

A Mathematical Introduction to

Richard M. Murray Zexiang Li S. Shankar Sastry

A Mathematical Introduction to ROBOTIC MANIPULATION

S. Shankar Sastry

University of California, Berkeley and Harvard University

CRC Press
Boca Raton Ann Arbor London Tokyo

Library of Congress Cataloging-in-Publication Data

Murray, Richard M.

A mathematical introduction to robotic manipulation / Richard M. Murray, Zexiang Li,

S. Shankar Sastry.

p. cm.

Includes bibliographical references and index.

ISBN 0-8493-7981-4

1. Robotics. I. Li, Zexiang, 1961-. II. Sastry, S. Shankar. III. Title.

TJ211.M87 1993 629.8'923—dc20

93-33167

CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without prior permission in writing from the publisher.

CRC Press, Inc.'s consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying.

Direct all inquiries to CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

© 1994 by CRC Press, Inc.

No claim to original U.S. Government works
International Standard Book Number 0-8493-7981-4
Library of Congress Card Number 93-33167
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

A Mathematical Introduction to ROBOTIC MANIPULATION

To RuthAnne (RMM)

To Jianghua (ZXL)

In memory of my father (SSS)

此为试读,需要完整PDF请访问: www.ertongbook.com

Preface

In the last two decades, there has been a tremendous surge of activity in robotics, both in terms of research and in terms of capturing the imagination of the general public as to its seemingly endless and diverse possibilities. This period has been accompanied by a technological maturation of robots as well, from the simple pick and place and painting and welding robots, to more sophisticated assembly robots for inserting integrated circuit chips onto printed circuit boards, to mobile carts for parts handling and delivery. Several areas of robotic automation have now become "standard" on the factory floor and, as of the writing of this book, the field is on the verge of a new explosion to areas of growth involving hazardous environments, minimally invasive surgery, and micro electro-mechanical mechanisms.

Concurrent with the growth in robotics in the last two decades has been the development of courses at most major research universities on various aspects of robotics. These courses are taught at both the undergraduate and graduate levels in computer science, electrical and mechanical engineering, and mathematics departments, with different emphases depending on the background of the students. A number of excellent textbooks have grown out of these courses, covering various topics in kinematics, dynamics, control, sensing, and planning for robot manipulators.

Given the state of maturity of the subject and the vast diversity of students who study this material, we felt the need for a book which presents a slightly more abstract (mathematical) formulation of the kinematics, dynamics, and control of robot manipulators. The current book is an attempt to provide this formulation not just for a single robot but also for multifingered robot hands, involving multiple cooperating robots. It grew from our efforts to teach a course to a hybrid audience of electrical engineers who did not know much about mechanisms, computer scientists who did not know about control theory, mechanical engineers who were suspicious of involved explanations of the kinematics and dynamics of garden variety open kinematic chains, and mathematicians who were curious, but did not have the time to build up lengthy prerequisites before beginning a study of robotics.

xiv Preface

It is our premise that abstraction saves time in the long run, in return for an initial investment of effort and patience in learning some mathematics. The selection of topics—from kinematics and dynamics of single robots, to grasping and manipulation of objects by multifingered robot hands, to nonholonomic motion planning—represents an evolution from the more basic concepts to the frontiers of the research in the field. It represents what we have used in several versions of the course which have been taught between 1990 and 1993 at the University of California, Berkeley, the Courant Institute of Mathematical Sciences of New York University, the California Institute of Technology, and the Hong Kong University of Science and Technology (HKUST). We have also presented parts of this material in short courses at the Università di Roma, the Center for Artificial Intelligence and Robotics, Bangalore, India, and the National Taiwan University, Taipei, Taiwan.

The material collected here is suitable for advanced courses in robotics consisting of seniors or first- and second-year graduate students. At a senior level, we cover Chapters 1–4 in a twelve week period, augmenting the course with some discussion of technological and planning issues, as well as a laboratory. The laboratory consists of experiments involving on-line path planning and control of a few industrial robots, and the use of a simulation environment for off-line programming of robots. In courses stressing kinematic issues, we often replace material from Chapter 4 (Robot Dynamics) with selected topics from Chapter 5 (Multifingered Hand Kinematics). We have also covered Chapters 5–8 in a ten week period at the graduate level, in a course augmented with other advanced topics in manipulation or mobile robots.

