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PREFACE

T may fairly claim to have one qualification for writing a book
on dimensional analysis and that is a keen and long-standing
interest in the subject. This dates back to my student days when
I was greatly impressed by the examples of dimensional analysis
given in Poynting and Thomson's Text Book of Physics. How-
ever, my first publication on the subject was an article called *“ A
Review of Dimensional Analysis »* which appeared in Enginecring

aring June 1949, This aroused some interest in this country
and abroad and 1 felt encouraged to prepare an elementary book
on the subject. The present volume is the result.

A considerable number of books on dimensional analysis have
already appeared and the publication of another needs some
justification. This Justification is provided, I believe, by the fact
that thisis the first book in which dimensional analysis is discussed
in its proper context, namely, the theory of physical similarity.
The theory of similarity is treated with considerable thoroughness
in this book, although at an elementary level. The point of view
consistently adopted is that dimensional analysis is a particularly
convenient technique for obtaining the quantitative conditions for
similarity in behaviour of a family of similar physical systems and
the consequences of this similarity in behavionr. Throughout the
boolk I have used the phrase measure formula as a synonym for
physical dimensions and 1 consider that “ measure formula ™ is
much to be preferred because it is a simple and correct description
of the entity. There is a metaphysical smack about * physical
dimensions 77 which has misled and bamboozled many. A minor
innovation, first introduced in the article in Engineering already
referred to, is the use of the special symbol Q to indicate
dimensional equality, i.e. identity of measure {formulae. 1 have
been careful to avoid the abominable practice exemplified by
using the symbol Re for Reynolds number, written as if it were
the mathematical product of B and e.

The illustrative matter included in this book covers a fairly
wide field, hut there has been no attempt at exhaustiveness. A
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iv PREFACE
special chapter is devoted to the increasingly important applica-
tions of non-dimensional coefficients in engineering design. -

I am indebted to Professor B. Hague for reading Chapter 9
and to Miss E. D. Wyper for her patient work in typing the
manuscript.

Readers approaching the subject of the book for the first time
are recommended to begin by reading Chapters 1, 2 and 3, fol-
lowed by §§ 4.1 and 4.2 and Chapter 5. The remainder of the
text can then be read in any order convenient to the reader.

W. J. Du~can.
University of Glasgow.
1952.



oA Wy —

) (R S

re

(897

no

Appendir. * Similarity

e
R

CONTENTS

CHAPTER 1
INTRODUCTORY SURVEY

Aims of this Chapter

Similar Physieal Nysterns.

Sunilarity of Phenomena .

Units and Measures.

Dimensional Analysis

Summary

CHAPTER 2
UNITS AND MEASURES

Units and Physical Measurement

The Measure of a Physical Quantity and ltb T)epenvleu(e on

the Unit .
Fundamental and l)ou\.ed lrmLs

The Measure Formula of a Unit and the Ph\\x(al I)nnvnsmns

of a Quantity
Non-Dimensional Quantn.v

The Physical Dimensions of Dntewnhal Coeﬁx(lents and ot

Integrals

CHAPTER 3

GEOMETRIC AND KINEMATIC SIMILARITY

Introduction
The Basic Propnqmons of Geometr\

The Centre of Similitude

Corresponding Points and Lines in General
Similar Distributions of Physical Quantities
Kinematic Similarity

iR

in Non-Euclidean Geometry

CHAPTER 4
SIMILARITY IN NEWTONTAN DYNAMICS

Introduction

Similarity of the Motlons of Partxcles

Systems of Particles .

R,lgld Bodies and bystems of Such 2

Affine Transformations of Paths . $
v

PAGE

R

~S1 <

N ©

12

26
26
34
356



»
P\QWE‘

Tt
T @oe b3

.C’l Qe

o x

coccsnssss
sehnshmbio=

ST a9
ol B SO U S

%o o w
N N

CONTENTS

CHAPTER 5
INTRODUCTION TO DIMENSIONAL ANALYSIS

PAGE
The Principle of Dunensional Homogeneity F ; 41
Testing of Physical Equations and Formulae by Dimensional
Analysis . 43..

