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APPROXIMATION TO NONLINEAR CONVECTION DIFFUSION EQUATIONS

Said BENACHOUR
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and Marie Noélle LE ROUX
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We try to build a strong numerical method for convection diffusion
equations in the nonlinear case, which gives Loo and Bounded Variation (=BV)
stability on Eye gradient of the solution. This leads to a compactness
argument in L for the approximate solution and then to a proof of
convergence on a nonlinear diffusion term. Several examples are reported in
order to show that hyperbolic techniques are suitable for such nonlinear
parabolic models.

This paper is divided into 3 parts. A first example is detailed in
Section 1, where the numerical method is described in a very simple way.
Then the same method is adapted to the porous media equation in Section 2.
Next, Section 3 1is devoted to the two dimension case, including some
numerical techniques adapted to the diffusion term. Then a Riemann solver
is proposed for the first order term, which comes from the derivation of
the diffusion term. This leads to a two dimension version of the Lax
Friedrichs scheme, and a construction of the Godunov scheme using the same
Riemann solver.

Other numerical methods presents same properties of stability, such as
the one proposed in [6],([8],[9],[10] or [12]. However, the mathematical
model studied here deals with the equation of velocity and the schemes
proposed here too.

1.- AN EXAMPLE - We consider the equation
u =[ uu )x (1)

together with the initial condition
u(x,0) = u (x)
o

where -
u, € W' (R) , u, = o, with compact support.



For i € Z and n € N, we denote by u? the approximate value of u(iAx,nAt),

for a space increment Ax and a time increment At.
By the Euler scheme, we get

n+l _ " At ((un +u?)(un+l_un¢1) _(u? + Q" )(un+1_ un+1)) (2)

u = + 2
i i 2Ax i+1 i+1 i i-1 i i-1

which leads to the estimates, provided all u? to be non negative,

: n+1
vViezZ , ul =0 ,

Maxlu?*1| < Max |unL
ieZ jeZ
and
n+1 n+1 n n
iEZI Y T Y l = jEZI UJ+1_uj|

This means that the scheme repserves the positiveness of u , and is L” and
BV (=Bounded Variation) stable (or 1is TVD, that 1is Total Variation
Diminishing). .
Let ¢y be a test function in C7(R x R*). We set
w'; = y(iAx, nAt)

and

Then we get, by multiplying the scheme (2) by ¢? and summing,

n n-1 n+1_ n+l n n

et e
n 1 i n i+1 1 ivl i
12 ? Bkl = ? Yz T A Ax

1 At

,N
However the estimates given above are not sufficient to enable us to go to
the limit (for any subsequence) on the product

n+1 n+1

u - u
" i+1 i
i+1/2 Ax

We need another estiq%te, which can be the uniform convergence on u
This can be deduced from L and BV estimates on u instead of u as above.
X

In order to get it, we set

Then we get the equation



This equation will be discretized into two steps. The first one is
devoted to the second order term, which correspond to a diffusion term. We
set m = n + 1/2 , which will be used as the upper index for an intermadiary
value between the times nAt and (n+1)At. We compute

o= g B [ " QYA R R QYL ] (4)
i 1 Ax t+1/2 1+1 i-1/2 1 i-1
As above, this scheme preserves Lm and BV estimates for v . It is now

sufficient to use a L and BV stable scheme for the discretization of the
first order term. This can be done by using the Godunov scheme.

" This scheme uses a Riemann solver associated with the scalar equation
2) =0 (5)

v+ (v
t x

which allows to compute the fluxes on both sides of the cells.
This is performed as follows. We compute, for any i € Z ,

m . m m m
\% if v. 2 0 and v = 0 ,
i i i i+1
m 2 m m
= 0 if v. =0 and \% = O,
i+1/2 i i+1
m . m m m
v if v < 0 and v v =0
i+1 i+1 i+1
and then,
n+1 m At m 2 m 2
v = =, v - (v (B)
1 1 Ax i+1/2 1-1/2

(7)

We notice that this condition is the well known Courant Friedrichs Lewy
condition, and the coefficient % comes from the flux in (5), which is 2 v .
This condition gives also the conservation of the positiveness of u , since
we have

As a matter of fact,

2
n+1 At m m
_Z v —_— = 2

j Ax i+1/2 i+1/2
=1 J=i

1
I
™~
<
+
\2
|

by writing



And since we have

m n At n m m m
w = — u w = w + W
1+1/2 1+1/2 Ax Ti+1/2 1+3/2 i-1/2 i-
which is a linear system involving a M-matrix, we get
. n . m
Viez W =] > ViezZz w =
1+1/2 i+1/2

This proves the conservation of the positiveness.

