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Preface

The purpose of this book is to present the development over the past
three decades of three strands in n-person game theory, with strong em-
phasis on applications to general economic equilibrium analysis. The first
strand, represented by the Nash equilibrium of a game in normal form,
studies an equilibrium concept of a society in which everybody behaves
noncooperatively and passively. The second strand, represented by the
core of a game in characteristic function form, studies the stable outcomes
of a society in which everybpdy is aware of what he can do by cooperating
with other membegs. The third strand, represented by the Shapley value of
a side-payment game in characteristic function form, studies the fair out-
comes of a society in which everybody is aware of what he can contribute
to any group of members of the society by joining the group.

To capture the game-theoretical idea of each strand, several formulations
with diverse degrees of generality have been proposed and studied in the
past. A simple formulation conveys the essence of the idea in a straightfor-
ward manner, but it may not be general enough for useful economic ap-
plications. A complex formulation is general and powerful for economic
applications, but beginners may find it hard to capture the essence. For
each strand, therefore, I first present the game-theoretical idea in a simple
setup and then gradually generalize it to more complex situations. This task
is followed by discussion showing how the game-theoretical solution con-
cept of each strand, generalized to the appropriate degree, can be applied to
general economic equilibrium analysis. The model of a pure exchange
economy is chosen, and three existence theorems for this model are estab-
lished: the competitive equilibrium existence theorem (an application ofa
generalized Nash equilibrium existence theorem), the core allocation exis-
tence theorem (an application of a theorem for nonemptiness of the core),
and the value allocation existence theorem (an application of a generalized
Shapley value existence theorem). Having thus bridged n-person game
theory and economic theory, I proceed to present several issues in mathe-
matical economics dealing with the three economic concepts (competitive
equilibrium, core allocation, and value allocation) within the framework of
pure exchange economies; in particular, I present the fundamental
theo'réms of welfare economics and limit theorems of cores and of value

ix



X Preface

allocations. I also present a still more general game-theoretical concept,
developed recently by myself: a social coalitional equilibrium. I do not
discuss its economic applications here, however, because in order to do so
I would have to give a disproportionately long discussion.

The text is organized as follows: Chapters 1-3 are devoted to some
mathematical tools and theorems, which are usually not covered in stan-
dard mathematics courses but which play crucial roles in this text. In
Chapter 4 (5, 6, respectively), a systematic account is given for the first
(second, third, respectively) strand of n-person game theory mentioned
above. Sections 4.4, 5.5, and 6.4 are the bridges between game theory and
mathematical economics (a competitive equilibrium existence theorem, a
core allocation existence theorem, and a value allocation existence
theorem). Most of the later sections of the three chapters deal with mathe-
matical economics. A social coalitional equilibrium is discussed in Sec-
tions 5.7 and 5.8. Sections 4.7, 5.9, and 6.6 are bibliographical notes.
There, the evolution of relevant concepts is surveyed and more recent
results are stated.

The reader is assumed to be familiar with junior-level real analysis and
linear algebra. Every effort has been made to make the exposition self-
contained, given this mathematical background.

The present work arose out of several courses that I have given since
spring 1978 at Carnegie-Mellon University and at The University of lowa.
It was George J. Fix, head of the Mathematics Department, Carnegie-
Mellon University, who first offered me an opportunity to develop a course
in game theory and mathematical economics. Juan Jorge Schiiffer of Car-
negie-Mellon University shaped up my mathematical thinking, not only
through our delightful collaboration in cooperative game theory, but also
through innumerable discussions on mathematical science in general.
While the first draft of the text was being typed in spring 1981, some of my
colleagues at The University of [owa, in particular Michael Balch and John
Kennan, suggested some improvements in the text. Richard P. McLean of
The University of Pennsylvania read the entire first draft and gave me
many pieces of valuable information and thoughtful suggestions; indeed,
most of the revisions I have made since then originated from his sugges-
tions. My results that are included in the text were established in my
research project, supported by the National Science Foundation Grant SES
8104387 (formerly, SOC 78-06123). I would like to thank the staff of
Academic Press for the excellent work that was done to produce this book.
To all the individuals and the institutions mentioned in this paragraph, I
would like to express my deep gratitude. Needless to say, I am solely
responsible for any possible deficiencies in this book.
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Preliminary Discussion

