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INTRODUCTION |

The use of group theory in physics became very widespread in the last two
decades. The reasons are not hard to find. Firstly, the theory happens to be a
natural mathematical language suitable for physical concepts to be expressed in.
Secondly, the emergence of very complicated mathematical equations in physics
that needed simplification in any possible way, and symmetry in physics is just one
such aspect that can be used in simplification.

The first factor can easily be seen in quantum field theory. The description of
state functions is made by means of a vector in a Hilbert space. On the other hand,
the theory requires Poincaré symmetry, or invariance. But representation theory
of the Poincaré group provides us with exactly this kind of mathematical tool that
combines special relativity and quantum mechanics. A more sophisticated use of
representations of the Poincaré group is subsequently achieved by associating a
particle with each representation. This then leads to Wignes’s famous
classification of particles according to their spins and masses [E. P. Wigner, On
Unitary Represeniations of the Inhomogeneous Lorentz Group, Ann. Math. 40,
149 (1939)]. A further step leads to the classification of all invariant equations
according to the representation. This leads to the very important result of finding
the equation of motion associated with each representation. In this way one
obtains the Dirac equation, the Proca equation, etc. [E. P. Wigner, Invariant
Quantum Mechanical Equations of Motion, in Theoretical Physics, International
Atomic Agency, Vienna, 1963, pp. 59-82].

Wigner’s ideas changed our conceptional approach to physics. An example is
provided by the use of compact groups. such as SU,, SU,, etc., in strong and
weak interactions. Once again the theory of groups is mystically fit to describe
mathematically the particle’s quantum numbers, such as isopin, strangeness, etc.

xiii



Xiv INTRODUCTION

Although many excellent books on general relativity have been written, the
present book is the first book on the subject of group theory and general relativity
and deals with the applications of group theory to general relativity. As is well
known, the theory of general relativity was founded at a time when group theory
was very little used in physics. During the last two decades it has become obvious
that general relativity is one of many theories known as gauge theories, and at the
same time a lot of work has been done in general relativity using group theory. To
be sure we do not have any other gauge theory (except for the obvious case of the
electromagnetic theory) that is compared, in its perfection and fitness to exper-
imental results, to general relativity. However, the idea of gauge theories in par-
ticle physics is very widespread. An example of this is Weinberg's gauge theory
that combines the electromagnetic and weak interactions [S. Weinberg, Phys. Ret.
Letters 19, 1264 (1967)]. In this book an extensive discussion on the theory of
general relativity from the point of view of gauge fields is given, and an attempt is
made to put together in one volume many scattered original works on the use of
group theory in general relativity theory. The point of view of looking at gravita-
tion theory as a gauge theory was extensively discussed by the author in the
NATO Advanced Study Institute on Mathematical Physics [M. Carmeli, SL(2, C)
Symmetry of the Gravitational Field, in Group Theory in Non-Linear Problems,
A. O. Barut, Ed., D. Reidel, Dordrecht, Holland; Boston, U.S.A., 1974, pp. 59~
110]. However, there is no other volume that encompasses the original articles,
now scattered in the professional literature, which fits into the subject category of
group theory and general relativity.

This book is based on lectures given by the author in the last four years to
advanced undergraduate and graduate students of mathematics and physics at the
Ben Gurion University. There are twelve chapters, divided into forty-six sections,
five appendices, and an extensive bibliography. Each chapter concludes with a set
of problems. The first six chapters are devoted to the theory of representations of
the rotation and Lorentz groups. The other six chapters deal with the application
of groups, mostly the Lorentz group, to the theory of general relativity. They cover
topics that start from the fundamentals of general relativity and end with exact
solutions of the gravitational field equations and representations of the Bondi-
Metzner-Sachs group. No discussion on cosmology is included. Also, the chapter
on the representations of the Bondi-Metzner—Sachs group is just a brief introduc-
tion to the subject. A more detailed account of this important group would need
the use of the theory of representations of the Poincaré group, in particular
Wigner’s little group method; that was not the purpose of the present book. [The
reader who is interested in more detail about the Bondi-Metzner-Sachs group is
referred to R. Penrose’ lucid review: Relativistic Symmetry Groups, in Group
Theory in Non-Linear Problems, A. O. Barut, Ed., D. Reidel, Dordrecht, Holland ;
Boston, U.S.A., 1974, pp. 1-58, although no discussion is given on the representa-
tions themselves.] The whole book is written in a self-contained way in both topics
of group theory and general relativity theory. No prior knowledge of either sub-
ject by the reader is assumed. The book could be used as a textbook for a
two-semester course for students of mathematics and physics at the graduate level.
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or for research purposes. Parts of the book could also be used as a basis for a
one-semester course: for example the first six chapters can be used as « text for
a one-semester course on the theory of representations of the rotation and Lorentz
groups for advanced undergraduate and graduate students of mathematics and
physics. As is well known, the theory of representations of the Lorentz group has
traditionally been used as an introduction to the general theory of representations
of groups. Another example is that the last six chapters of the book can be used as
a text for graduate students of physics and mathematics on the theory of general
relativity. The detail of the chapters is as follows:

Chapter | is devoted to the theory of representations of the rotation group. It
includes such elementary concepts as the pure rotation group, the group SU,, the
very important concept of invariant integral over a group and. of course, the
Wigrer matrices of irreducible representations of the rotation group. While
the rotation group has been widely covered in other texts, the parametrization of
these representations here is not done through the traditional Euler angles but by
other angles that describe rotations. In chapter 2 the discussion of the Lorentz
group begins. This chapter includes an elementary discussion of the problem n
general. Chapter 3 includes the important case of the finite-dimensional spinor
representations of the Lorentz group. Here the group SL(2, C) is introduced, and
its relation to the Lorentz group is outlined. Chapters 4, S, and 6 are devoted o
the infinite-dimensional representations of the group SL(2, C). These representa-
tions are the principal series, the complementary series, and the complete series.

The discussion of the infinite-dimensional representations starts in Chap. 4 by
outlining the spaces of representations. These include several Hilbert spaces. Here
also the theory of Fourier transform on the group SU, 1s introduced. The group
operators are subsequently introduced, and the representation of the principai
series 1s realized in these spaces. The complementary series 1s subsequertly in-
troduced in Chap. S, where an operator formulation is also given. Chapter 6 then
concludes the discussion of the infinite-dimensional representations. In this chap-
ter some harmonic analysis of the group SL(2, C) is also given.

The theory of general relativity first appears in Chap. 7 where the standard
elements of the theory are given. Applications of the spinor representations to
general relativity theory are given in Chap. 8. The Maxwell and Wevl spinors are
introduced and classified accordingly. In Chap. 9 the general aspects of the theory
of gauge fields are described. This includes the concept of isotopic spin and
isotopic gauge transformations. G ‘neralizations are then made to the Lorentz and
Poincaré groups, and finally to the group SL(2, C). This leads to our obtaining the
gravitational field equations in the familiar form of Newman and Penrose. Thus
our approach here is obtaining the Newman-Penrose equations for general relati-
vity from gauge-theory principles. Later chapters of the book are devoted to
solving the field equations of general relativity.

In Chap. 10 we analyse the gravitational field variables, proving the
Goldberg-Sachs theorem, and dealing with choosing coordinate systems and
asymptotic behaviour. In Chap. 11 we give exact solutions to the Newman-
Penrose equations of general relativity. These include the Robinson-Trautman
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solution, the Newman-Tamburino solutions, the NUT-Taub solution, and all
type D vacuum solutions, including the familiar Kerr solution. Finally, Chap. 12
concludes the text with the representations of the Bondi-Metzner-Sachs group.
The five appendices give reviews of the theory of groups, reviews of the theories of
finite and infinite-dimensional representations, whereas the last two appendices
summarize the Newman-Penrose equations- for the gravitational field of general
relativity. The book is then concluded with the bibliography.

Although both the theory of representations of the Lorentz group and the
theory of general relativity are presented here, and although the material includes
reviews of some of the most recent developments in both topics, the present book
does not cover all possible subjects on both topics. Among the following list of
excellent books and monographs the remedies for some of these deficiencies can
be found:

(1) B. L. van der Waerden, Modern Algebra, Fredric Ungar, New York, 1953.

(2) L. Pontrjagin, Topological Groups, Princeton University Press, New Jersey,
US.A, 1946.

(3) E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of
Atomic Spectra, Academic Press, New York, 1959.

(4) M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon
Press, New York, 1964.

(5) I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions,
Vol. 5: Integral Geometry and Representation Theory, Academic Press, New
York, 1966.

(6) I. M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro. Representations of the
Rotation and Lorentz Groups and their Applications, Pergamon Press, New
York, 1963.

(7) W. Riihl, The Lorentz Group and Harmonic Analysis, W. A. Benjamin, New
York, 1970.

(8) A. Trautman, F. A. E. Pirani, and H. Bondi, Lectures on General Relativity
(Brandeis 1964 Summer Institute on Theoretical Physics, Vol. 1), Prentice-
Hall, Englewood Cliffs, N.J., U.S.A., 1965.

(9) J. L. Anderson, Principles of Relativity Physics, Academic Press, New York.
1967.

(10) W. R. Davis, Classical Theory of Particles and Fields and the Theory of
Relativity, Gordon and Breach, New York, 1970.

(11) S. Weinberg, Gravitation and Cosmology: Principles and Applications of the
General Theory of Relativity, John Wiley, New York, 1972.

(12) S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time.,
Cambridge University Press, Cambridge, England. 1973.

(13) C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman,
San Francisco, 1973.