1/2]

2.- THE POROUS MEDIA EQUATION. We are now concerned with the equation

du _
a—t'— A Q(U)

where ¢ € CZ(R) is a nondecreasing function such that &’ (0)=0. We set

¢(u) = @’ (u) ,
and #(u) 8u
v = - e
u ax
Then we get the convection equation
u + (uv) =0.

Next we introduce
u
Bl =J ¢ly) 4y
o Yy

which corresponds
get

v + 0

p

X

which is known as the Darcy law; here v is a velocity.
From (39) and
and obtain

2
v+ (v7)
t X

( ¢(u) v, )x

We propose a discretization of this equation.

Since ¢ is nonnegative, the previous scheme will work
BV estimates for v We notice that 1in the first
discretization of the second order term), we only have

into ¢(uT ), which can be written as a function of

the
+1/2

physically to a pressure if u is a concentration.

Then we

(10)

by using (10), we can derive the equation of the velocity

(11)

and we get L%and

step (i.e. the

to change u?
i+1/2

pressure p by



using the Darcy law (10). This will be denoted d(p) = ¢(u) , and for
example
d(p) = —g— if ¢(u) = u*

This is possible only when the positiveness of the pressure is
preserved during the two steps of the scheme. By writing, from the Darcy
law (10),

pT+1/2 = pT-l/Z - VT Ax (123
and - -
¢1¢1/2 - d(p1~1/2) ’
we get
m n At n m m m
Pivize ~ Prae T Bx ¢1+1/2 [p1+3/2_2px+1/2+p1-1/2]

which involves a M-matrix. Then we get

. n . m >
vV jelZ pjﬂ_/2 =0 > VielZ Bopiis =

Next we have, by computing pT::/zfrom the v:*las for the intermediary

values in (12),

n+1 m m 2 m
= + At (v ) =
i+1/2 p1¢1/2 i+1/2 p1+1/2

v

From these estimates we can deduce the convergence of a subsequence,
from a compactness argument, towards a weak solution which can be defined,
for example, as follows.

For any test function ¢ with a compact support in RxR , v and p
+

satisfy

H (v g+ vzwx ) dx dt = ” (d’ (p) v° y - dp) vy ) dx dt
RxR RxR

+ +

and

JI (vy-p wx) dx dt = 0 .
RxR

+

Here the convergence on each product is possible since we have a uniform
convergence for p and a strong L convergence for v.



3. - THE TWO DIMENSION CASE. For a given non negative function ¢ in CI(R),
with ¢(0) = 0, we consider the two dimension equation

W= div( ¢(w) Vw ) (13)

The two space variables will be denoted x and y. We set

o(w)
V= [“]:— Uw.

A\
w
Then for
w o ¢(&)
p = J — dg (14)
0 3
we obtain the Darcy law
V+Vp=0, (15)

and the convection equation

Wt div ( wV ) = 0. (18)

Here p corresponds to a pressure, V is a velocity field and w is a
concentration. This is physically meaningful when p and w has nonnegative
values.

As above in the one dimension case, we compute the time derivative of
V . We obtain successively,

V = -Vp from (15) ,
t t

by using (14) ,

]
|
<
—
S
5|~
X
b
"
[SS

= +V { glu) div( w V) } by using (16)

From

div (wV) =V . Vw + wdiv (V)

)

we get the equation of the velovity
Vo+ U (V[T = ¥ (d(p) div(V) ) (17)

since from (14) we can find a function d of the pressure such that
d(p) = ¢(w)
We propose now a two step numerical scheme for the discretization of

(17). The first step deals with the second order term. We can use here a
classical technique for diffusion equations.



For example, we can write

q = div(V)

which satisfies

q, = A ( d(p) q )

This equation can be solved by using the implicit Euler method for the time
discretization, and a finite difference method with a frosen d(p) for the
space discretization. Then it remains to solve

div (V) = q : rot(v) =0 ,

to get the velocity. Such an elliptic problem is studied in [3] or [5].