The prerequisites that we assume are a good course in linear algebra at the undergraduate level and some familiarity with signals and systems. A course on control at the undergraduate level is helpful, but not strictly necessary for following the material. Some amount of mathematical maturity is also desirable, although the student who can master the concepts in Chapter 2 should have no difficulty with the remainder of the book.

We have provided a fair number of exercises after Chapters 2–8 to help students understand some new material and review their understanding of the chapter. A toolkit of programs written in Mathematica for solving the problems of Chapters 2 and 3 (and to some extent Chapter 5) have been developed and are described in Appendix B. We have studiously avoided numerical exercises in this book: when we have taught the course, we have adapted numerical exercises from measurements of robots or other "real" systems available in the laboratories. These vary from one time to the next and add an element of topicality to the course.

The one large topic in robotic manipulation that we have not covered in this book is the question of motion planning and collision avoidance

Preface xv

for robots. In our classroom presentations we have always covered some aspects of motion planning for robots for the sake of completeness. For graduate classes, we can recommend the recent book of Latombe on motion planning as a supplement in this regard. Another omission from this book is sensing for robotics. In order to do justice to this material in our respective schools, we have always had computer vision, tactile sensing, and other related topics, such as signal processing, covered in separate courses.

The contents of our book have been chosen from the point of view that they will remain foundational over the next several years in the face of many new technological innovations and new vistas in robotics. We have tried to give a snapshot of some of these vistas in Chapter 9. In reading this book, we hope that the reader will feel the same excitement that we do about the technological and social prospects for the field of robotics and the elegance of the underlying theory.

Richard Murray Zexiang Li Shankar Sastry

Berkeley, August 1993

Acknowledgments

It is a great pleasure to acknowledge the people who have collaborated with one or more of us in the research contained in this book. A great deal of the material in Chapters 2 and 3 is based on the Ph.D. dissertation of Bradley Paden, now at the University of California, Santa Barbara. The research on multifingered robot hands, on which Chapters 5 and 6 are founded, was done in collaboration with Ping Hsu, now at San Jose State University; Arlene Cole, now at AT&T Bell Laboratories; John Hauser, now at the University of Colorado, Boulder; Curtis Deno, now at Intermedics, Inc. in Houston; and Kristofer Pister, now at the University of California, Los Angeles. In the area of nonholonomic motion planning, we have enjoyed collaborating with Jean-Paul Laumond of LAAS in Toulouse, France; Paul Jacobs, now at Qualcomm, Inc. in San Diego; Greg Walsh, Dawn Tilbury, and Linda Bushnell at the University of California, Berkeley; Richard Montgomery of the University of California, Santa Cruz; Leonid Gurvits of Siemens Research, Princeton; and Chris Fernandez at New York University.

The heart of the approach in Chapters 2 and 3 of this book is a derivation of robot kinematics using the product of exponentials formalism introduced by Roger Brockett of Harvard University. For this and manifold other contributions by him and his students to the topics in kinematics, rolling contact, and nonholonomic control, it is our pleasure to acknowledge his enthusiasm and encouragement by example. In a broader sense, the stamp of the approach that he has pioneered in nonlinear control theory is present throughout this book.

We fondly remember the seminar given at Berkeley in 1983 by P. S. Krishnaprasad of the University of Maryland, where he attempted to convince us of the beauty of the product of exponentials formula, and the numerous stimulating conversations with him, Jerry Marsden of Berkeley, and Tony Bloch of Ohio State University on the many beautiful connections between classical mechanics and modern mathematics and control theory. Another such seminar which stimulated our interest was one on multifingered robot hands and cooperating robots given at Berkeley in 1987 by Yoshi Nakamura, now of the University of Tokyo. We have also

enjoyed discussing kinematics, optimal control, and redundant mechanisms with John Baillieul of Boston University; Jeff Kerr, now of Zebra Robotics; Mark Cutkosky of Stanford University and Robert Howe, now of Harvard University; Dan Koditscheck, now of the University of Michigan; Mark Spong of the University of Illinois at Urbana-Champaign; and Joel Burdick and Elon Rimon at the California Institute of Technology. Conversations with Hector Sussmann of Rutgers University and Gerardo Lafferiere of Portland State University on nonholonomic motion planning have been extremely stimulating as well.

