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§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents:

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated:

- a subject index: as a rule this is genuinely helpful for the reader.
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Preface

KRONECKER's approximation theorem says that the fractional parts of the multiples
of an irrational lie dense in the unit interval. This result was the starting point of
a long and fruitful development of the theory of uniformly distributed sequences.
At the beginning of the 20th century first refinements and generalizations of KRO-
NECKER’s theorem were established by various authors such as BOHL, SIERPINSKI,
BERNSTEIN, HARDY and LITTLEWOOD, and WEYL who was the first establishing a
systematic treatment of uniformly distributed sequences in his famous paper ‘Uber
die Gleichverteilung von Zahlen mod. FEins’ [1953]. A historic survey on the theory
of uniform distribution until 1916 is given by HLAWKA and BINDER [837] whereas
the development of this subject after 1916 is contained in several monographs and
survey articles. Some chapters of the classical books ‘Aufgaben und Lehrsdatze aus
der Analysis’ by POLYA and SZEGO [1450] and ‘Diophantische Approzimationen’ by
KoksMA [941] are devoted to the early stage of the theory of uniform distribution.
A detailed survey of the whole subject until 1960 was given by CIGLER and HELM-
BERG [369]. The first exhausting monograph ‘Uniform Distribution of Sequences’ is
due to KUIPERS and NIEDERREITER [983]. Some years later HLAWKA published his
monograph [804, 815] on the theory of uniform distribution.

The beginning of the theory was the discovery that the fractional parts of the mul-
tiples of an irrational are not only dense in the unit interval but they are uniformly
distributed. This means that the empirical distribution of the sequence is asymptot-
ically equal to the uniform distribution. Therefore the main root of this theory is
diophantine approximation and number theory, however there are strong connections
to various fields of mathematics such as measure and probability theory, harmonic
analysis, topological groups, summability theory, discrete mathematics, and numeri-
cal analysis. In the twenties and thirties several authors, for instance BEHNKE, VAN
DER CORPUT, KOKSMA, and OSTROWSKI, established quantitative results concerned
with the distribution behaviour of special sequences. As a quantitative measure of
the distribution behaviour of a sequence VAN DER CORPUT considered the so-called
discrepancy, i.e. the maximal deviation between the empirical distribution of the se-
quence and the uniform distribution. One problem is to find upper bounds for the
discrepancy of special sequences. The main tool for proving such bounds is to ap-
ply analytic tools for estimating exponential sums. Another important problem is to
prove general lower bounds for the discrepancy of sequences. This subject is called
Theory of Irregularities of Distribution since it turns out that the distribution of a
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sequence cannot be too smooth. First significant results in this direction are due to
VAN AARDENNE-EHRENFEST, ROTH, and SCHMIDT. There are two monographs on
this subject, namely by SCHMIDT [1634] and more recently by BECK and CHEN [143].

In pioneering papers HLAWKA [782, 783] generalized the theory of uniform dis-
tribution to the setting of compact topological spaces and groups. These abstract
aspects and connections to summability theory can be found in [983, chapters 3,4].
More recently the abstract theory of uniform distribution was further extended by
several authors such as NIEDERREITER, LOSERT, and RINDLER. The special case of
discrete spaces was extensively studied, mainly sequences of integers modulo m were
considered. Distribution problems for integer sequences are surveyed by NARKIEWICZ
[1260].

A very important application of uniformly distributed sequences is numerical in-
tegration since the approximation error can be estimated in terms of the discrepancy.
Hence it is important to construct low-discrepancy sequences. Constructions of such
sequences are due to HLAWKA and KOROBOV. A concise treatment of this so-called
Good Lattice Point Method can be found in the monographs by KoroBOV [958] and
by HuA and WANG [852]; see also HLAWKA, FIRNEIS, and ZINTERHOF [838]. More
recently low-discrepancy and related sequences are used for several other applica-
tions: for simulation of random numbers, Quasi-Monte Carlo optimization, etc. In
the meantime there exists a huge literature on various applications of Quasi-Monte
Carlo methods to different kinds of problems; an excellent survey is NIEDERREITER'S
book [1336].