Other classical techniques can work too. Now, from this first step, we get
intermediary values VT of the velocity field on each cell

_ | o1 o o 1
th =] (- 3)8x , (i+ 5)8x [ x ]~ 5) By, (Gt é)Ay[
where Ax and Ay denote the space meshsizes.

We are now concerned with the second step of the numerical scheme.
This corresponds to a discretization of the non linear hyperbolic system

2 2
u, * (uw+v:) =0 ,

5 5 (18)
v, + (u+v) =0

Either for a Godunov scheme using alternated directions or for a Lax
Friedrichs scheme with modified fluxes, we need a one dimension Riemann
solver. In the x-direction for example, we have to solve the Riemann
problem

u + (W +v¥)= 0
(19)
v = 0 ,
t
with the constant piecewise intial condition
(ul,vl) for x < 0 ,
(u(x,0),v(x,0)) =
(u,v) for x > 0 ,
r 3
where ul, vl, u, v are given real data. We can have either a wave
r r
travelling towards the right hand side (with a positive velocity), or a

wave travelling towards the left hand side (with a negative velocity). This
wave can be either a rarefaction wave or a shock wave.



In both cases we have a constant state (u,vr) (in the first case) or

(u,vl) (in the second case) between the line x=0 and the wave.

This value u satisfies the following condition, which is a Rankine Hugoniot
condition along the line x=0,

2 .
u + v =u+v (first case)

(20)

u +v = u +v (second case)

For a shock wave with a positive velocity, we have necessary, from an
entropy argument,

u+u >0 and u >0
r

Then we need in this case,

u + v =z u + v with u=0

For a rarefaction wave with a positive velocity, we have
0 =u=u

then we need

u + v =u +v with u=290

u + v = u + v with uzo

Another case can arise, when a rarefaction wave is spread on both
sides of the line x=0 . This is very seldom in practice, and we have

u <0 <u and |v | = |v |
1 r 1 r



From these remarks, we can solve the Riemann problem as follows.
If u + v = u + v @ then we have
r

. 2 ]
if v1 < u + v and u1 < 0, a rarefaction wave
r

with a negative velocity,

else a shock wave with a positive velocity.

2
If u " +v =u +v then we have
r

. 2 2 2 .
if v < u1 + vl and u > 0 , a rarefaction wave
r r

with a positive velocity,

clsc a shock wave with a negative velocity.

Using this Riemann solver we are now able to compute
2 2 . .
u "+ v, (in the first case)
F(u,v,u,v) =
3 1 1 r r %
u“+ v (in the second case)

as for the first or the second case in (20), and

> Ax/2 At/2 5 o
G(u,v,u,v) = —— [ ulx, t)™+vix, t) ] dx dt
At Ax
-Ax/2 7o

By the same way, a Riemann solver associated with the Riemann problem

u = 0 .
(21)
vt + (u2+v2) = 0 .
(u,v) for y < 0,
(u(x,0),v(x,0)) =
(u,v) for y >0
) o r

can be built and we are also able to compute

F(u,v,u,v) and G (u,v,u,v)
y 1 1 F T y 1 1 rF

We can notice that the same Riemann solver can be used since we have only
to change u into v and v into u .
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Now we can write the Godunov scheme as follows,

m m m m m
= F (U » VvV , U » Vv ) »
1+1/2, ) x  1+1,37 1+1,37 1,37 1,3
m m m m m
= F (u Y ,us v ),
1, j+1/2 y 1,J+#1° 1,5+1° i,) 1,]
n+l _ om At F® _ M

u — E ),
£ [ Ax 1+1/2,]) i-1/2,)

n+l m _ At m m

Vioy T Vi, T By i, gers2 Fl,j-1/2)

or the modified Lax Friedrichs scheme as follows

m m m m m
=G (u Y ,u. o, v )
i+1/2,j x i+1,30 i+1,5" 1,30 1,
m m m m m
=G (u Y ,u. L, voo)
i,j+1/2 y i,3+1° i,j+1 1,5 i,j
1 m m m m
i == (u +u + u + u )
i+1/2, j+1/2 4 1,7 i, j+1 i+1,] i+1, j+1
_ At (Gm _ )
Ax i+1,j+1/2 i,j+1/2
1 m m m m
M =_ (v. +v + v + v
i+1/2, j+1/2 4 i,j i+1,] i,j+1 i+1, j+1
At m m
- — (G -G )
Ay 1+1/2,j+1 1+1/2,