(14) A. Papapetrou, Lectures on General Relativity, D. Reidel, Dordrecht,
Holland; Boston, U.S.A., 1974.
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I would like to conclude this Introduction by citing a very relevant statement
on the important role of group theory in physics, even though most researchers
now realize and understand this role. However, it is a citation that has its own
historical significance and is here very relevant in relation to gravitational theory,
just as it was originally. It is a quotation from an introduction of A. Salam in a
moment of deep insight, commenting on G. Racah’s lectures on Lie groups given
at the Institute for Advanced Studies at Princeton [A. Salam, The Formalism of
Lie Groups, in Theoretical Physics, International Atomic Agency, Vienna, 1963,
pp. 173-196]:

Throughout the history of quantum theory. a batie has raged between the
amateurs and professional group theorists. The amateurs have maintained that
everything one needs in the theory of groups can be discovered by the light of
nature provided one knows how to multiply two matrices. In support of this
claim, they of course, justifiably, point to the successes of that prince of
amateurs in this field, Dirac, particularly with the spinor representations of the
Lorentz group. As an amateur myself, I strongly believe in the truth of the
non-professionalist creed. I think perhaps there is not much one has to learn in
the way of methodology from the group theorists except caution. But this does
not mean one should not be aware of the riches which have been amassed over
the course of years particularly in the most highly developed of all mathemati-
cal disciplines—the theory of Lie Groups. My lectures then are an amateur’s
attempt to gather some of the fascinating results for compact simple Lie groups
which are likely to be of physical interest. I shall state theorems; and with a
physicist’s typical unconcern rarely, if ever, shall I prove them. Throughout, the
emphasis will be to show the close similarity of these general groups with the
most familiar of all groups, the group of rotations in three dimensions. In 1951 1
had the good fortune to listen to Prof. Racah lecture on Lie groups at Prin-
ceton. After attending these lectures I thought this is really too hard; I cannot
learn this; one is hardly ever likely to need all this complicated matter. I was
completely wrong. Eleven years later the wheel has gone full cycle and it is my
turn to lecture on this subject. I am sure many of you will feel after these lectures
that all this is too damned hard and unphysical. The only thing I can say is: I do
very much hope and wish you do not have to learn this beautiful theory eleven
years too late. ‘

Many people have helped me to prepare this book, from the first stages of
writing to the final stage of reading it, partially or completely. [ am in particular
indebted to Professor S. Malin, without whose help, continuous encouragement,
and reading of the manuscript, the book would probavly have never been finished.
I am indebted to Professor A. O. Barut whose kind invitation to the NATO
Advanced Summer Institute in Istanbul gave me the opportunity to present the
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content of Chaps. 8 and 9 of the book in my two-week series of lectures there, and
for his kind hospitality there. I am indebted to my teacher and colleague Professor
Nathan Rosen, both for reading the manuscript and for his comments and encour-
aging remarks on it which I am sure has led to a better presentation of the
material. Many thanks are also due to Professor L. Witten for both encourage-
ment on the idea of the book and for critically reading and commenting on it, and
to Professor G. Tauber and Dr. J. Bekenstein for comments and remarks. Last,
but not least, I am indebted to my students M. Kaye and C. Charach for systema-
tically reading the manuscript and tor their comments and suggestions. Finally, I
am grateful to Mrs. Y. Ahuvia for the excellent job she has made of typing the
manuscript.

MOSHE CARMELI
Beer Sheva, Israel
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CHAPTER

ONE
THE ROTATION GROUP

In the following we find the irreducible ropresontations of the Uirce-dimensional
pure rotation group, O;. This s done by Weyis micthod which makes use of the
homomorphism of the special unitarsy group of order two. SU'., onito the rotation
group. The representations arc discussed o terms of two different parameteriza-
tions: (1) the angle of rotation in a <pecified direction and the spherical angles of
the direction of rotation: and (2} '+ wraditional Euler angles.

1-1 THE THREE-DIMENSIO™N AL PURE ROTATION GROUP

A linear transformation g of the varubles x;, x,, and x;, which leaves the form
x? + x2 + x3 invariant, is called a three-dimensional rotation. The aggregate of all
such linear transformations g provides a continuous group, which is formed from
the set of all real orthogonal 3-dimensional matrices'!! and is called the three-
dimensional rotation group. The determinant of every orthogonal matrix is equal to
either + 1, in which case the transformation describes pure rotation, or to — 1, in
which case it describes a rotation-reflection. The aggregate of all pure rotations
forms a group, which is a subgroup of the 3-dimensional group, and is called the
pure rotation group. This chapter is concerned with the 3-dimensional pure rotation
group. This group is denoted by O;.

The Euler Angles

Let g be an element of the group O,, ie., a 3-dimensional orthogonal matrix wiih
determinant unity. One then can express each such element in terms of a set of
three parameters. An example of such parameters is that of Euler angles, which are

"A matriy ¢ is called orthogonal if g'g = 1, where g¢' is the transposed of g.
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(a)

(b)

(¢)

Figure 1.1 The three rotations defining the
Line of nodes Euler angles.

defined as the three successive ang'es of rotation describing the transformation
from a given Cartesian coordinate system to another by means of three successive
rotations performed in a specific sequencc.

The sequence will be started (see Fig. 1.1) by rotating the original system of
axes x by an angle ¢, clockwise about the z axis.!?! The new coordinate system
will be labelled E. One thus has §.= g(¢,)x, where

cos¢p, —sin¢, O
g(¢,) = | sin ¢, cos ¢, 0)
0 0 1

2 We use the notation x = (x, y, z) = (x,. X,, X3, E = (&, (). & = (& 0, {)and x' = (X, ', 2') =
(X5, X35 X5):