The present book attempts to summarize special developements and methods of
the theory of uniform distribution since 1974 when KUIPERS’ and NIEDERREITER’S
book [983] appeared. We emphasize on such topics which are not covered by some of
the above mentioned monographs. Every section of this book consists of two parts, a
self-contained one where main results and methods are established and a notes part
where the corresponding literature is discussed. References of papers published before
1974 are only taken into account if they are necessary for the presentation and proofs
of the results. For references of other papers we explicitely refer to the extensive
bibliography in [983] and to a recent manuscript by HELMBERG [773].

In chapter 1 we discuss the classical theory of uniform distribution in the unit
interval and in the k-dimensional unit cube. We present an improved version of
the famous ERDOS-TURAN-KOKSMA inequality as well as BECK’s proof of ROTH’s
lower bound for the discrepancy. Furthermore estimates for the discrepancy of special
sequences are established, e.g. for the (na)-sequence, higher dimensional analogues,
digital sequences, and exponential sequences. Here we also survey on BECK’s recent
metric result on the KRONECKER sequence as well as on special results on normal
numbers. In a concluding section metric bounds for the discrepancy of sequences are
proved.

In chapter 2 we shortly demonstrate BECK’s Fourier-Transform approach for find-
ing general lower bounds of the discrepancy. For a detailed presentation of this method
we refer to BECK and CHEN [143]. However, a new method due to ALEXANDER is
discussed in more details. Furthermore a quantitative treatment of the discrepancy
with respect to summation methods is given. Continuous analogues are investigated
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as well as some new applications of BECK’ method not contained in [143]. In a final
section we study distribution problems in finite sets, in particular we present concepts
of discrepancy for sequences in finite sets and some statistical results. This involves
combinatorial methods and generating functions. The combinatorial discrepancy the-
ory is not discussed exhaustively since there exists an excellent survey by BECK and
S6s [150] on this subject. Then we shortly deal with uniform distribution in integers
and generalizations. For a detailed presentation of this topic we refer to NARKIEWICZ
(1260]. However, we emphasize on recent results on the uniform distribution of linear
recurring sequences.

The final chapter 3 is devoted to various applications of uniformly distributed
sequences such as numerical integration and numerical solution of differential equa-
tions, random number generation, and Quasi-Monte Carlo methods. Furthermore we
include as a very recent application some aspects of Mathematical Finance. Dur-
ing the last years all these applications have been a rapidly growing area of research.
There were several important conferences on these topics, e.g. one in Lamprecht (Ger-
many ), subsequent ones in Fairbanks (Alaska, 1990), in Las Vegas (Nevada, 1994) and
in Salzburg (Austria, 1996). NIEDERREITER’s book [1336] is an extended version of
his letures given at the Fairbanks conference. We try to focus on some application
problems which we have selected following our own taste. We also include the explicit
computation of the L2-discrepancy which is the basic quantity for the average case
analysis of numerical integration. For a detailed survey on average case analysis of
numerical integration we refer to the monographs by Novak [1371] and by TRAUB,
WasiLKOwsKI and WOZNIAKOWSKY [1872).

We are indebted to M. Bliimlinger, M. Goldstern, P. Grabner, C. Heuberger,
B. Klinger, A. Knappe, I. Radovic, T. Siegl, M. Skatba, J. Thuswaldner, G. Turnwald,
M. Unterguggenberger, R. Winkler for helpful discussions and to Mrs. H. Panzenbock
for typesetting. Especially we thank the Springer-Verlag for the kindness and support
during the time we have written this volume. Finally we want to thank our wives for
their patience and encouragement.

Vienna and Graz, 1996. M. Drmota and R.F. Tichy



Contents

Preface Vi
Contents Xl
1 Discrepancy of Sequences 1
11 BasicConcepts : s mms w3 s s s s mmms s § s @ B ms § 59 & @8 3 1
1.1.0] BasicDefinitions « « : : s v o5 05 ¢ cmmm o s & & mw o w a o s 1

112 DISCFEPANCIES v v v o 5 ¢ w s w4 4 8 ¢ W worn v 510w w oo o 4
1.1.3 Dispersions . . . . . . . ... e 11
NOtes . . . v it i e e e e 13

1.2 Exponential Sums . . . . . . . . ... e e 14
120 WEYL'S Criterion : : « : s w sw s s s s smma s 5 8 s m o o s g s 14
1.2.2 ERDOS-TURAN-KOKSMA's Inequality . ... ... ....... 15
1.2.3 LEVEQUE’s Inequality and Diaphony . . . . . .. .. ... ... 23
Notes . . . . o i e e e e 26

