

8563725

Intermediate Apple

by
Bill Parker

AMETR

E8563725

Illustrated by
Robert J. Peters

m

//‘ - N .
/ s P . A Y
T %
Pl :
E i

DATAMOST

20660 Nordhoff Street
Chatsworth, CA 91311-6152
(818) 709-1202

S

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company
Reston, Virginia

ISBN 0-8359-3122-6

Copyright © 1984 by DATAMOST, Inc.
All Rights Reserved

This manual is published and copyrighted by DATAMOST, Inc.
Copying, duplicating, selling or otherwise distributing this
product is hereby expressly forbidden except by prior written
consent of DATAMOST, Inc.

The word APPLE and the Apple logo are registered trademarks
of Apple Computer Inc.

Apple Computer Inc. was not in any way involved in the writing
or other preparation of this book, nor were the facts presented
here reviewed for accuracy by that company. Use of the term
Apple should not in any way be construed to represent any
endorsement, official or otherwise, by Apple Computer Inc.

Brief excerpts from software and documentation on B.E.S.T.,
Edit-Soft and APLUS used by permission of Sensible Software.

Apple Il is a registered trademark of Apple Computer Inc. Used
by permission of Apple Computer Ine., 20525 Mariani, Cupertino,
CA 95014.

Printed in U.S.A.

ACKNOWLEDGMENTS

To Bill Sanders for the methodology and motivation to finish
this book.

Dedicated to Nancy and Z. Parker, two of my closest friends.

- |

|
W

e, 75 B SE BEPDFIG U5 IH) : www. ertongbook. ¢

Table of Contents

Chapter 1: Introduction to Structured Programming 11

The Hazards of Unstructured Programming 11
Benefits of Structured Programming 15
The Three Control Structures .. ,.~. e e e 15
The Problem with GOTOs 19
ASA: An Alternative to GOT((S 20
Nestingcooovviinihunnn. AN A 21
A Word on Variable Names .\.................. 22
Program List Formatting Mg 5 2 & 9 g DS 23
Summarycceiiviiennn. TN e 27
For Further Reading 29
Chapter 2: Problem Solving Using Structured

Programmingccoeeueenieessnccesscensscnnss 31
The Five Steps of Algorithm Development 31

An Actual Example: The Shadow and the
Buildingcoiviiiiiii i 34
The Four Standard Program Modules 37
310000111721 o AR R S I o 40
For Further Reading 42
Chapter 3: Introduction To Flow Diagrams 43
The BaSiCs :ccvssnssvnsmnssomoinosanssnmnnisesns 43
The Control Structures 47
Nesting u:oousiwiiiniamoiassimaseeios s 48
Flow Diagrams vs. Flowcharts 49
Refining Flow Diagrams 51
Actual Examplecoiiiiiiiia... 53
SUMMATY .ot iti ittt ittt i it eecneeieeennn 57
For Further Reading 57
Chapter 4: Useful Algorithmscoevvvievnnn. 59
Sort Algorithms 60
BubbleSorto, 60
Select Sortccovviiiiiiiii i, 61

Shell Sortcciiiiiiii i, 63

DOS Algorithmsccoviviiiiinnennnn... 64

Load Directory Into An Array 64
RWT S oottt ittt it it cieenneaeannes 66
EXECFIES: ..ccauianssnosssniamssusscmsssnsies 67
SUMMALY . vvvrcveemvemnnemciimsnsiniiavsdaasas 69
For Further Readingt 69
Chapter5: TextFilesccoiviiiieeininneenannns 71
Purposeof Text Filesoovviiiiiiinnt, 71
Structure of Text Files and the Disk 71
Basic File Structure: Records and Fields 74
Sequential and Random Access Files 75
Text File Memory Requirements 77
File Design Considerations 79
Useful File Handling Techniques 81
Make a Sequential File 82
Read a Sequential File..................... 83
Make a Random Access File 84
Read a Random Access File 85
Appending Sequential Files 85
Appending Random Access Files............ 86
External Sort of a Sequential File 88
External Sort of a Random Access File 90
Merge Sequential Files 92
Merge Random Access Files 93
SUIMNMALY ... i oi 5566505850508 6 60506 505550 8 s 6 858 818 95
For Further Readingcoovvinnnt, 97
Chapter 6: Enhanced Graphicsccc00vveunen. 99
Limitations of Applesoft 99
Introduction to the HI-RES Screen 101
Introduection to Shapesco.oou... 103
Shape Creating Summary 109
The Lunar Lander Demonstration.............. 110
Creating the Lunar Lander Shape.......... 110
' Lunar Lander 1: Display Lander........... 112
Lunar Lander 2: Lowering the Lunar -
Lander vmicaisnnsansissnisss 116
Lunar Lander 3: Display Terrain 117
Lunar Lander 4: Sound Effects 118