Determination of the I\lathe,nam al Form of Ph‘. sic &I Relatmn-
ships by Dimensional Ana,!y ais . % 44
Jhmwo of the Nature oi the Fundamentd] Umts . 53
The Cﬁnnentmn between Dimensional Analysis and bmulants 55
Application of Dimensional Analysis to the Organization of
Eixperiments and the Choice of Non-Dimensional Quantities 57
Specialization of the Conclusions of Dimensional Analysis 58
Reduction of Physical Eqoations to Non-Dimensional Forms 59

CHAPTER 6
FLUID MOTION

Incompressible and Inviscid Fluid . . . . . 63
Iu('on.presxlble Viscous Fluid . : : 5 s 66
Nigniticance of the Reynolds \umhex " . , . 72
Compressible but Inviseid Fluid 74
Compressible and Viscous [Mhaid ; : g ; 4 78
Motion in a Rarefied Cas : a . . . 80
Similar Flaids. . . . . . . 82
Periodic Phenomena in Fluids ; ®3
Aerodynarnie and Hydrodynaniic Deris atn B8 . . . 84
Cavitation . . . . . . . . . 85

CHAPTER 7
THE Pi THEOREM

Introduction . . . . . 87
Elementary Appr\,mh to the Theorem . ; : 87
Properties of HomoBeneous Funetions ‘ ; ; . 8h
Proof of the Pi Theorem. . 91
Systematic Application of the Theorem . . 93
Remarks on the APPlication of the Pi Theorewm . . 96

CHAPTER 3

HEAT
Hear Couduetion i Solids : s . . . 98
Ditfusion in General ‘ . . . 103
Free Convection . . . . . . . 105
Foreed Convection . . ; . : . 108



CONTENTS vil

CHAPTER 4
ELECTROMAGNETISM

SECTION PAGE

9.1. Electric Circuits . 109
9.2. Comprehensive Dmcussmn of Lhe Dmxtnbmnq nf Els\r tln
magnetic (\,ua,nt,lbxes . .11t
9.3. Unsteady Currents in Selid Cnnrluctnrs Skin Effect . 113
9.4. Radiation ; . 2 ; . . . : .o 114

CHAPTER 10
A CRITICAL REVIEW OF DIMENSIONAL ANALYSIS

10.1. The Nature of the Argument in Dimensional Analysis S
10.2. Need for a Thorough Appraisal of the Physical Problem . 118
10,2, Sensitive Systems . : . .11
10.4.  Uses and Value of Dlmensmnd] Ana,l) SIS . . . 120
10.5. 'T'he Choice of Non-Dimensional! Quantities ; ; . 122
10.6.  Limitations and Misconceptions . . : . . 122
10.7. Conclusions . . . . . . . . . 123

CHAPTER 11

THE USE OF NON-DIMENSIONAL
COEFFICIENTS IN DESIGN

11.1.  Introduction . 124
11.2. The Design of Screw Pmpellem . . . . . 125
11.3. Windmills : ; ; : R
11.4. The Specitic "peed of a Rotm‘\ Pum]) . : ; . 133
115, The Specific Speed of a Hvdraulic Turbine . . 134
11.6.  Performance of an Aircraft . ; 3 : . . 135
CHAPTER 12
DETAILED ARCGUMENTS BASED ON SIMILARITY
12.1 Introduction . 5 ; : : ; : . 140
12.2.  Deflexions of (‘anbl]exe] Beams . . . . . 141
12.3. Deflexion of a Membrane in Tension . . . 145
12.4. Attractions and Electrostatics . : ; : . . 149

INDEX . : : : ; : < . : ; . 152



CHAPTER 1
INTRODUCTORY SURVEY

1.1. Aims of this Chapter. The purpose of this chapter is to
give the reader a brief introduection ta the subjects which are dis-
cussed later in detail and to ac quamb him with the general outlook
and method of the book. The main theme of the book is dimen-
sional analysis and the aim is to discuss and exemplify this in its
proper context, w hich is the theory of physical similarity.