1.3 LowerBounds. . . . .. .. .. . . . 29
1.3.1 RoTH’s Theorem . . . . . ... ... ... ... .. ....... 29
1.3.2 ScHMIDT's Bound . ... ... ... ... .. 40
1.3.3 BECK’s Theorem . . .. ... .. .. ... .. ... ....... 44
Notes . . . o o i e e e 46

1.4 Special Sequences . . . . . . . ... e 48
1.41 (na)-Sequence . . . . . . . ... 48
1.4.2 KRONECKER-SEQUENCE . . . . . « v v v v v vv o e e e e 66
1.4.3 Digital Sequences . . . . . . . . ... 91
1.4.4 Normal Numbers . . . . . . ... ... .. ... .. ...... 104
1.4.5 Exponential Sequences . . . . . . ... ... ... 118
Notes . . . o i e e e e e e e e e e 131

1.5 Distribution Functions . . . . . . .. ... ... ... 138
1.5.1 Basic Concepts and Maldistribution . . ... ... .. .. ... 138

1.5.2 Distribution Functions and Recurring Sequences . . . .. . .. 142
1.5.3 Subdivisions . . .. .. ... ... 151

NOLES .o wowos ¢ 68 wim 5 55 édi@@® 3 § 5 8M B9 R S6 5 3 153



XII

1.6 Metric Theory . . . . . . . . . . . 154
1.6.1 ERDOs-GAL-KOKSMA’s Method . . ... ............ 154

1.6.2 Lacunary Sequences . . . . . . . . . . .« ot 161

1.6.3 Completely Uniformly Distributed Sequences . . . . . ... .. 188

1.6.4 PHILIPP's Theorem . . . . . . . . .. .. ... . ... ...... 197
NOLES w v » s s @ ms 8 ¢ G os 3§ 568 @& 885§ 8 8 é@n 198

2 General Concepts of Uniform Distribution 204
2.1 Geometric Concepts of Discrepancy . . . . . . . . .. .. .. ... ... 204
2.1.1 Discrepancy Systems . . . . . . . .. ... 204
2.1.2 Euclidean Discrepancy Systems . . . . .. ... .. .. .. ... 212
2.1.3 Spherical Discrepancy Systems . . . . .. ............ 231
2.1.4 ALEXANDER’s Method . . . . ... ... ... ... ....... 241
Notes « : « smmatis » 5 smmm s 5 s m s s 5 8 899w @ 248

22 Summation MEthods o o 6 5 s s wmw vs s 8 s wmes s s vwma oo 249
221 Weighted Means . . . ....................... 249
2.2.2 Well Distribution . . . . . .. ... ... o 259
2.2.3 ABEL’s Summation Method . . . . . . ... ... ... ..... 268
NOLES . . v v e o 0 oo mmmn v o s s @ as & 55 64 %@8 275

2.3 Continuous Uniform Distribution . . . . . ... ... .. ... ..... 277
231 BasicResults « = w5 : ¢ s s msmps s som@sss s /6 8s 277
2.3.2 Discrepancy Bounds . . . .. .. ... ... ... ... ... .. 288
233 MettiGRESUMS o w v 2 s s mmp s s 5 amman s « o 6 mwwwon 300
INOEES! : s s mwmes 5 8 M @ E S 3 5 6B W@mouo s o 0w ww 312

2.4 Uniform Distribution in Abstract and Discrete Spaces . . . . .. . .. 313
2.4.1 Uniform Distribution in Compact and Locally Compact Spaces 313
2.4.2 Distribution Problems in Finite Sets . . . . . . ... ... ... 317
2.4.3 Combinatorial Concepts of Discrepancy . . . .. ... ... .. 340
2.4.4 Linear Recurring Sequences . . . . . . . ... ... ... .... 346
NOtES: ¢ s v o wmss ¢ s sm e ms 3 5 8 %me o6 s 5 680w w®ss 362

3 Applications 368
3.1 Numerical Integration, Approximation, and Mathematical Finance . . 368
3.1.1 Integration and Approximation of Continuous Functions . . . . 368
3.1.2 Nets and (£,5)-S€qQUeNCES . . . . . « o v v v 381
3.1.3 Mathematical Finance . . . . .. .. ... ... ......... 387
3.14 Average Case Analysis . . . . .. ... ... ... ... ..... 390
Notes . v v v vt e e 396