which corresponds to new intermediary values denoted by u), and

G“ =G (uu ,v“ ,u“ ,vli
i,j+1/2 X 1+1/2,§+1/27  141/2,)+1/2° 1-1/2,§+1/2°  i-1/2,j+1/2
cH =G (u“ ,v“ ,u“ ,v“
i+1/2,] y  1+1/2,5+1/72° i+1/2, 54172 i+1/2,)-1/2" i+1/2,j-1/2
+1 il
e M +ut +uH +ut
i,j 4" Ti+1/2,§+1/2  i+1/2,)-1/2 i-1/2,)+1/2 i-1/2,j-1/2
At
P (G“' _ G“
Ax i+1/2, ] i-1/2,)
1 1
n+1 _ 1 Vli +v“ +v“ +v“
i,] 4 1+41/2,J+41/2  1+1/2,§-1/2  i-1/2,j+1/2 i-1/2,j-1/2
At
- 2= (cH -t )
Ay i,j+1/2 i,j-1/2

This scheme has been studied for the scalar equation in two dimensions and
a proof of convergence is given in [2]. Here the fluxes are different from
those given in [4], by Conway and Smoller. In this case the authors use an
average in the two directions, which spreads out the approximate solution
near a singularity.
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-CONCLUSION- The idea which consists in taking out a convection term
from the term of nonlinear diffusion is not really a new one (see e.g.
[7]). We think that to apply this method to the equation of the velocity
seems to be a new one. This can be also adapted to the case of a second
arder term which is not a degenerated one or when a convection term already
lies in the equation . This is the case in interdiffusion problems(see
[1]), in cellular division, population dynamics and many other topics. This
technique has a good behaviour near a the free boundary corresponding to
the degeneration point (here for u = 0 ), or when a boundary condition is
to be taken in account. A Riemann solver of the same conception appears in
some problems of combustion and allows to introduce pointwise boundary
conditions (see [11]). An antidiffusion technique adapted to this version
of the Lax Friedrichs method has been analysed in [2] ; sufficient
conditions for convergence are given for the quasi linear equation.
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DIFFERENCE SCHEMES FOR NONLINEAR HYPERBOLIC SYSTEMS
- A GENERAL FRAMEWORK

A. Lerat
ENSAM, 151 bd de 1'Hépital, 75013 Paris, France
and ONERA, 29 av. Div. Leclerc, 92320 Chatillon, France

ABSTRACT

For a hyperbolic system of conservation laws, the general form of conservative
difference schemes involving two time-levels in an explicit or implicit way is obtai-
ned under natural assumptions. General results are shown on the schemes and this fra-

mework is used to study implicit schemes of second-order accuracy.

1. INTRODUCTION

After the pioneering works of Lax and Godunov in the late fifties, a lot of
conservative difference schemes have been proposed for the solution of hyperbolic
systems of conservation laws, using either a centred approximation in space or some
upwinding. Since the late seventies, the schemes devised have been mostly implicit
and free of severe stability constraints on the time step. Nowadays, a great number
of explicit and implicit schemes are available and it would be useful to gather them
in a general framework in order to unify their presentation, simplify their analysis,
and make the search easier for new efficient methods. The aim of the present paper is
to propose such a framework in the case of conservative schemes involving only two

time - levels.

The construction of the general form of the schemes is developed in Section 2.
Then some examples are given in Section 3 showing that the usual schemes can be sim-
ply identified. In Section 4, necessary and sufficient conditions are presented to
obtain second-order accuracy, solvability, stability, dissipation and diagonal domi-
nance. Section 5 describes the application of the general framework to the study of
implicit schemes of second - order accuracy. Possible developments are indicated in
the conclusions.

2. CONSTRUCTION OF THE TWO-LEVEL SCHEMES

Let us consider an initial-value problem for the system of m conservation

laws
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w, + f(w)_ =0, xeR, t >0, (2.1)
t X

where the state-vector w(x,t) belongs to an open set Q of R™ and the flux - function

£ : Q- R" is smooth. This system can also be written in the expanded form :

I
o

w, ot Alw) W (2.2)

with the jacobian matrix A(w) = df(w) / dw.