Lunar Lander 5: Button Control 119

Lunar Lander 6: Joystick/Paddle Control ... 120

Lunar Lander 7: Explosions 120
The Complete Lunar Lander Program 122
Summaryoii i 127
Chapter 7: Special Printer Techniques 129
The Three Types of Printers 129
Printing Out Normal Text..................... 130
Special Printer Commands 131
Programming the Printer Interface Card 133
HI-RES SereenDumpccovvnvunnnnn.. 137
Summaryc.ooiiiiii e 139
For Further Reading 140
Chapter 8: PEEKs, POKEs, CALLs and Tricks of the
THAAC o0 00105 006 10w s 08 950 6075 1.0 6 o0 0 o 16 0 o 0 0 59 0 143
AMPETBANG s v svss5i5nrsanssmaimns emnnenmnne 143
Applesoft Program Pointers 143
IO, 55555 000 5 00 8 o 8.8 s o s o o o 144
Buffersccoiiiiiiiiiiiii i 144
Command Error Tables 144
Greeting Program 146
Last Loaded File 147
MONFlagscovviiiiiiininnnnn, 147
RWTS .o e 147
ErrorHandling 148
GameI/O .. .ot 149
Reading Paddles/Joystick 149
Reading Pushbuttons 150
HI-RES Graphiesccouvun... 150
Shape Table Pointer...................... 150
Select HILIRES Page 150
Clear HI-IRESPage 151
Display Pageccouvuuunn.... 151
PageFlipping 151
Reading the Keyboard 152
Move MEMOIY . .vvvvtiiiintiiieneennennnn. 152
Reset Control uo.... 153
Screen Controlcciiiiininn.. 153
SOMAS 56515 1555 518505 15 5k 1 5050 676 555 6 11 s 5 5 s 516 gm0 154
SUmMmMaryooiiiiiniii i e 155

Chapter 9: How To Use An Assembler 157

Advantages and Disadvantages of Assembly

Languagecoiiiiinnnnn.. .. 157

A Comparison: Applesoft and Machine Code. 157
Choosing an Assembler 159
Getting Started e e e 161
Your First Assembly Language Program 162
Enhancing Your Program 164
Editing Your Program 167
Insidethe6502 169
Loading Big Numbers: High and Low Bytes 170
UsingLabelsccooviii ... 171
Control Structures in Assembly Language 173
Basic Techniques 175
Sample Applications 178
DOS/Applesoft Problem 180
Summary ... 180
For Further Reading 182
Chapter 10: Program Development Aids 183
BITEN & 05060555068 5050 65w e 000 e e 5 0 0 183
BUBR. 5555505 m v e m g 0 019 5 L 187
Programming Aids by Sensible Software 195
Edit-Soft, 196
BBIEII 5 6 5465508 5 v v w0 5 0 1 5 198
BEBIE coiiimuenenemmsenspmsmsmssssssss 201
Programming Aids by Delta Micro Systems 203
BASIC ... 203
Summary ... 207
Ampersand Utilities 207
Applesoft Editors 207
Applesoft Pre-Processors 207
Applesoft Optimizers 207
Chapter 11: Structures Languages 209
Applesoft e 209
PAFOAL 565 506000 4 memamemom w050 05 550 5055 5 210
i 210
Summaryo 212
Bibliography S 213
INVACXC & 0is 5515 10 s 50 006 10 8 6 906 55,62 60 60555 v e s o 10w 215

EDITOR'S INTRODUCTION
William B. Sanders, Ph.D.

This book is for the computer user who understands the fun-
damentals of BASIC programming and is wondering what to do
next. There is a point when the novice computer user reaches a
plateau, where he or she decides whether or not to learn more
about computer programming. At this point, one has little alter-
native than to make a giant leap into the world of machine level
language or into various other higher level languages. Mastering
elementary BASIC is often traumatic enough to dissuade the
budding programmer from risking his life on the cliffs of machine
language. So the decision is often limited to taking a leap into the
morass of a new language or doing nothing at all.

