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FOREWORD

The present volume is based on the lectures of invited speakers at
the Fifth National School in Algebra, held at the Black Sea coast,
near the city of Varna, from September 24 to October 4, 1986.

The preceding National Algebraic Schools in Bulgaria were held
biannually starting in 1975, with the primary aim of introducing young
algebraists to some specific areas. Accordingly, small numbers of lec-
turers were invited to give comprehensive accounts of their particular
fields.

At the Fifth National School, the number of invited speakers
was increased considerably, as was the range of topics covered. The
lecturers were requested to give broad surveys, at an advanced level,
on topics of current research. We are glad to express the gratitude of
the participants and the organizers to the speakers for sharing their
insight and enthusiasm for many beautiful algebraic problems.

A second objective of this School was to host an international con-
ference in Algebra, which was organized in five Special Sessions, held
in the afternoons. Thanks are due to all participants who gave short

communications on their results.

The Editors
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and normal two-dimensional CM-rings, as well as for rings of minimal multiplicity, see [HK] and
[BHU]. We show in the STOP PRESS at the end of the paper that e.g. all hypersurface rings
of characteristic zero admit Ulrich-modules.

The study of MCM-modules over a hypersurface ring leads to matrix factorizations as intro-
duced by Eisenbud in [E]. Given a homogeneous polynomial f € S, an equation fE = af, where o
and g are square matrices with homogeneous polynomials as entries, is called a matrix factorization
of f. (Here E denotes the unit matrix; for simplicity we write f for fE in the sequel.)

As an example of a matrix factorization, consider

aea=(0 %)% %)

According to Eisenbud’s theory the MCM-modules over R = S/(f) correspond to matrix
factorizations f = a3, and the linear MCM-modules to such factorizations for which « is a matrix
of linear forms. The precise statement is given in section 4.

For a non-singular quadratic form f it is shown in the paper of Buchweitz-Eisenbud-Herzog
[BEH], that there exists essentially just one matrix factorization f = «f3, where « and 8 are matri-
ces of linear forms, and consequently there exist up to isomorphisms at most two indecomposable
linear MCM-modules (one corresponding to o, the other to §). This result is obtained by consid-
ering the Clifford algebra C of f, and showing that there is as well a correspondence between the
matrix factorizations of f and the Z/2Z-graded modules over C.

In this paper we imitate this method in order to obtain similar but somewhat weaker results
for homogeneous polynomials f # 0 of degree d > 2.

In section 1 we introduce the notion of a generalized Clifford algebra for f. Let

V= ékei
1=1

be an n-dimensional k-vectorspace with basis ey,...,e,, then f defines amap f:V — k, by
f(zie1 + ... + znep) i= f(z1,...,2,) for all z; € k. A Z/dZ-graded algebra C together with
a monomorphism V' — C} is called a generalized Clifford algebra, if C is generated by V, and
f(z) = z¢ for all z € V. It is not at all clear that such an object exists for f. Of course, the
most natural thing to do is to form the tensor algebra T'(V') of V and to divide by the relations
T®--- @z — f(z). We call

CN)=TV)/{z® - ®@z— f(z)lz€V})

the universal Clifford algebra for f.

This algebra was first introduced by N. Roby ([R]) in this generality. The special case of binary
cubic forms was already studied by N. Heerema ([H]) in 1954.

Using Grobner basis arguments we show in theorem 1.8 that the natural map V' — Cy(f) is an
inclusion.

Of course any other generalized Clifford algebra for f is a quotient of C(f) by a homogeneous
two-sided ideal a in C(f) with anV =0.



The essential observation in this paper is that the Z/dZ-graded modules over a generalized

Clifford algebra correspond to linear matrix factorizations

f=a0 ... aus,

where «g,...,aq—1 are square matrices of linear forms, and moreover that if f = ag ...  ag—1
d—1

corresponds to M = @ M;, then the size of o; equals dimg M;, which is independent of 7 (theorem
1=0

1.3).

A similar observation was made by Roby ([R]). Not taking into account the Z/dZ-grading of
C(f) he assigns to each C(f)-module a factorization f = a® of f as a pure power of a linear square
matrix. Such factorizations have been studied thoroughly by L. N. Childs ([C]).

Unfortunately dimy C(f) is infinite if and only if n > 1 and d > 2, as is shown in theorem
1.8. (In the case that Char k > d this theorem has been shown by Childs ([C, theorem 3]), using
the early results by Heerema ([H]).) As a consequence, it is not clear whether there exists a finite
dimensional Z/dZ-graded module over C(f) for an arbitrary form f of degree at least three in
more than two variables. Thus we don’t know whether all homogeneous forms have linear matrix
factorizations in the above sense with finite matrices.