Our colleagues have provided both emotional and technical support to us at various levels of development of this material: John Canny, Charles Desoer, David Dornfeld, Ronald Fearing, Roberto Horowitz, Jitendra Malik, and "Tomi" Tomizuka at Berkeley; Jaiwei Hong, Bud Mishra, Jack Schwartz, James Demmel, and Paul Wright at New York University; Joel Burdick and Pietro Perona at Caltech; Peter Cheung, Ruey-Wen Liu, and Matthew Yuen at HKUST; Robyn Owens at the University of West Australia; Georges Giralt at LAAS in Toulouse, France; Dorotheè Normand Cyrot at the LSS in Paris, France; Alberto Isidori, Marica Di Benedetto, Alessandro De Luca, and 'Nando' Nicoló at the Università di Roma; Sanjoy Mitter and Anita Flynn at MIT; Antonio Bicchi at the Università di Pisa; M. Vidyasagar at the Center for Artificial Intelligence and Robotics in Bangalore, India; Li-Chen Fu of the National Taiwan University, Taipei, Taiwan; and T.-J. Tarn of Washington University. Finally, we are greatful to Mark Spong, Kevin Dowling, and Dalila Argez for their help with the photographs.

Our research has been generously supported by the National Science Foundation under grant numbers DMC 84-51129, IRI 90-14490, and IRI 90-03986, nurtured especially by Howard Moraff, the Army Research Office under grant DAAL88-K-0372 monitored by Jagdish Chandra, IBM, the AT&T Foundation, the GE Foundation, and HKUST under grant DAG 92/93 EG23. Our home institutions at UC Berkeley, the California Institute of Technology, and the Hong Kong University of Science and Technology have been exemplarily supportive of our efforts, providing the resources to help us to grow programs where there were none. We owe a special debt of gratitude in this regard to Karl Pister, Dean of Engineering at Berkeley until 1990.

The manuscript was classroom tested in various versions by James Clark at Harvard, John Canny, Curtis Deno and Matthew Berkemeier at Berkeley, and Joel Burdick at Caltech, in addition to the three of us. Their comments have been invaluable to us in revising the early drafts. We appreciate the detailed and thoughtful reviews by Greg Chirikjian of Johns Hopkins, and Michael McCarthy and Frank Park of the University of California, Irvine.

In addition, many students suffering early versions of this course have

contributed to debugging the text. They include L. Bushnell, N. Getz, J.-P. Tennant, D. Tilbury, G. Walsh, and J. Wendlandt at Berkeley; R. Behnken, S. Kelly, A. Lewis, S. Sur, and M. van Nieuwstadt at Caltech; and A. Lee and J. Au of the Hong Kong University of Science and Technology. Sudipto Sur at Caltech helped develop a Mathematica package for screw calculus which forms the heart of the software described in Appendix B. We are ultimately indebted to these and the unnamed others for the inspiration to write this book.

Finally, on a personal note, we would like to thank our families for their support and encouragement during this endeavor.

Contents

Conte	ents		vi	
Prefa	ce		xii	
Ackno	owled	gements	xvi	
Chap	ter 1	Introduction	1	
1	Brie	ef History	1	
2	Mul	Multifingered Hands and Dextrous Manipulation		
3	Out	line of the Book	13	
	3.1	Manipulation using single robots	14	
	3.2	Coordinated manipulation using multifingered robot		
		hands	15	
	3.3	Nonholonomic behavior in robotic systems	16	
4	Bibl	liography	18	
Chapt	er 2	Rigid Body Motion	19	
1	Rigi	d Body Transformations	20	
2	Rota	ational Motion in \mathbb{R}^3	22	
	2.1	Properties of rotation matrices	23	
	2.2	Exponential coordinates for rotation	27	
	2.3	Other representations	31	
3	Rigi	d Motion in \mathbb{R}^3	34	
	3.1	Homogeneous representation	36	
	3.2	Exponential coordinates for rigid motion and twists	39	
	3.3	Screws: a geometric description of twists	45	
4	Velo	city of a Rigid Body	51	
	4.1	Rotational velocity	51	
	4.2	Rigid body velocity	54	
	4.3	Velocity of a screw motion	58	
	4.4	Coordinate transformations	59	
5	Wre	nches and Reciprocal Screws	61	
	5.1	Wrenches	61	