It is opportune to say that only very elomenfarv mathematics
is employed in most of the text. The occasional excursions into
“higher” mathematics are mainly in the examples, which the
reader may omit without losing the thread of the argument.

1.2. Similar Physical Systems. The idea of similarity first
acquired a precise meaning in geometry. In Euclidean geometry
two plane figures are similar when corres sponding angles are equal
and when (..orxespond.ng sides ave in a constant ratio ; such figures
have the same shape but they may differ in size and in position.
However, a physical body is more than a mere geometric figure as
it has mass and other physical attributes. Hence the physical
similarity of two bodies signifies more than the geometric
similarity of their forms. For e\'dmple the dynamical behaviour
of two bodies would only be similar, in general, if the densities at
geometrically correspondmg points were in a constant ratio.
Similarly, two bodies could only be similar as regards the conduc-
tion of heat if their thermal conductivities at geomebucall} corre-
sponding points were in a constant ratio. Accordingly we regard
two bodies or systems as similar only when their relevant physical
properties are similarly distributed. For further details the reader
should consult § 3.5.

1.3. Similarity of Phenomena. The concept of similarity in
phenomena applies both to the static and dynamic behaviour of
physical systems. " As a simple example of similarity in static
bebaviour let us consider a pair of similar beams similarly sup-
ported and Joaded. Then the deflected forms of the beams will be
geometrically similar when there is a certain relationship between
the linear diniensions, elastic moduli and intensities of loading of

1



2 INTRODUCTORY SURVIEY § 1.4

the two beams. When this relationship is satisied the deflexions
of the beams at geometrically corresponding points will be in pro-
portion to their linear dimensions.

When we pass on to consider similarity in unsteady or time-
dependent phenomena we have to introduce the idea of correspond.
g times.  'These are such that the time intervals measured from
suitable time origins or initial instants are in a fixed ratio. Con-
sider now, as a simple example, a pair of particles 4 and B moving
in a plane. We define their motions to he similar if it is possible
to choose initial instants such that, at corresponding times, the
gorresponding displacements (as vectors) arve in a fixed ratio. It
readily follows from this that the paths of the particles are
geometrically similar, but this by itsell does not secure similarity
of the motions.  For example, we could have 4 and B describing
the same curve but reaching corresponding points at timesrelated by

t, = ktp®,

and then the motions would not be similar. Whenever two
motions arve similar, the velocities at corresponding points of the
paths are in proportion : likewise the accelerations at correspond-
g points are also in proportion, and the same is true of the re-
sultant applied forees. This illustrates the important point that
when two physical systems are similar and behaving similarly, any
knowledge about one system also provides knowledge of the other
system.

itis of fundamental importance to recognize that the behaviour
of two similar systems is not necessarily similar. Thus, in the
example of beam deflexion already considered, the deflected forms
of the similar beams were strictly similar only when a certain
relationship was satisfied. The determination of the quantitative
conditions for similarity of behaviour is an essential part of the
study of physical similarity and these are most conveniently found
by the technique of dimensional analysis. The same technique
simultaneously establishes the consequences of similarity in
behaviour (see § 1.5).

1.4, Units and Measures. In § 1.2 we have spoken of similar
distributions of physical properties such as density and thermal
conductivity. We cannot determine whether such distributions
are similar or not until we have measured the quantities in ques-
tion and this requires two things :

(a) the selection and establishment of a unit,

(h) a technique of measurement by which the measure of the

guantity can be found,



§1.5 DIMENSION AL ANALYSIS 2

The pracess of measurement eonsists in a diveet or, more often,
indircet. comparizon with the anit aod the measure is the ratio of
the physical quantity to the chosen unit. The measure is thus
a number and is not itself & physical quantity.