On the other hand, if we weaken the conditions on the factorization slightly, we easily obtain
factorizations of f with finite matrices:

— If we do not demand the factorization to be linear, we may just choose a non-trivial MCM-
module over R, for instance the (n — 1) th syzygy module Q;_l of k. To this module corresponds
according to Eisenbud’s theory a matrix factorization f = af. (Both matrices cannot have linear
forms as entries, unless f is a quadratic form.)

— If we allow non-square matrices, we may by quite elementary means decompose the 1 x 1-matrix

(f) into factors, all of whose entries are linear:

Fori=1,...,d—1,let B; beal1lx (“‘L:”l) row matrix, whose entries are all the different monomials
of degree 7 in the variables X1,..., X,. For7 € {1,...,d — 2} there is a matrix o, whose non-zero
entries all are variables, such that
Bia:; = B{+1 3
Finally, there is an ("j:;2) x 1 column matrix 3, such that(f) = Bg_18. If we let o = By,
o =af fori=1,...,d— 2, and ag_1 = 3, then indeed
fl=ag-...-ag—1 .

Even though such factorizations may be useful in other contexts, they do not provide us with
linear MCM-modules over the hypersurface ring S/(f).

In section 2 we extend a result of Atiyah-Bott-Shapiro [ABS] to generalized Clifford algebras.
It essentially says that the category of Z/dZ-graded modules over a generalized Clifford algebra
C is equivalent to the category of Co-modules. This result considerably simplifies the further
considerations, and applied to matrix factorizations it gives a deeper insight into the relations
among the factors of a factorization fE = ag-...- ag_;. For instance we are able to say which of
the factors o; that are equivalent to each other (corollary 2.7), or under which circumstances fE

is a power of a single matrix (corollary 2.4).



Section 3 is devoted to the study of diagonal forms. Most of its results may be found (explicitly
or implicitly) in [L] or in [C]; we however give an essentially self-contained presentation of the
results and proofs.

For the diagonal forms, finite-dimensional generalized Clifford algebras may be constructed.
Just as for quadratic forms one obtains these Clifford algebras as tensor products of cyclic algebras.
More generally, suppose f; and f; are forms of degree d in disjoint sets of variables, and let C;
be a generalized Clifford algebra for f; (i = 1,2). We assume that k contains a d-th primitive
root £ of unity. Then we define the Z/dZ-graded tensor product Cy @Cz as the ordinary tensor
product equipped with the multiplication defined by (a ® b)(c ® d) = ¢(degb)(deg ) g @ bd for
homogeneous elements b € C; and ¢ € C;. It turns out (theorem 3.1) that C’1®Cg is a generalized
Clifford algebra for f; + f2. Now if f = ale +...ap X2 is a diagonal form with a; € k, a; # 0
for ¢ = 1,..., n, then C; = kle;]/(ed — a;) is a generalized Clifford algebra for ain, whence
C(f, ¢ = 01® .y @Cn is a generalized Clifford algebra for f, whose dimension over k is d™. The
structure of this algebra can be described quite easily. In theorem 3.6 it is shown that Co(f, &)
is simple if n is odd and semisimple if n is even. The consequences for matrix factorizations of
diagonal forms are formulated in theorem 3.9. At the end of this section we work out explicit
factorizations of ) .-, X¢ over C.

Finally, in section 4 we show that a linear matrix factorization f = ag - ... a4—; corresponds
to a free module F over the hypersurface ring R = S/(f) together with a filtration of F, whose
quotients are linear MCM-modules over R. In particular, together with the results of section 3, it

follows that a hypersurface ring of a diagonal form admits linear MCM-modules.

Many questions remain open |[but see the STOP PRESS!]. We list a few of them:

1) Does every (homogeneous) form admit a finite-dimensional generalized Clifford algebra?
2) Do the linear MCM-modules together with R generate the Grothendieck group of R?
3) Can the periodicity theorem of Knorrer [K| be generalized to forms of higher degree?

4) Which forms can be transformed into diagonal forms?

We wish to thank T. G. Ivanova with whom we had many stimulating and helpful discussions,
and P. M. Cohn for his valuable comments and suggestions. We also thank Bokut who informed us
that L’vov and Nesterenko (answering a question of Krendelev) reported on the solution of question
1 at the 17:th All Union Algebra Conference in Minsk 1983, and announced this and related results
(without proofs) in the Proceedings of that conference (pp 118 and 137, in Russian).