This book offers another choice. It is an INTERMEDIATE step
that will immensely improve Applesoft BASIC programming
skills and provide a whole array of proven programming tech-
niques. Yet at the same time, it deals with the familiar constructs
of Applesoft BASIC. In fact, the purpose of this book is to make
programming easier, not more difficult. Rather than looking at
BASIC in terms of single statements, functions or commands, it
shows the user how to deal with program blocks and modules.
Small, simple programs are fine for learning how to program, but
there will come a point at which you will want to write a useful,
fairly large program. If you’ve spent any time at all program-
ming, you must have LISTed others’ programs and asked your-
self, “How could they keep a big program like that straight?”
This book shows you how.

You may well wonder how writing larger, more sophisticated
programs can be easier than writing a small simple program. For
the most part, a large program is nothing more than a well
organized set of small programs, and the key to that is organiza-
tion and structure. First, rather than rewriting an entire pro-
gram every time you sit down at the computer this book shows
you how to save and then re-use program modules that can be
employed in several programs. With only a few program lines, it
is possible to connect several previously written modules into a
larger program. Thus, the larger program is actually simpler
than blindly piecing together a small one. Also by using struc-
tured programming techniques, you will be able to see more
clearly what you have done. For anyone who has written a huge

program and then gone back to it, one is often at a loss to remem-
ber what everything does and why it does it. By clearly docu-
menting and arranging it, any Applesoft progam can be made
clearer. Mr. Parker even provides some utilities to assist in mak-
ing Applesoft more lucid.

In addition to showing the user how to attack a programming
problem, this book shows how to master some of the more
advanced features of Applesoft. In my introductory book, The
Elementary Apple, 1 only wanted to get a new user started in pro-
gramming. The book was for someone who brought home their
computer and wanted to get started without too many tears.
However, DATAMOST wanted a book that would take the next
step in programming the Apple Computer. Therefore, many of
the features that were just touched upon in The Elementary
Apple, such as graphic animation, shape tables, POKEs, PEEKs
and disk file handling, are explored in depth here.

Next, the book takes the first step toward advanced program-
ming. It is not the giant leap described above, but rather it is an
introduction to assembly language programming. The best way
to introduce an assembly level program is to explain how to use
an assembler, and that is exactly what it does. This gives the user
a chance to take a look before the leap. You will be shown how to
get an assembler up and working, along with some sample
assembly level programs. Everything will be kept simple, and
while you cannot expect to become an expert at assembly level
programming, you will learn enough to get started.

Finally, the book concludes with a number of utility programs
provided by the author, along with some suggested commercial
programs. All of these programs are utilities to make program-
ming easier, clearer and more efficient.

MEET THE AUTHOR

Bill Parker has the ideal background for creating a book such as
this. With a solid background in both journalism and computers,
he has both the ability to communicate clearly in English and to
write computer programs. Bill is a staff writer for Call -A.P.P.L.E.,
and former editor of the Sandy Apple Press, the club magazine of
Apple Corps of San Diego. He has taught computer courses in
both the University of California, San Diego and at San Diego
State University Extension programs. He is currently a full-time
computer consultant and writer.

10

CHAPTER 1

INTRODUCTION TO STRUCTURED
PROGRAMMING ON THE APPLE

This book will take you from the point of being a fledgling Apple
programmer and show you some important principles that can
help you handle more complicated programming problems.

The method emphasized here is a technique known as structured
programming: a “one-step-at-a-time” method of reducing big
problems into smaller, more manageable ones.

The Hazards of Unstructured
Programming on the Apple

Consider the following two programs:

Program 1:

100 1=1+1

110 GOSUB 200

120 GOTO 100

130:

200 PRINT |

218IF1 <100 THEN 120
220 RETURN

RUN

NOoOohwn -

11

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

?0UT OF MEMORY ERROR IN 210

Program 2:

108 FORI1=1 TO 200
110 GOSUB 200

120 NEXT |

130:

200 PRINT |

210 IF 1 <100 THEN 120
220 RETURN

RUN
1

?NEXT WITHOUT FOR ERROR IN 120

Why are these programs generating nonsense error messages?
After all, little Program 1 couldn’t possibly consume all of the
Apple’s memory and line 100 of Program 2 contains a FOR state-
ment as plain as the nose on your face. So why the errors?

12

These programs are typical examples of unstructured program-
ming, a kind of a programming “by the seat of your pants”
approach to problem solving. The problem with it is that it just
doesn’t follow the way your computer “thinks,” and the error
messages show it.

