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EDITOR'S INTRODUCTION
William B. Sanders, Ph.D.

This book is for the computer user who understands the fun-
damentals of BASIC programming and is wondering what to do
next. There is a point when the novice computer user reaches a
plateau, where he or she decides whether or not to learn more
about computer programming. At this point, one has little alter-
native than to make a giant leap into the world of machine level
language or into various other higher level languages. Mastering
elementary BASIC is often traumatic enough to dissuade the
budding programmer from risking his life on the cliffs of machine
language. So the decision is often limited to taking a leap into the
morass of a new language or doing nothing at all.

This book offers another choice. It is an INTERMEDIATE step
that will immensely improve Applesoft BASIC programming
skills and provide a whole array of proven programming tech-
niques. Yet at the same time, it deals with the familiar constructs
of Applesoft BASIC. In fact, the purpose of this book is to make
programming easier, not more difficult. Rather than looking at
BASIC in terms of single statements, functions or commands, it
shows the user how to deal with program blocks and modules.
Small, simple programs are fine for learning how to program, but
there will come a point at which you will want to write a useful,
fairly large program. If you’ve spent any time at all program-
ming, you must have LISTed others’ programs and asked your-
self, “How could they keep a big program like that straight?”
This book shows you how.

You may well wonder how writing larger, more sophisticated
programs can be easier than writing a small simple program. For
the most part, a large program is nothing more than a well
organized set of small programs, and the key to that is organiza-
tion and structure. First, rather than rewriting an entire pro-
gram every time you sit down at the computer this book shows
you how to save and then re-use program modules that can be
employed in several programs. With only a few program lines, it
is possible to connect several previously written modules into a
larger program. Thus, the larger program is actually simpler
than blindly piecing together a small one. Also by using struc-
tured programming techniques, you will be able to see more
clearly what you have done. For anyone who has written a huge



program and then gone back to it, one is often at a loss to remem-
ber what everything does and why it does it. By clearly docu-
menting and arranging it, any Applesoft progam can be made
clearer. Mr. Parker even provides some utilities to assist in mak-
ing Applesoft more lucid.

In addition to showing the user how to attack a programming
problem, this book shows how to master some of the more
advanced features of Applesoft. In my introductory book, The
Elementary Apple, 1 only wanted to get a new user started in pro-
gramming. The book was for someone who brought home their
computer and wanted to get started without too many tears.
However, DATAMOST wanted a book that would take the next
step in programming the Apple Computer. Therefore, many of
the features that were just touched upon in The Elementary
Apple, such as graphic animation, shape tables, POKEs, PEEKs
and disk file handling, are explored in depth here.

Next, the book takes the first step toward advanced program-
ming. It is not the giant leap described above, but rather it is an
introduction to assembly language programming. The best way
to introduce an assembly level program is to explain how to use
an assembler, and that is exactly what it does. This gives the user
a chance to take a look before the leap. You will be shown how to
get an assembler up and working, along with some sample
assembly level programs. Everything will be kept simple, and
while you cannot expect to become an expert at assembly level
programming, you will learn enough to get started.

Finally, the book concludes with a number of utility programs
provided by the author, along with some suggested commercial
programs. All of these programs are utilities to make program-
ming easier, clearer and more efficient.

MEET THE AUTHOR

Bill Parker has the ideal background for creating a book such as
this. With a solid background in both journalism and computers,
he has both the ability to communicate clearly in English and to
write computer programs. Bill is a staff writer for Call -A.P.P.L.E.,
and former editor of the Sandy Apple Press, the club magazine of
Apple Corps of San Diego. He has taught computer courses in
both the University of California, San Diego and at San Diego
State University Extension programs. He is currently a full-time
computer consultant and writer.
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CHAPTER 1

INTRODUCTION TO STRUCTURED
PROGRAMMING ON THE APPLE

This book will take you from the point of being a fledgling Apple
programmer and show you some important principles that can
help you handle more complicated programming problems.

The method emphasized here is a technique known as structured
programming: a “one-step-at-a-time” method of reducing big
problems into smaller, more manageable ones.

The Hazards of Unstructured
Programming on the Apple

Consider the following two programs:

Program 1:

100 1=1+1

110 GOSUB 200

120 GOTO 100

130:

200 PRINT |

218IF1 <100 THEN 120
220 RETURN

RUN

NOoOohwn -

11



8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

?0UT OF MEMORY ERROR IN 210

Program 2:

108 FORI1=1 TO 200
110 GOSUB 200

120 NEXT |

130:

200 PRINT |

210 IF 1 <100 THEN 120
220 RETURN

RUN
1

?NEXT WITHOUT FOR ERROR IN 120

Why are these programs generating nonsense error messages?
After all, little Program 1 couldn’t possibly consume all of the
Apple’s memory and line 100 of Program 2 contains a FOR state-
ment as plain as the nose on your face. So why the errors?
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These programs are typical examples of unstructured program-
ming, a kind of a programming “by the seat of your pants”
approach to problem solving. The problem with it is that it just
doesn’t follow the way your computer “thinks,” and the error
messages show it.