The basic mathematical notation to be used throughout this text is
summarized in Section 0.1. Since the game theory presented in Chapters
. 4-6 serves as the mathematical foundation for economic analysis, the
typical economic model is presented in Section 0.2: the model of a pure
exchange economy. The reader is encouraged to keep this model in
mind when going through Chapters 4-6.

0.1. Basic Notation

Given a set A,
#A : = the cardinality of A.
Given a positive integer k,

R¥ : = k-dimensional Euclidean space;

RX : = the nonnegative orthant of R¥;
R:=RY

R, :=R}.
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For any x, ye RY,

x; . = the ith coordinate of x,i = 1, ..., k;

x-y:= Y% | x;y; = the Euclidean inner product of x and y:
[x] : = /x"x = the Euclidean norm of x;

x > ymeans x; > y; foreveryi =1,...,k;

X > ymeans x > y andx # y;

x >» ymeans x; > y; foreveryi =1,..., k.

For any subsets S, T of R¥,

Lo

: = the interior of S in R¥;
S : = the closure of S in R;
S+ T:={x+yeRxeS yeT};
S—T:={x -yeR¥|xeS, yeT}.

The algebraic concepts S + T and S — T should not be confused
with the set-theoretic concepts S U T and S\T. Abbreviations for some

phrases:

iff if and only if;
w.l.o.g. without loss of generality;
] the end of the proof.

A positive integer n will be interpreted as the number of players
throughout Chapters 4—6. A set of players is called a coalition:

N := {1, 2,...,n} is interpreted as the set of players;
N = 2M\{¢} is interpreted as the family of nonempty coalitions.

For every je N
Jj
.
el:=(,...,1,...,0)eR".
For every Se A/,

As = ZjeS ej; -
A® : = the convex hull of {e/|je S} (see Section 1.1).

Let X be a convex subset of R, and let f: X — R be a function. The
function f 'is called quasi-concave in X if for every reR the set
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{xe X|f(x) = r} is convex or, equivalently, if for any x, ye X and
any ¢ in the unit interval [0, 1] it follows that f(tx + (1 =ty =
min[ £(x). f(y)]. The function f is called concave in X if for any x, ye X
and any te[0,1], f(tx + (1 — 0)y) = f(x) + (1 — t)f(y). It is called
strictly concave in X if strict inequality holds true in the last inequality
whenever x and y are distinct and 0 <t < 1.

0.2. Pure Exchange Economy

The model of a pure exchange economy with [ types of commodities
and m consumers is reviewed. A commodity bundle is a point x in R';
it describes the quantity x, of each commodity h =1, ..., I. The ith
consumer is characterized by a triple (X', <, ®') of his consumption
set X', his preference relation <, and his initial endowment vector w'.
The consumption set X' is a subset of R' and is interpreted as the set of
all commodity bundles with which he can physically survive; the set X g
characterizes the “physical needs” of consumer i. Suppose he chooses
a bundle x' € X*. If xi > 0 (x}, < 0, resp.), then he demands (supplies,
resp.) | x| units of commodity h. The preference relation <, is a binary
relation on X'. The statement [x' <, x"] is interpreted as: the com-
modity bundle x is at least as desirable as the commodity bundle x' to
consumer i. The relation <, therefore, characterizes the “taste” of
consumer i. Given xi, x” € X', denote by [x' >;x"] the negation of
[x| <;x"]. Denote by [x' ~; x"] the statement [x' <;x",and x" <, X'],
that is interpreted as: Consumer i is indifferent as to the choice of
commodity bundle x' or commodity bundle x'’. The preference relation