CONTENTS

	5.2	Screw coordinates for a wrench	68
	5.3	Reciprocal screws	66
6	Sumi	mary	70
7	Bibli	ography	72
8	Exer	cises	73
Chapt	er 3	Manipulator Kinematics	81
1	Intro	$\operatorname{duction} \ldots \ldots \ldots \ldots \ldots$	81
2	Forw	ard Kinematics	83
	2.1	Problem statement	83
	2.2	The product of exponentials formula	85
	2.3	Parameterization of manipulators via twists	91
	2.4	Manipulator workspace	95
3	Inver	se Kinematics	97
	3.1	A planar example	97
	3.2	Paden-Kahan subproblems	99
	3.3	Solving inverse kinematics using subproblems	104
	3.4	General solutions to inverse kinematics problems .	108
4	The I	Manipulator Jacobian	115
	4.1	End-effector velocity	115
	4.2	End-effector forces	121
	4.3	Singularities	123
	4.4	Manipulability	128
5	Redu	ndant and Parallel Manipulators	129
	5.1	Redundant manipulators	130
	5.2	Parallel manipulators	132
	5.3	Four-bar linkage	135
	5.4	Stewart platform	139
6	Sumn	nary	144
7	Biblio	ography	146
8	Exerc	cises	147
Chapt	er 4	Robot Dynamics and Control	155
1	Intro	duction	155
2	Lagra	ange's Equations	156
	2.1	Basic formulation	157
	2.2	Inertial properties of rigid bodies	160
	2.3	Example: Dynamics of a two-link planar robot	164
	2.4	Newton-Euler equations for a rigid body	165
3	Dyna	mics of Open-Chain Manipulators	168
	3.1	The Lagrangian for an open-chain robot	168
	3.2	Equations of motion for an open-chain manipulator	169
	3.3	Robot dynamics and the product of exponentials	
		formula	175
4	Lyapi	inov Stability Theory	170

ix

	4.1	Basic definitions	179
	4.2	The direct method of Lyapunov	182
	4.3	The indirect method of Lyapunov	184
	4.4	Examples	185
	4.5	Lasalle's invariance principle	188
5	Positi	on Control and Trajectory Tracking	190
	5.1	Problem description	190
	5.2	Computed torque	191
	5.3	PD control	193
	5.4	Workspace control	196
6	Contr	ol of Constrained Manipulators	199
	6.1	Dynamics of constrained systems	200
	6.2	Control of constrained manipulators	202
	6.3	Example: A planar manipulator moving in a slot .	203
7	Summ	nary	206
8		graphy	207
9	Exerci		208
Chapte		Multifingered Hand Kinematics	211
1		luction to Grasping	211
2		Statics	214
	2.1	Contact models	214
	2.2	The grasp map	218
3		Closure	223
	3.1	Formal definition	223
	3.2	Constructive force-closure conditions	224
4		Planning	229
	4.1	Bounds on number of required contacts	229
	4.2	Constructing force-closure grasps	232
5	Grasp	Constraints	234
	5.1	Finger kinematics	234
	5.2	Properties of a multifingered grasp	237
	5.3	Example: Two SCARA fingers grasping a box	240
6	Rolling	g Contact Kinematics	243
	6.1	Surface models	243
	6.2	Contact kinematics	248
	6.3	Grasp kinematics with rolling	253
7	Summ	ary	256
8	Bibliography		
9		ses	250