Another problem with this type of programming is that it is
unclear. The bigger the program becomes, the harder it is to read
and understand. This becomes an even bigger problem when
someone unfamiliar with your program needs to enhance, cus-
tomize or just learn from it. In extreme cases, you may not even be
able to understand your own program, which could occur if you
come back to it after a few months. Your memory of the intricate
portions of your program will be gone, and you will then be unable
to make sense of the more tangled portions of your own code.

Some computer scientists in the 1960’s noticed these things and
decided to take a long, hard look at the state-of-the-art in pro-
gramming at the time. This is what they found:

® There was no organized, systematic way of even approaching
aprogramming problem. Good programmers simply “dove in”
(sound familiar?) and came up with something that worked —
most of the time. Bad programmers floundered about even
longer.

® There was no real assurance that a program was written
“correctly”’ and would be reliable.

® There was no standardized vocabulary for describing the way
aproblem was turned into a program (this is known as algorithm
development). You had to be intimately familiar with the com-
puter language chosen by the program author to understand
how he solved the problem.

® Programming projects became stalled for expensive periods
of time when old programmers left the project and new ones
came in to replace them. It took a certain amount of time just to
be able to understand what the previous programmer had
done and then to be able to continue from that point.

13



@ Flowcharts were worthless. Although they were supposed to
be done at the beginning of a problem to provide the program-
mer with an easy-to-follow graphical representation of the
steps necessary to write the program, they were frequently
left (if done at all) until after the program was up and running.
This happened because the more complicated a program
became, the more complicated (and unclear) the flowchart
became.

® Trying to read a long program in an effort to understand how
it worked was an exercise in futility, because control branched
all over (through the use of the ubiquitous GOTO statement).
This method of programming, which also prevented large pro-
grams from being broken into smaller, more manageable
“modules,” came to be known as spaghetti programming.

How DO
: YOU EVER g/

ANYTHING / L Istaictoreo
0o =N_DONE ? / [= [rrocrani

MAIN  [SPAGHETT) — —|MAIN PROGRAM
PROGRAM 2 -
ID a
)
S Proc = PROGRAM
P/ PARTS PARTS S
PRO ARTS | PARTS
PARTS —

This sorry state of affairs led Edsger Dijkstra, one of the “Fathers
of Structured Programming,” to remark in the preface to his
book, A Discipline of Programming:

...on the one hand I knew that programs could have a
compelling and deep logical beauty, on the other hand I was
forced to admit that most programs are presented in a way
fit for mechanical execution but, even of any beauty at all, -
totally unfit for mechanical appreciation.
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Fortunately, there is help! The same group of scientists who
analyzed the problems caused by “normal” programming prac-
tices also came up with a way to avoid them. This method allowed
programmers to write programs with “compelling and deep logi-
cal beauty” and has come to be known as structured programming.

Benefits of Structured Programming

We will now investigate the basic elements of structured pro-
gramming in Applesoft. Among its benefits are:

1.

Programs are more easily understood. Programs are easier to
read and the logic flow is easier to follow.

. The possibility of making errors is reduced. This is known as

“anti-bugging.” You may also have heard of this concept in
the well-known commercial where it is stated, “problems are
built out — not in.”

. Programs are easier to maintain. This makes it easier for any-

one to understand, improve or enhance your program.

. It’s faster to code with structured programming. The logic is

simple and straightforward.

. It provides an easier transition to other higher level languages.

Currently, most programs written with the aid of higher level
languages use structured programming techniques.

. It’s easier to code large programs. Large programs can be

broken into “modules” and given to different programmers for
development. This speeds up the development of the program
and makes it easier to coordinate the finished modules into one
system.

The Three Control Structures

The benefits of structured programming are the direct result of a
key discovery by researchers:
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No matter how complicated a program is and no matter in
which language a program is written, any program can be
written with just three basic control structures: sequence,
decision and loop.

As the name implies, control structures tell the computer which
instruction to execute next. It's how you control the logic flow in
your program that determines how clear and manageable the
program is. Let’s take a look at some examples of each kind of
control structure:

SEQUENCE

True Control Structures Applesoft

100 X =3 160 X =3
110Y =6 118Y=6
120 PRINT “THIS IS A TEST”120@ PRINT “THIS IS A TEST"

Here, you can see that there is no difference between true control
structures and the structures that Applesoft provides. This is
because sequential statements are the most basic commands
that can be used on a computer; all languages must use them.

DECISION
True Control Structures Applesoft
100 IF X>Y 100 1IF X>Y
THEN PRINT “X > Y” THEN PRINT “X > Y”

This kind of IF THEN decision is the most basic decision strue-
ture available; all languages have this structure in one form
or another.
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