3.2 Spherical Problems . . . . . ... ... . L oo 399
3.2.1 Spherical Designs and CHEBYSHEV Quadrature . . . . . . . .. 399
3.2.2 Slice Dispersion and Polygonal Approximation of Curves. . . . 406

Notes: : s osmuas s 3 s S @ts i 8 856653 858385 410



3.3 Partial Differential Equations . . . . . . .. ... ... ... ......

3.3.1 TheHeat Equation . . . . .. .. .. ... .. .. ........
3.3.2 The BOLTZMANN Equation . .. ... ... ... ........
3.3.3 The FOURIER Approach . . . . . . . . .. .. ... .......
Notes . . . . . o e e
3.4 Random Number Generators . . . . .. ... ... ... .«.......
3.4.1 Basic Concepts of Randomness . . . . ... ... ........
3.4.2 Examples of Number Theoretic Generators . . . .. ... ...
Notes . . . . . o e e e
Bibliography

List of Symbols

Subject Index

XIII

410
410
414
419
423
424
424
426
431

433
498

500



Chapter 1

Discrepancy of Sequences

1.1 Basic Concepts

1.1.1 Basic Definitions

Let us consider the k-dimensional Euclidean space R*¥. We will identify two points
x,y € RF if their difference x — y is an integral lattice point € Z*. Equivalently we
can say that we consider the space R¥ modulo 1 or we deal with the k-dimensional
torus T* = R*/Z*.

Obviously T* can be identified with the unit cube U* = [0,1)*. Formally this
can be done by using the notion of fractional parts. The fractional part {z} of a real
number z is defined by {z} = z — [z], where [z] denotes the integral part of z, that is,
the greatest integer < z. The fractional part {x} and the integral part [x] for x € R*
are defined componentwise.

Let J = [a1,b1) x -+ X [ak,bk) C R* be an interval (or a rectangle with sides
parallel to the axes) in the k-dimensional space R* with 0 < b; —a; < 1,i=1,...,k.
Then the reduction modulo 1, I = J/Z* is called an interval (or a rectangle with sides
parallel to the axes) of the torus T* = R¥/Z*, eg. I =[0,1)U[3,1) = [3, 5)/Z is
such an interval. The volume A (I) of an interval I C R¥/Z* is given by [T5_, (b —a;).
(Of course, A\x denotes the k-dimensional LEBESGUE measure.) For such an interval
I C R*/Z* and a sequence (xn)n>1, Xn € R*, let A(, N,x,) be the number of points
Xn, 1 <n < N, for which {x,} € I, i.e.

2

A(I,N,x,) = Z ({xn}), (1.1)

where x is the characteristic function of 1.
Using these notations it is easy to define the notion of uniformly distributed se-
quences.



2 CHAPTER 1. DISCREPANCY OF SEQUENCES

Definition 1.1 A sequence (Xp)n>1 of points in the k-dimensional space R is said
to be uniformly distributed modulo 1 (for short u.d. mod 1) if for every interval

I C R¥/Z* we have
= a(D). (1.2)

Furthermore (xp)n>1 is called well distributed modulo 1 (for short w.d. mod 1) if for
every interval I C R¥/Z* we have

lim A(I, N» xn+u)

Jim N = A (1) (1.3)

uniformly for all v > 0.

Remark. Of course, well distribution is a stronger concept then uniform distribution.
We postpone a systematic study of this notion to Section 2.2 ; some special w.d.
sequences will be considered in Section 1.4.

Note that (1.2) is equivalent to

1 N
Jm, o S xle) = /T xr de (14)
or for short
A mn(x1) = m(xr), (1.5)
where
1 X
m(f) =5 2 f({xa}) (16)
n=1
and
mif)= [ fan (17

are positive linear functionals on the space of LEBESGUE integrable functions f :
T* — R. Hence a sequence (xp)n>1 of points in R* is u.d. mod 1 if and only if (1.5)
holds for all characteristic functions x; of intervals I C T*. By linearity,

lim mpy(f)=m(f) (1.8)

N—o00

holds for all step functions f, too. Furthermore we have the following property.