x CONTENTS

Chapte		200
1	Lagrange's Equations with Constraints	265
	1.1 Pfaffian constraints	266
	1.2 Lagrange multipliers	269
	1.3 Lagrange-d'Alembert formulation	271
	1.4 The nature of nonholonomic constraints	274
2	Robot Hand Dynamics	276
	2.1 Derivation and properties	276
	2.2 Internal forces	279
	2.3 Other robot systems	281
3	Redundant and Nonmanipulable Robot Systems	285
	3.1 Dynamics of redundant manipulators	286
	3.2 Nonmanipulable grasps	290
	3.3 Example: Two-fingered SCARA grasp	291
4	Kinematics and Statics of Tendon Actuation	293
	4.1 Inelastic tendons	294
	4.2 Elastic tendons	296
	4.3 Analysis and control of tendon-driven fingers	298
5	Control of Robot Hands	300
	5.1 Extending controllers	300
	5.2 Hierarchical control structures	302
6	Summary	311
7	Bibliography	313
8	Exercises	314
CI.	W N - 1 - 1 - 1 - D 1 - 1 - D 1 - 1 - C - 1	
Chapte		317
$\frac{1}{2}$	Introduction	317
Z	Controllability and Frobenius' Theorem	321
		322
		$\frac{323}{329}$
9	2.3 Nonlinear Controllability	$\frac{329}{332}$
3 4		$\frac{332}{339}$
4	Structure of Nonholonomic Systems	340
	4.2 Examples of nonholonomic systems, continued	340
	4.3 Philip Hall basis	344
5	Summary	346
6	Bibliography	347
7		347
ŗ	Exercises	349
Chapte	er 8 Nonholonomic Motion Planning	355
1	Introduction	355
2	Steering Model Control Systems Using Sinusoids	358
	2.1 First-order controllable systems: Brockett's system	358
	2.2 Second-order controllable systems	362

CONTENTS xi

	2.3	Higher-order systems: chained form systems	363
3	Gener	al Methods for Steering	366
	3.1	Fourier techniques	367
	3.2	Conversion to chained form	369
	3.3	Optimal steering of nonholonomic systems	371
	3.4	Steering with piecewise constant inputs	375
4	Dynar	mic Finger Repositioning	382
	4.1	Problem description	382
	4.2	Steering using sinusoids	383
	4.3	Geometric phase algorithm	384
5	Summ	nary	389
6	Biblio	graphy	390
7	Exerc	ises	391
Chapte	er 9 H	Future Prospects	395
1	Robot	s in Hazardous Environments	396
2	Medic	al Applications for Multifingered Hands	398
3	Robot	s on a Small Scale: Microrobotics	399
Appen	dix A	Lie Groups and Robot Kinematics	403
1		entiable Manifolds	403
	1.1	Manifolds and maps	403
	1.2	Tangent spaces and tangent maps	404
	1.3	Cotangent spaces and cotangent maps	405
	1.4	Vector fields	406
	1.5	Differential forms	408
2	Lie Gi	roups	408
	2.1	Definition and examples	408
	2.2	The Lie algebra associated with a Lie group	410
	2.3	The exponential map	412
	2.4	Canonical coordinates on a Lie group	414
	2.5	Actions of Lie groups	415
3	The G	eometry of the Euclidean Group	416
	3.1	Basic properties	416
	3.2	Metric properties of $SE(3)$	422
	3.3	Volume forms on $SE(3)$	430
Appen	dix B	A Mathematica Package for Screw Calculus	435
Bibliog	raphy		441
Index			440

Chapter 1

Introduction

In the last twenty years, our conception and use of robots has evolved from the stuff of science fiction films to the reality of computer-controlled electromechanical devices integrated into a wide variety of industrial environments. It is routine to see robot manipulators being used for welding and painting car bodies on assembly lines, stuffing printed circuit boards with IC components, inspecting and repairing structures in nuclear, undersea, and underground environments, and even picking oranges and harvesting grapes in agriculture. Although few of these manipulators are anthropomorphic, our fascination with humanoid machines has not dulled, and people still envision robots as evolving into electromechanical replicas of ourselves. While we are not likely to see this type of robot in the near future, it is fair to say that we have made a great deal of progress in introducing simple robots with crude end-effectors into a wide variety of circumstances. Further, it is important to recognize that our impatience with the pace of robotics research and our expectations of what robots can and cannot do is in large part due to our lack of appreciation of the incredible power and subtlety of our own biological motor control systems.

1 Brief History

The word robot was introduced in 1921 by the Czech playwright Karel Capek in his satirical play R. U. R. (Rossum's Universal Robots), where he depicted robots as machines which resembled people but worked tirelessly. In the play, the robots eventually turn against their creators and annihilate the human race. This play spawned a great deal of further science fiction literature and film which have contributed to our perceptions of robots as being human-like, endowed with intelligence and even personality. Thus, it is no surprise that present-day robots appear primitive