1.5. Dimensional Analysis. Dimensional analvsis is based on
the fact that an equation between the measures of physical quan-
tities is dimensionally honmogeneons.  The physical dimenstons or
measure formula of a physical quantiiy is an expression showing
the dependence of the magnitude of the proper unit of that quan-
tity on the magnitudes of the fundamental units. For instance,
the measure formula of area is 7.2 where 1 represents the measure
of a new unit of length in terms of the oviginal unit of length, for
the new consistent unit of area. which is a square whose side con-
tains L of the original units of lengih, contains L*? of the original
nnits of area. The principle ol dimensional homogencity states
thal every term in the equation has the same measure formula.

Dinensional analysis is 1o be recarded as a special and con-
venient  technigue tor finding the (unantitative counditions for
similarity of behaviour together with the consequences of this
similavity. It is important for the reader to andersiand that the
conclusions drawn from dimensional analysis can always be estub-
lished divectly. It is the ease and convenience of the process of
dimensional analysis which gives it its importance.

The result of a dimensional analysis can always be put in the
form that certain non-dimensional quantities are functionally
related. A non-dimensivnal quantity is one whose measure is
independent of the sizes of the fundamental units © for exomple,
the coefficient of solid friction s 1s non-dimensional. for 1t is the
ratio of two forces whose measures vary in proportion whei. the
fundamental units are altered. Especially in engineering, we are
interested in one particular physical uantity whicl is of special
importance, e.g. a particular foree which causes stresses in a body.
By convention the non-dimensional (uantity containing the
measure of this quantity and which can be used to calculate it i
usually ecalied a non-dimensional cocfficient, whereax the non
dimensional quantities on which it depends are called non
donensional parameters.  The Reynolds number (see §§ 6.2 and
.3) is a famous example of a non-dimensional parameter.  Non
dunensional coefficients and parameters are of great ntility i
f-w*ilw(-rinrr design (see (‘lmp, 11). Dimenstonal analysis ostab

ishes the ?azrx' of comparizon. which relate the results ol experi
m(ntﬂ on models with those obtaimed with their [ull-scale
prototvpes,




4 INTRODUCTORY SURVEY § 1.6

One important application of dimensional analysis is to the
planning of experiments (see § 5.6 and Chap. 10). The guidance
provided by dimensional analysis permits the greatest amount of
useful information to be obtained from a programme of experi-
ments and results in great economy of effort. Another valuable
application is to the checking of equations and formulae (see § 5.2).

Non-dimensional quantities are sometimes called numerics.
This term is not used in the text, but the reader may adopt it if
he pleases.

1.6. Summary. The idea of physical similarity is based on the
quantitative correspondence of two or more physical systems.
When systems arve simnilar and behaving similarly. the quantitative
relations for one can he derived from those holding for another.
This is of particular value in relating measurements on a model
with the corvesponding quantities for its full-scale prototype.
Dimensional analyvsis is a particularly convenient technique for
establishing the quantitative conditions for similarity and the
consequences of similarity.

Note on the Use of Functional Symbols.

Throughout this book general functional symbols, such as
fC )and F( ), merely stand for undetermined functions of
their variable or variables. Thus the same functional symbol
will represent different functions, according to the context.



CHAPTER 2
UNITS AND MEASURLES

2.1. Units and Physieal Measurement. A body of organized
knowledge worthy of the name of science may exist even when
techniques ot measurement have not been evolved ; it is then
a branch of natural history in the sense of the phrase introduced by
Kelvin, However, techniques of measurement have in fact been
established throughout the field of physical science and nearly all
physical experimentation consists of measurement. The pro-
cesses of measurement are multifarious and their detailed discus-
sion does not concern us here, but the result of a measurement is
always a number which expresses the ratio of the physical quantity
measured to the chosen unit of like physical nature. Measurement
thus involves firstly the selection and establishment of a unit and
secondly the development of @ process of numerical comparison with
the wnit.  Once the unit has been selected, the measure of a given
physical quantity becomes a unique number.