< is called complete if for any x, x" € X" it follows that %l 0r

x <, x'; completeness means that consumer i has a strong opinion on
the commodity bundles. It is called transitive if for any ot ix'; o & X
for which x <, x” and x” <, x" it follows that xt <, x"; transitivity
means that the consumer is rational. It is called closed if for any xeX!
the sets {¢'e X'| & <;x'} and {¢'e X'|x' 5, &'} are both closed in X
closedness means that his comparison of commodity bundles is smooth.
It is called weakly convex if for any x' € X' the set {¢'e Xix g, &Yis
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convex; weak convexity means diminishing marginal rate of substitu-
tion. It is called convex if for any x', x”e X' for which x' >, x"
and for any real number ¢ for which 0 <t < 1 it follows that tx! +
(1 —0)x" >, x". It is called strictly convex if for any two distinct x',
x" e X' for which x' ~, x” and for any real number ¢ for which 0 < t < 1
it follows that tx' + (1 — 1)x” >, x". It is called monotone if for any
x', x"€ X' for which x' > x" it follows that X' >, x"; monotonicity
means that each commodity is desirable to consumer i. A commodity
bundle x'€ X' is called a nonsatiation point if there exists x' € X' such
that x” >; x'. A numerical function u’: X' — R represents the preference
relation < if for any x', x" € X', x' <, x" if and only if u'(x') < u(x").
A consumer whose preference relation is representable by a numerical
function behaves as though he were trying to maximize this function.
Sometimes such a numerical function is called a utility function. Proof
of the following theorem (Theorem 0.2.1) can be found in Debreu
(1959, Theorem (1), pp. 56-59).

Theorem 0.2.1.  Let X' be the consumption set of consumer i, and let
< be his preference relation. Assume X' is a connected subset of R,
Then there exists a continuous numerical function on X' that represents
<iif and only if < is complete, transitive, and closed.

The initial endowment vector ' is a point in R' and is interpreted as the
commodity bundle consumer i holds initially. A pure exchange economy
is now characterized by a list of specified data, & : = {X', <, w'}™,.

Besides the exogenous data &, economists identify the behavioral
pattern of the economic agents and the mechanism at the “meeting
place” that coordinates their behavior. Consumer behavior in ac-
cordance with a given pattern leads to economic outcomes usually
* characterized by particular values of appropriate endogenous variables.
Economic theorists formulate the outcomes in terms of a suitable
solution concept and try to understand them by deducing the properties
of the solution.

The solution concept with the greatest importance and longest
history is the competitive equilibrium: each consumer i observes a price
vector pe R4\{0} in the market. His own budget set y(p, p-w') : =
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{&eX'|p & < p-of is therefore determined, and within this con-
straint he chooses individualistically the commodity bundle that
satisfies him the most. An equilibrium price vector is then determined
in the market so that the total demand cannot exceed the total supply.
Let L : = {1,...,1}. By the price—wealth homogeneity, one may restrict
the price vector domain to {pe R | ¥;-, p, = 1} that will be, by abuse
of notation, denoted by A throughout this text. Thus the competitive
equilibrium of a pure exchange economy & is a pair O™, p*)of
members of [T7, X' and A* such that

(1) x™ is a maximal element of {¢'e X*|p*- & < p*- '} with re-
spect to X, for every i; and
Q) Y x*<YnL,d

It is a solution concept based on noncooperative behavior of the
consumers and on the market mechanism. In Section 4.4, however, its
existence problem will be discussed as a particular case of the existence
problem of a certain noncooperative solution concept that does not
specifically involve the market mechanism. Other solution concepts
for & based on a cooperative behavior will be discussed in Sections 5.5
and 6.4.