In particular, we thank the referee for putting our attention to the extensive work already done
concerning generalized Clifford algebras (e.g. in [C], [H], [L], and [R]).

Finally we would like to express our gratitude to the organizers of the Fifth National School in
Algebra in Varna, who brought together two of the authors of this paper and made possible many
fruitful discussions with other participants of this conference that were indispensable for writing

this paper.



1. Matrix factorizations and Clifford algebras

Let f # 0 be a homogeneous polynomial of degree d > 2 in the indeterminates Xj,..., X, with

coefficients in a field k.

DEFINITION 1.1. A (linear) matrix factorization of f (of size m) is an equation f = og-... - ag_1,
where the o; are square matrices (of size m), whose entries are linear forms in the indeterminates

Xi,...,X, with coefficients in k, and f simply stands for f times the unit matrix E of size m.

We allow m to be infinite. In that case, however, we require that each row of the matrices has
only finitely many nonzero entries, whence their products are defined, and that the product of any

cyclic permutation of the matrices ¢; is f again.

Given a matrix factorization f = ag-...-ag—1 and a j € Z, weset a; := oy, where 0 <2 < d—1
and ¢ = j (mod d).Then, since any cyclic permutation of the factors again yields f as their
product, it follows that f = o; - ;41 - ... &i14—1 also is a matrix factorization for all + € Z.

Two matrix factorizations f = a9+ ... ag—1, f = Bo ... Ba_1 of the same size are called

equivalent if there exists matrices S; € Gl(m, k) such that g; = SjajS’J-__*_ll for all j.

The sum of the matrix factorizations f = ag ... - ag—1 and f = Bo - ... Bq—1 is the matrix
factorization f =~g ... Y4_1, Where
L Oy 0
T=\o g
for all 1.
The matrix factorization f = ag - ... ag_; is called indecompaosable if it is not equivalent to a

sum of matrix factorizations of f.

We consider the k-vector space Qna kX; as the dual space of V = EnB ke;, where the basis
X1,.-.,Xy is dual to the basis e, 1,=én =

Recall that a matrix « of size m with linear forms in n variables may be interpreted as a
k-linear map ¢: V. — Homyg(Vi,V2), where V; and V2 are m-dimensional k-vectorspaces (with
specified bases): given a matrix « of linear forms and z € V, we let a(z) be the matrix with
coefficients in k, which is obtained from « by evaluating the entries of a at z. With respect to the

given bases of Vi and V2 «a(z) defines a linear map ¢(z): V13 — Vo. We therefore may define

V. — Homg(V;,V2)

z é(z)
Similarly one associates with ¢: V' — Homy(V;, V2) a matrix « of linear forms.
Therefore, given a matrix factorization f = ag - ... ag—_1, there exist k-vector spaces Vp =
V4,V1,...,V4_1 such that o, yields a linear map

V. — Homg(Vi,Vit1)
r ¢i(z) '

If we set f(z) := f(z1,...,2n) for z = ) zie; € V, we obtain f(z)-idy, = ¢q—1(z) 0... 0 ¢o(z)
forallz e V.



In this paper we are often dealing with Z/dZ-graded modules over Z/dZ-graded rings. If

d—1
M:@Mi

i=0
is a Z/dZ-graded module and j € Z, we set M; = M;, where0 <i<d—1landi=j (mod d).
Then if we use the convention that M (a) denotes the module shifted by a (so that M(a); = M4,
for all ¢), it follows that M(a) is obtained from M by a cyclic permutation of the homogeneous
components of M.

Given a matrix factorization f = og - ... ag—1 of size m, we assign to it a Z/dZ-graded
module M over the tensor algebra T := T(V). We first choose a Z/dZ-graded k-vector space
M = @} M;, where dimj M; = m for all i.

Let ¢;: V — Homy(M;, M;4+1) be the k-linear maps associated with the matrices oy, as de-
scribed above. The T-module structure of M is then defined by the equation z-m = ¢;(z)(m) for
alzeV, me M;,;and 1 =0,...,d— 1.

Let me M; and z € V. Then

(a:®d)m = (¢,-+d_1(z) o...0¢it1(z)o0 qﬁl-(a:))m = f(z)m
d copies

(where 28 =z ®...® z). It follows that the two-sided ideal I(f) = ({z® — f(z) |z € V}) is
contained in the annihilator of M, so that M is a module over the Z/dZ-graded algebra

C(f) =T/1(f).