Another problem with this type of programming is that it is
unclear. The bigger the program becomes, the harder it is to read
and understand. This becomes an even bigger problem when
someone unfamiliar with your program needs to enhance, cus-
tomize or just learn from it. In extreme cases, you may not even be
able to understand your own program, which could occur if you
come back to it after a few months. Your memory of the intricate
portions of your program will be gone, and you will then be unable
to make sense of the more tangled portions of your own code.

Some computer scientists in the 1960’s noticed these things and
decided to take a long, hard look at the state-of-the-art in pro-
gramming at the time. This is what they found:

® There was no organized, systematic way of even approaching
aprogramming problem. Good programmers simply “dove in”
(sound familiar?) and came up with something that worked —
most of the time. Bad programmers floundered about even
longer.

® There was no real assurance that a program was written
“correctly”’ and would be reliable.

® There was no standardized vocabulary for describing the way
aproblem was turned into a program (this is known as algorithm
development). You had to be intimately familiar with the com-
puter language chosen by the program author to understand
how he solved the problem.

® Programming projects became stalled for expensive periods
of time when old programmers left the project and new ones
came in to replace them. It took a certain amount of time just to
be able to understand what the previous programmer had
done and then to be able to continue from that point.

13

@ Flowcharts were worthless. Although they were supposed to
be done at the beginning of a problem to provide the program-
mer with an easy-to-follow graphical representation of the
steps necessary to write the program, they were frequently
left (if done at all) until after the program was up and running.
This happened because the more complicated a program
became, the more complicated (and unclear) the flowchart
became.

® Trying to read a long program in an effort to understand how
it worked was an exercise in futility, because control branched
all over (through the use of the ubiquitous GOTO statement).
This method of programming, which also prevented large pro-
grams from being broken into smaller, more manageable
“modules,” came to be known as spaghetti programming.

How DO
: YOU EVER g/

ANYTHING / L Istaictoreo
0o =N_DONE ? / [= [rrocrani

MAIN [SPAGHETT) — —|MAIN PROGRAM
PROGRAM 2 -
ID a
)
S Proc = PROGRAM
P/ PARTS PARTS S
PRO ARTS | PARTS
PARTS —

This sorry state of affairs led Edsger Dijkstra, one of the “Fathers
of Structured Programming,” to remark in the preface to his
book, A Discipline of Programming:

...on the one hand I knew that programs could have a
compelling and deep logical beauty, on the other hand I was
forced to admit that most programs are presented in a way
fit for mechanical execution but, even of any beauty at all, -
totally unfit for mechanical appreciation.

14

Fortunately, there is help! The same group of scientists who
analyzed the problems caused by “normal” programming prac-
tices also came up with a way to avoid them. This method allowed
programmers to write programs with “compelling and deep logi-
cal beauty” and has come to be known as structured programming.

Benefits of Structured Programming

We will now investigate the basic elements of structured pro-
gramming in Applesoft. Among its benefits are:

1.

Programs are more easily understood. Programs are easier to
read and the logic flow is easier to follow.

. The possibility of making errors is reduced. This is known as

“anti-bugging.” You may also have heard of this concept in
the well-known commercial where it is stated, “problems are
built out — not in.”

. Programs are easier to maintain. This makes it easier for any-

one to understand, improve or enhance your program.

. It’s faster to code with structured programming. The logic is

simple and straightforward.

. It provides an easier transition to other higher level languages.

Currently, most programs written with the aid of higher level
languages use structured programming techniques.

. It’s easier to code large programs. Large programs can be

broken into “modules” and given to different programmers for
development. This speeds up the development of the program
and makes it easier to coordinate the finished modules into one
system.

The Three Control Structures

The benefits of structured programming are the direct result of a
key discovery by researchers:

15

No matter how complicated a program is and no matter in
which language a program is written, any program can be
written with just three basic control structures: sequence,
decision and loop.

As the name implies, control structures tell the computer which
instruction to execute next. It's how you control the logic flow in
your program that determines how clear and manageable the
program is. Let’s take a look at some examples of each kind of
control structure:

SEQUENCE

True Control Structures Applesoft

100 X =3 160 X =3
110Y =6 118Y=6
120 PRINT “THIS IS A TEST”120@ PRINT “THIS IS A TEST"

Here, you can see that there is no difference between true control
structures and the structures that Applesoft provides. This is
because sequential statements are the most basic commands
that can be used on a computer; all languages must use them.

DECISION
True Control Structures Applesoft
100 IF X>Y 100 1IF X>Y
THEN PRINT “X > Y” THEN PRINT “X > Y”

This kind of IF THEN decision is the most basic decision strue-
ture available; all languages have this structure in one form
or another.

16