System (2.1) is assumed to be hyperbolic, i.e. the matrix A(w) has m real eigenvalues
and a complete set of eigenvectors.

We approximate System (2.1) by a finite-difference scheme with 2 time -
levele ¢

5 (Wj_J. Wigrpe ceee Mipg ij‘J s ey B, yay =10 (2.3)

1 Ity

where ij wg ie the numerical solution at the old time-level t = n At for x = jAx,

= + : 5 . : : ;
ij: w? L w? is the increment of the numerical solution during a time step and o

denotes the step ratio :
o = At / Ax.

Scheme (2.3) involves (at most) 2J+1 points at the old time-level and 2J.+1 points at

1
the new one. It is explicit if J, = 0 or implicit otherwise.

1
Scheme (2.3) is assumed to be conservative, which means it can be written
as :
ij =-0 (h - h ) (2.4)

[
£
N[ —
(S
[
N[

h. = h (wj—J+1’ ey wj+J i ij_J EEIRER ij+J ; o)
j+ 3 1 1

where h is a Lipschitz-continuous function satisfying the consistency condition :
h(u,u ..., u; 0,0, ..., 0; 0) =f (v, ueq. (2.5)
Similarly as in the Lax and Wendroff paper for explicit schemes [1], one can easily

show that if such a conservative scheme converges boundedly almost everywhere as Ax
and At tend to zero, then it converges to a weak solution of System (2.1).
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Furthermore, we assume that the scheme (2.4) involves essentially 3 points,

h (

<y U_y, U, u, U

U141 g0 cres Ug s

V—J1+l' cees Vg o0, 0O, Vos eees le; o) = £ (u) , (2.6)

for any u € Q, up € Q and vp € Rm.

This property, first introduced for explicit schemes (see [2, Section 4] and [3]), is
stronger than the consistency condition (2.5) , but it is satisfied by nearly all the
schemes presently used in practice. Roughly speaking, it means that the consistency

is ensured with the 3 central-points.

Finally, the scheme (2.4) is supposed to be either explicit or linearly im—
plicit, i.e. its numerical flux is of the form :

_ pexpl 1
h.+ 1 h‘+ 1 + o X (Hp)j+ 1 ij+p (2.7)
T2 T2 1 2

with an explicit part :

expl _ pexpl .

h. A 1 h (wj—J+l' . wj+J, o)

373
and an implicit part with mxm matrix coefficients :

(Hp). L Hp (wj—J+l""’wj+J; o), p=—J1+l, ey Jl'
it 3

With the numerical flux (2.7), the scheme (2.4) leads to the solution of an algebraic
linear system at each time iteration. For simplicity reasons, all the usual schemes

are explicit or linearly implicit.

Let us now give the general form of the schemes satisfying the above assump-
tions. To write this form down, we need two classical operators for the space-diffe-
rencing :



) = v+ v
j+

N =

1
=

(&y)
j+

N[~

where wj is a mesh function defined at x = jAx for integer values of 2j.

Theorem 1 - Any conservative scheme (2.4) involving essentially 3 points and being

explicit or linearly implicit can be written in the simple form :

o _ 1 '
ij + 58 Mu (Aw):lj 7 ® [p a(Aw)]j + o (8h )J.
1
= - 0 O(pf) . + = 06 (Q ow). (2.8)
H j 5 Q j
with three mxm - matrices depending on the old time-level :
M - (wj—J+1‘ e Wiig 0)
i®3
2
P i P (wij*l. vees Wiy o)
i+
2
Q 1=Q(wj_J+l..-.,wj+J:0)
hE
2
and a m-vector :
%
h' g 5 3 <}(p) Y
J+5m peIgtl it 3 its3 jtp
where the (j{p) ] are bilinear applications depending on the old-time level
1t3
()é ) = ‘}é (w s o, W ; 0), for p#0 and 1
P . 1 p j-J+1 j+J
it
2
(){,O) = (%) 1 =0
1+t3 1t3
Remarks :
a) If Jl = 1 (only 3 points at the new time-level), then the most complicated
term disappears :
ht =0
’ 1
3 #* 2

Such a scheme is entirely characterized by the data of M, P and Q.