We call C(f) the universal (generalized) Clifford algebra of f.
More generally we define (for f # 0)

DEFINITION 1.2. A generalized Clifford algebra for f is a Z/dZ-graded k-algebra C together
with a monomorphism V' < C of vector spaces such that

1) C is generated by V, and 2) z% = f(z) forall z € V.

We shall see later (in theorem 1.8) that the universal Clifford algebra of f is indeed a generalized
Clifford algebra for f. Then clearly C(f) is universal in the sence that for any generalized Clifford
algebra C for f there is a unique Z/dZ-graded epimorphism e: C(f) —» C such that

V/C(f)
\‘C
commutes.

If f is a quadratic form, then C(f) is the usual Clifford algebra.

If k is finite and d > 0, then we may pick an f # 0 of degree d, such that f(z) = 0 for all
z € V. In this ‘pathological’ case, C(f) is a Z-graded ring in the natural manner. On the other
hand, if there is a u € V such that f(u) =y € k, y # 0, then u is a unit of degree 1 in C(f) (since
y~tudl.u = y~1f(u) = 1). It is well-known that if k is infinite and f # O then f cannot act
trivially on V; therefore we sometimes will demand k to be infinite, in order to ensure the existence

of such a unit. (This is not a serious restriction, as remark 1.10 below shows.)



THEOREM 1.3. Assume that k is infinite. Let f 7 0 be a homogeneous polynomial of degree d.

1. The equivalence classes of matrix factorizations of f correspond bijectively to the isomorphism
classes of Z/dZ-graded modules over the universal Clifford algebra of f.
d—1
ii. Let M = @ M; correspond to the matrix factorization f = ag ...  ag_;. Then
1=0
1) dimy M; is equal to the size of the matrices o; for all 1.
2) If j € Z, then the shifted module M(j) corresponds to the matrix factorization
f =05 054y ..t Oy g
3) This matrix factorization is decomposable if and only if M is decomposable.
d—1
Proof. We just indicate how a Z/dZ-graded module M = @ M; defines a matrix factorization of
i=0
f. Choose a u € V such that f(u) # 0; u is a unit in C(f). Since u € C1(f), the multiplication
by u induces k-isomorphisms u: M; = M;; for ¢ = 0,---,d — 1, whence all M; have the same
k-vectorspace dimension. This implies that the k-linear maps ¢;: V — Homy(M;, M; ;1) for ¢ =
0,---,d—1 define square matrices o; of linear forms (with respect to some bases of the M;). Clearly

f:ao-...-ad_l. O

We now describe the algebra C(f) more precisely: For any £ > 0, let N; be the set of n-tuples
v=(v1,...,vp) withy; >0fori=1,...,nand } . v; =L Let N =|J,5, Ne. As usual, we set

z¥ :=z{*-...- z¥» . Then (for some a, € k) we have
f= Z a,z” .
vENy
Let v € N; a monomial in the generators eq,..., e, is said to have multidegree v, if e; occurs
exactly v; times as a factor in this monomial for 7 = 1,...,n. For example, the monomials of

multidegree (2, 1) are eZes, ejezeq, and eze?.

We let g, be the sum of all monomials of multidegree v, so that for instance g(2,1) = eles +
ejeze; + ezeﬁ. For convenience we put g, = 0 if v is an n-tuple not in N, so that for instance
9(4,-1) = 0.

Let J(f) be the two-sided ideal of T generated by the elements g, — a,, v € Ny, and let
S(f)=T/J(f)- Then we have

LEMMA 1.4.
i I(f) CJ(f)
ii.  I(f) = J(f), if k is infinite.
Proof. ff z =3 - | z;e; €V, then
2% — f(zy,...,2,) = Z(g,—au)z”. O
vEN,

In other words, there is a natural epimorphism C(f) —» S(f), which is an isomorphism if k is
infinite.

Next we shall employ the ”Diamond lemma” techniques (cf [Be]), in order to study the ideal
J(f)-

If weset e < ez < ... < en, we can order the monomials of T in the e; in the standard way:

first by length, then (for monomials of the same length) lexicographically.



Let ¢ € T be an arbitrary non-zero element in the tensor algebra. ¢ uniquely is a linear
combination of monomials with non-zero coefficients. We denote by g* (the leading monomial of
g) the highest monomial occurring in this linear combination. If I C T is a two-sided ideal, then
we let I* (the associated monomial ideal to I) be the two-sided ideal which is generated by all g*,
gel.

