspect was first emphasized by a par-
ticipant from Japan, but then it was ge-
nerally accepted that people perform
better and feel more satisfied if the
manager makes them achieve a little mor
than they orininally expected by t‘.hmi-
ves. The author, too, has observed this
effect over more than a decade and there-
fore can support this view.

4.3.3 Team Building

The manager should perform a thorough in-
terest analysis of his (future) team-mem-
bers. In a profession like program deve-
lopment, which mainly depends on ideas and
organization of thoughts, the performance
of an individual obviously can vary by a
factor of 10 - 20, depending if she or he
is employed in the right place or not. And
thus job satisfaction becomes an economi-
cally miach more relovant factor than in
many ‘traditional’ professions..

- Professional ethics and mralitx are
more important than usually. Because
complete testing and traditienal qua-
lity control are not very well developped
as far as software is roncerned and even
simply impossible in big systems, the
commitment of the individual to do the
very best job she or he can do, becomes an
extremely important economic factor. This
simply follows from the fact that a tho-
roughly developped program costs less
in maintenance and damages caused by mal-
_functioning.

- On the other hand, the manager has to
maintain visibility of the work of his
team members in order to be able to pro-
perly perform his control functions and
to start corrective actions in time.

4.3.4 Dealing with Conflicts

- Firstly, identify and solve conflicts
‘soon. This seems to be an old and well-
known rule for team-ldaders. But software
people and managers mostly have a predomi-
nantly technical background with little
training in management and human factors,
and therefore traditional rules of lea-
dership are not very well known among
them.

~

- Secondly, be prepared to create pain.
Tochniull ‘conflicts can very rarely be

_x u compromise and somebody has
% Iﬂh-

- But, aloo do not try to avoid conflicts at
any price. Conflicts are good for evolu-
tion (this has long been discovered Uy
philosophers) and, if handled properly,
may even help those who lose one. They may -
win the next time,

4.3.5 Keeping Balance

One of the tindingq‘of the Human Factors
Subgroup, which was found most interesting by
the audience, is illustrated in Fig.7. The
manager has to be aware that humans are' con-
trolled by a field of tension in which they
try to maintain a kind of equilibrium. It
should be an interesting exercise for the
reader t¢ interprete this diagram for him-
self.

Boredom ‘_ Fuar
Safety Curiosity

E‘ig'.h The psychological equilibritum

Another interesting observation is illustra-
ted by Fig.8. There seems to be a correlation
between the skill-level of team members and.
the number of meetings held. The conseguences
of this observation are not clear, becau-
seonoxw!undmotinguu‘egoodfotcomu
nication, problem solving and conflict reso-
lution but on the other hand too much comsmu-
nication degrades productivity, as described
in 4.2.1.

Skill —e=—

Fig.8: Dependence of number of meetings on
skill level

4.3.6 Special Properties of Software Teams

Since decades a discussion is going on among
software professionals whether program deve-
lopment is a production activity like any
other or whether it is something special to
which traditional rules of management do not
apply. The author holds that program deve-
lopment is comparable to traditional planning
activities and that therefore software mana-
gers can learn a lot from architects who plan
large buildings, or from administration in
civil service, railroads or military logi-
stics.

8
A particular aspect of this has been put
forward by the Human Factors Subgroup at the
Heidelberg Workshop:
The majority of Software ptofesslonala (at
least in Europe) holds university degrees, if
although mostly not in software. This means
that they have been educated in a tradition
where tHey are judged for obtaining unigque
results. Usually university graduates also
have never learned the necessity of strict
rules. Both backgrounds make it difficult to
build sizeable teams out of such people.