Certain dynamic economies can be analyzed within the framework
of the above static model &. One characterizes a commodity not only
by its physical properties and the place where it is available, but also
by the date when it will be available and (in the case of uncertainty
about the future) by the elementary event that will be realized. Com-
modity h, for example, is defined as coffee ice-cream that will be avail-
able in Jowa City in 77 days when it is snowing. The above definition of
competitive equilibrium allows for this dynamic interpretation, but
one should keep in mind that all futures markets (and also all contingent
markets in the presence of uncertainty) are assumed to exist.

For the case | = m =2 and X' = R2 for i = 1, 2 the competitive
equilibrium ((x™*);_  ,, p*) is illustrated in the Edgeworth box diagram
(see Figure 0.2.1). A comx_ngdity bﬂgle of consumer | is measured
from the origin 0" by the 0'x; and 0'x; axes. A commodity bundle of
consumer 2 is measured from the origin 02 by the 0%x? axis and the 0°x3
axis. The second origin 0 lies at the point @' + w? when measured
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Figure 0.2.1 Edgeworth box diagram and competitive equilibrium.

from the origin 0' so it also represents the total supply vector. The
curve I** is the indifference curve {x'e X'|x' ~, x"*} passing through
x'* i =1, 2. Now a competitive equilibrium is characterized by the
following properties: (1) I'* and I** are tangent at x'* with the slope
being —p¥/p%; and (2) the tangent line passes through o' so that it
becomes the budget line.



Introduction
to Convex Analysis

.

The basic ingredients of convex analysis are presented in the finite-
dimensional setup. A definition of convexity, its immediate conse-
quences, and related concepts are leisurely exposed in Sections 1.1-1.3.
The deepest result is that of Theorem 1.4.4 of Section 1.4, in which some
(Euclidean) topological concepts for convex sets are characterized in
terms of vector space structure. In Section 1.5 two versions of the
separation principle are established: the support theorem (Theorem
1.5.3) and the separation theorem (Theorem 1.5.4). Two other versions
are also given in Exercises 6 and 7: the Hahn—Banach theorem and
the subdifferentiability theorem. These four versions are equivalent in
the sense that given any one of them the other three follow immediately.
In Section 1.6 the concept of extreme point is introduced, and its
elementary existence theorem (Theorem 1.6.1) is provided. Also intro-
duced is a more general concept, the facial space. Artstein’s fundamental
lemma (Lemma 1.6.4) on facial spaces is presented, and its applications
are discussed; in particular, the Shapley—Folkman theorem is proved.
Assertions of certain theorems in this chapter are false in the infinite-
dimensional context. Indeed, the negation of certain assertions charac-
terizes infiniteness of the dimension of a given vector space. This last
issue is discussed in the Appendix to this chapter. For general references
pertinent to convex analysis see Fenchel (1951) and Rockaffellar (1970);
also see Nikaidd (1968), which contains applications to economics.
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1.1. Convex Set

A subset C of R"is called convex if [x,ye C,x € R,0 < o < 1] implies
ax + (1 — a)y e C. Given an arbitrary subset S of R", one can associate
with it naturally a convex set called the convex hull of S. Note that for
an indexed family {C};., of convex subsets of R”, ();;; C; is a convex
set. The convex hull of S is the set co S : = (){C|C is a convex subset
of R". C > §j}; it is the smallest convex set that contains S. The set
co S is now characterized.

Let (x),r be a finite set in R”. A point y in R” is called a convex
combination of (x'),. if there exists a nonnegative real coefficient o, for
each ie F, with ¥,.p o; = 1, such that y = 3, ; o;x". Let S’ be the set
of all convex combinations of finitely many members of S. By showing
that any convex subset of R" that contains S also contains S’ and that
S’ itself is convex one can prove

Theorem 1.1.1.  The convex hull of a subset S of R" is precisely the set
of all convex combinations of finitely many members of S.

Theorem 1.1.1 holds true for an arbitrary vector space over R. A
sharper result in the finite-dimensional context is

Theorem 1.1.2 (Carathéodory). The convex hull of a subset S of R"
is precisely the set of all convex combinations of (n + 1) members of S.