As we shall see (§ 2.3), units are either fundamental or derived.
The size of a fundamental unit is largely arbitrary, but in practice
a tundamental unit is a historical product whose magnitude has
remotely been based on human convenience. This is very clearly
shown by the example of the foof as a unit of length. As their
name indicates, derived units are not selected arbitrarily but
are ohtained by some definite process from the fundamental
units.

By the establishment of a unit we mean the setting up of the
unit as a constant physical standard* of such a nature and form
that comparison with physical quantities of the same kind can be
performed easily and, above all, accurately. It is to be under-
stood that absolute accuracy is necessarily unattainable in
physical measurement, but the fundamental standard must be
such that the comparison of other quantities with it can be per-
formed with the highest attainable accuracy. Absolute constancy
of the standard is a theoretical requirement which can never be
perfectly attained but, as physical knowledge increases, the con-
stancy of standards, such as those of length and time, is gradually
improved. To be of practical value a unit must be accepted by

* The standard may be a fraction or multiple of the unit.

~-
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6 UNITS AND MEASURES § 2.2

those concerned with its use and, in fact. the fundamental units
are legally established in civilized countries.

It cannot be too strongly emphasized that we never calculate
with physical quantities but always with their measures, which are
numbers. The symbols which appear in the mathematical
equations related to a physical problem or process likewise repre
sent numbers (measures. coeficients, indices). cperations with
numbers or equatity. To avold circumlocution it is usnal to say
that such and such a symbol 15 7" the physical quantity in ques
tion, but it shouid never be torgotten that the symbol represents
the number which is the measure of the physical quantity in terms
of a selected unit.

2.2, The Measure of a Physical Quantity and its Dependence on
the Unit. Let the symbol ¢ vepresent some definite physical
guantity, and let 7 represent a unit, necessarily of like physical
nature, in terms of which @ can be measured. Then the wmeasire
g of ) when U is adopted as the unit is the wiinber which expresses
the ratio of @ to [/, The relation between (J. U and ¢ ¢ be
vepresented symbolically by

9] g, . . . o221

where the symbol  indicates phvsical egualivy. It is to be noted
that this is not an algebraic equation @ i an algebraic equation
the sign of cquality iz = and indicates the equality of the pair of
numbers connected by the symbol.  We shall aiways use the
symbols . and with these meanings.

Suppose now that we change the unit from {/ to U/, Sinee
U’ is necessarily of the same physieal nature as {7 it can be
measured in terms of . Let L be the measure of (/" with {7 as
unit.  Then we have

urooR. . L 2

Suppose also that ¢ is the meastve ol @ with 7 as unit,
Then
(4  E . . |

x s
gk . . .o (22

)

3
4)

[

'

by (2.2,2). Equations (2.2.1) and (2.2.4) both express @ in terms
of the unit 77 and, since the measure of ) with a given unit is
unique, we must have

g =gl - . . . (2.2,5)

Here we have used the symbol == since this equation mdicates
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the equality of two numbers. The equét-ion can bhe written

alternatively
a
g" = 1 . . . . {2.2,6)
Thus we see that when we aiter the unit of measurement in
the ratio k£ :1 we concurrently change the measure of a given
physical quantity in the ratio 1 :7%4.  This very simple fact is
{undamental for dimensional analysis.