Lemma 1.2 Let my (N € Z, N > 0) and m be positive functionals on some space
F of real-valued functions f : X - R (X # 0) and let L C F the subspace of these
functions f satisfying (1.8). Suppose that f € F has the property that for everye > 0
there ezist functions g1, g2 € L with g3 < f < g2 and m(g2)—m(g1) <e. Then f € L,
too.
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Proof. By mn(g91) < mn(f) < mn(g2) and m(g1) < m(f) < m(g2) we immedi-
ately get

m(g1) = liminfmy(g)) < liminfmy(f)
< limsupmy(f) < limsupmn(g2)
N-oo N—oo
= m(g2)

which implies
|m(f) = liminf mn(f)| <€
N—oco

and
Im(f) — limsupmpy(f)] <€

N—oo
for every € > 0. Thus limy 0o my(f) =m(f). O
This Lemma can be used to prove two criteria for sequences u.d. mod 1. Recall
that the k-dimensional torus T* can be identified with the cube [0,1)* C [0, 1]*.

Theorem 1.3 (Criterion A) A sequence (Xp)n>1 of points in the k-dimensional
space R* is u.d. mod 1 if and only if

. 1
Jim oy S S = [ T (19)

holds for all RIEMANN integrable functions f : [0,1]* — R.

Theorem 1.4 (Criterion B) A sequence (Xn)n>1 of points in the k-dimensional
space R* is u.d. mod 1 if and only if (1.9) holds for all continuous functions f :
[0,1]* - R.

Proof. Let L be the space of all LEBESGUE integrable functions f : [0,1]* - R
satisfying (1.9). Then £ contains all stepfunctions. Now, if f is RIEMANN integrable
then by definition for every € > 0 there exist step functions g;, g2 with g; < f < g2
and

/[ ]k(gz —g1)dX <Ee. (1.10)
0,1

Hence by Lemma 1.2 f € £. On the other hand all characteristic functions x; are
RIEMANN integrable. This proves Criterion A.

Since every continuous function f is RIEMANN integrable (1.9) surely holds for
continuous functions. Conversely it is easy to see that for every characteristic function
x1 and every € > 0 there exist continuous functions g;,g¢> with g1 < xr < g2 and
(1.10). Thus a second application of Lemma 1.2 proves Criterion B. O

Remark 1. It should be noted that Criterion B is a proper version to generalize the
definition of u.d. sequences to compact topological spaces whereas the first definition
has no direct analogue at a first glance.

Remark 2. There is no sequence satisfying (1.9) for all LEBESGUE integrable func-
tions.

Remark 3. Property (1.9) is also the starting point to apply u.d. sequences for
numerical integration.
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1.1.2 Discrepancies

In order to quantify the convergencein (1.2) the discrepancy Dy of a sequence (xn)n>1
has been introduced.

Definition 1.5 Let x1,...,Xn be a finite sequence of points in the k-dimensional
space R¥. Then the number

Dy = Dn(x1,...,XN) = sup AT, %)

sup N - (1) (1.11)

is called the discrepancy of the given sequence. For an infinite sequence (Xn)n>1

Dn(x,) should denote the discrepancy of (x,)N_, and is called discrepancy, too.

The essential point of the concept of discrepancy is that the notion of uniform
distribution can be covered by it; i.e. the convergence in (1.2) is uniform with respect
to all intervals I C TF.

Theorem 1.6 A sequence (Xp)n>1 18 u.d. mod 1 if and only if

lim Dpy(x,) =0. (1.12)
N—o0
Proof. (1.12) immediately implies (1.2) for all intervals I C T*. So we only have
to show that every u.d. sequence satisfies (1.12). For this reason let M be an arbitrary
positive integer and set

my; my+1 my mg+ 1
Imsem = |30 T30 ) M0 M

for0<m; < M,i=1,...,k. By (1.2) there exists a positive integer Ny such that

1 1 A(Im1 ...mk)N,xn) 1 1
- —\< BT < — — .
M*k (1 M) = N *w\'*u 4

for N > Ny and for all cubes {ml ,,,,, mx- INow consider an arbitrary interval I C T"_.
Clearly there exist intervals I, I, finite unions of cubes Ip,,,...,m,, such that I C T C I
and

k
From (1.13) we get
(D) (1_ i) < ALNz) AL
A(T,N,xn)
= '——N—

< 2D (1 5 %) (1.15)