A subset S C I is called a standard basis (or a Grobner basis) of I, if g*, g € S, generates I*.
Any standard basis of I is a basis of I as well. (In the terminology of [Be], a given basis S of I is
standard iff the corresponding system of reductions has no unresolvable ambiguities; c.f. e.g. [Be,
5.3).)

The importance of these notions results from the following well-known

LEMMA 1.5. Let B be the set of all monomials of T' not belonging to I*. Then the residue classes

of the elements of B form a k-vector space basis of T /1. m]
Hence given a standard basis of I one can easily describe a k-vector space basis of T'/1.

THEOREM 1.6. The basis {g, — a, | v € Ny} of J(f) described in lemma 1.4 is a standard basis
of J(f).

Proof. For v = (vy,...,vn) € N, let m, =g, =e/r---€* and let h, = g, —m,. Then what we

want to prove is that
(1) ‘](f)‘ =I":= T(mU)UENdT

Also note that m,, v € N, are the non-increasing monomials in ej,...,en, i.e. the ‘words’
e; €, - -e; such that 7 <l = 1; > 1.

In the sequel we adopt the terminology of [Be, 1].

The system of reductions corresponding to the alleged standard basis is S = {0, | v € Ng},
where 0, = (my,a, — hy).

The ambiguities all are on the form
a:(auyolJlA,BaC)a #,VGNd;

where A, B, and C are non-trivial monomials not in I* such that m, = AB and m, = BC. Since
m,, and m, are non-increasing, so are A, B, C, and their product, whence ABC = m for some
A € Ny, £ = d + length A. Clearly A is determined by £ and by x and v, since m, and m, are
a right factor and a left factor, respectively, of m,. Conversely, the whole ambiguity a above is
determined by A, whence we put ay := this a.

Note that not all (u,v,£) give rise to ambiguities, but that there is an ambiguity ay for any
A E Ny, d+ 1< €< 2d— 1. However, also note that if this £ > d + 1, then there are non-trivial
monomials D and E, and a p € Ng, such that my = Dm,E. Then (as an easy and well-known
argument shows) the ambiguity my indeed is resolvable. Thus the only remaining ambiguities to
check are

ax = (0M70U76i,mnsej')7 A E Nd+1 5

where 7 and j are the highest and the lowest non-vanishing index, repectively, of the n-tuple ),
and where u € Ny, v € Ny, or K € N4_; is obtained by subtracting 1 from the j-component, from

the 7-component, or from both the 7-component and the j-component of A, respectively.



By inspection it is clear that if exactly s of the variables ey,...,e, occur in the ‘word’ my,
then no other variables can occur in any image of m) under any finite sequence of reductions.
Hence we may forget the other variables in our analysis, and thus actually assume that \; > 1 for

l=1, ..., n. In particular we get
my = mu€e1 = enMy = epMyey .

We must show that there is some common ‘image under reduction’ of the two ‘branches’ b; =
Tae (ma) and by = 1 5, (my). Recall that by definition b, is obtained by replacing m,, by a, —h,
in mj, and similarly for b;. Thus

b1 =aué; — huel
and

b2 = ay€en — enhu

As a starter, let us note that in the case n = 1 we have 4 = v = (d), and b; = a(gje; = b2, and
we are through.
Next, assume that n > 1. For any 7,5 =1, ..., n and any p = {p1,...,0n) € N, let

p(2) = (Btsremsi = Lywe s i)

and

p(i,5) = (p(4))(9) 5
thus e.g. = A(1), ¥ = A(n), and k = p(n) = v(1) = A(1,n). Let us write A = (A,...,An). We
distinguish four cases, depending on whether A; =1 or A\; > 1, and on whether \,, =1 or A\, > 1.

The case A\; > 1, A\, > 1: In this case we have

n n
Iu = Zeigp,(i) = Zeigx(u)
=1 =1

whence
n—1
by = ax(1)€ér — en.h)\(l,n)el - Z €igx(1,1)€1
i=1
We may reduce the leading terms my () in gx(1ipe1 fore=1,...,n—1:
n—1 n
Teroniy " " Ten_10x(n_1) (1) = Gr(1)€1 — €nhar(1,n)€1 — Z e:(ax@) — ng(i,j)ej)
i=1 j=2
n—1
=— ZaA(i)ei —enhicer + Z €igA(i, )€ = O s
i=2 1<i<n—1
2<5<n

say. Similarly we get
n

b2 = Qx(n)en — enhnel = Zeng,\(jyn)ej
j=2

and

Toxizyez """ Toxn)en (b2) =,