Lemma 1.1.3. Let (x'),.; be a finite set in R" and y be its nonnegative
linear combination. Then there exists F, = F, with #F, < n, such that
y is a positive linear combination of (x');p, -

PROOF. Lety =Y, o:x’, and assume w.l.o.g. that o, > O for all ie F.

Step 1. If (x'),.r is linearly dependent, then 3F' ¢ F:y is a positive
linear combination of (x), ;. Indeed, there exist y;, i € F, not all 0, such
that 3, y.x' = 0. Without loss of generality Jie F:y; > 0 (other-
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wise, multiply by —1). Define 0:= min,. ., a/y. and consider

¥ = ier (& = Op)x".
Step 2. Repeat the procedure of Step | until a linearly independent
subset (x'),.y, is obtained. By linear independence #F, < n. [

PROOF OF THEOREM 1.1.2. Given a finite set (x'),, in R”, a vector
y(€eR") is a convex combination of (x'),, iff (y, 1) is a nonnegative linear
combination of ((x', 1)),.; [ with the same coefficients]. So

yecoS<[y=Y ax’, fF < o0, x' €S, 0,eR,, Y o; = 1]

ieF ieF

<[y, 1) = Y ax’, 1), #F < 0, x € S, ;€ R, ]

ieF

<[ ) =Y B 1), fFg<n+ 1,x°eS, B;eR,]

ieFg

<>{p= X Bx #Fp<sn+ l,x'eS, pieRys D fi=1]. O
ieFo ieFo

Corollary 1.1.4. Let S be a subset of R". If S is compact, then so is co S.

PROOF. Denote by A the set {xeR""!'|a>0, Y14 =1}, and
define the function

) n+1
S8 % x 8§ x A=R"
by f(x',...,x""! o) : = 31 a;x'. The function f is continuous on its
compact domain S x -+ x § x A, so its image f(S x -+ x § x A)

is compact. But the image is precisely co S by Carathéodory’s theorem
(Theorem 1.1.2). []

A finite subset (x'),_; of R" is called affinely independent if

[Yrx'=0,reR, ) r,=0]

ieF ieF
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implies r; = 0 for each i€ F; or, equivalently, if with an arbitrarily
chosen iy € F the set (x' — x");_p\,, is linearly independent. A subset S
of R" is called a k-dimensional simplex if there is an affinely independent
set (x');.p, with #F = k + 1, such that S = co(x'),.; those x’ are called
the vertices of S. Each point of a simplex is uniquely expressed as a
convex combination of the vertices. A simplex is compact and convex.
Frequently one can easily prove theorems on a compact, convex set
by first estab!’shing the results on a simplex.

1.2. Affine Subspace

A class of convex sets plays a central role in analyzing algebraic and
topological properties of (general) convex sets. A subset M of R" is
called an affine subspace if there exist a point m and a subspace W of
R" such that M = {m} + W. Given an affine subspace M, such a
subspace W is uniquely determined. Indeed,

Lemma 1.2.1. Let M be an affine subspace of R", say M = {m} + W
for a point m and a subspace Wof R". Then me M and W = M — M.

PROOF. The first of the conclusions is straightforward since 0 € W. If
x e W, then 2xe W.Som + x, m + 2x € M. Therefore x = (m + 2x) —
(m + x)€ M — M. This proves W ¢ M — M. Choose any m', m* € M.
There exist x' € Wsuch that m' = m + x', i = 1, 2. Then m' — m* =
x! —x2eW.Thus M — M c W. [

The dimension of an affine subspace M is defined as the dimension of the
unique subspace (M — M). A characterization of an affine subspace is

Theorem 1.2.2. Let M be a subset of R". The set M is an affine subspace
iff [x, ye M, reR] impliesrx + (1 — r)ye M.