2.3. Fundamental and Derived Units. Let us begin by con-
sidering the selection of a unit of area and let us suppose that
a unit 0! length has already been chosen. A possible unit of area
is that of a square whose side is the unit of length and this is, in
fact. the most convenient unit of area. T.et us take a rectangle
whose sides have the measures ¢ and b, which we may here
assume to be integers. Then we can divide the rectangle into
a b squares each of unit side and. if 4 is the measure of the area
of the rectangle, we shall accordingly have ,

A ==ab. . . . . (2.3,1)
The important point is that the measure of the area is simply the
product of the measures of the sides. Now, if we had taken an
arbitrary unit of area, we should have had to write

A = kab, . : . . {2.3.2)

where 4 is a numerical coefficient. As a concrete instance, if the
unit of length is a foot and the unit of area is a square foot, then
equation (2.3,1) is valid. But if the unit of area is changed to the
square yard while the unit of length remains the foot we get
A = lab, . . . . (2.3,3)
The square foot as a unit of area is said to be consistent with the
foot as a unit of length.  Also this unit of area is called a derived
unit since it can be constructed from a knowledge of the unit of
length, which is then regarded as being a fundamental wnit.*
Couvsistent derived units sufficient to cover all the quantities
arising in a particular science can be constructed from a set of
fundamental units by making use of the physical relations between
the guantities. The equ.ltlona connecting the measures of the
quantities are then free from arbitrary coefticients.t Thus the
unit of volume is that of a cube whose side is the unit of length,

* It would be eqgually logieal to take the unit of area as fundamental
and to derive from it a consistent unit of length.

t Non-arbitrary numerical multipliers sometimes oceur, e.g. in eleciro-
magnetism.



8 UNITS AND MEASURES §2.3

and if V' is the measure of the volume of a rectangular solid
(parallelepiped) whose edges have the measures @, b, ¢, then

V = abc. . : . . (2.3,4)

The consistent unit of velocity is such that unit distance is
moved in unit time. Suppose, then, that a distance whose
measure is [ is described in a time interval whose measure is ¢.
Then, if the motion is uniform, the distance whose measure is [/
will be described in unit time and the measure of the velocity is
therefore //t. A body whose mass is unity and whose velocity
is unity has unit momentum. Then if the measure of the mass
of a body is 72 and the body moves uniformly through a distance
whose measure is [ in a time whose measure is ¢ the measure of its
momentum is ml/¢.

The unit of force is such that it imparts unit momentum to
a body in unit time. Then a force whose measure is f when acting
upon a body whose mass is of measure m imparts to it momentum
whose measure is f or velocity whose measure is f/m in the unit
of time. In other words, this force imparts an acceleration to the
body whose measure is f/m.

In the manner sketched above we can establish the definitions
of the consistent units of all the quantities which arise in
mechanics, based on the units of length, time and mass, which
are treated as fundamental. There is, however, no necessity to
use this particular set of fundamental units. We could, for
instance, take the units of force, length and time as fundamental
and define the unit of mass as such that unit force imparts unit
acceleration to it.

The great advantage of adopting a consistent set of units is
that the equations representing symbolically the relations between
the measures of the quantities which appear in any physical
problem hold good quite irrespective of the choice of the funda-
mental units. Equations related to physical problems and which
possess this property have been called complete by Buckingham.
Incomplete equations are sometimes used by engineers but,
although the equations may be valid in a particular field of applica-
tion, they are not applicable universally. As an example, in deal-
ing with hydraulic forces we may omit the density of the fluid
from the formulae on the ground that the density of water is, with
sufficient accuracy, a mere constant. The resulting equations
will be incomplete : they are valid for water but are not valid fov
any fluid whose density differs from that of water.

There is no compulsion to use a system of consistent units, and
anyone making physical calculations has complete liberty to
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adopt whatever units he pleases. However, the chances of error
are certainly greatly increased when inconsistent units are used,
and the communication of results to others in a correct and
unambiguous manner is rendered more difficult.

2.4. The Measure Formula of a Unit and the Physical Dimen-
sions of a Quantity. Let us take a new unit of length equal to
L of the original units of length, i.e. L is its measure in terms of
the original unit. The new consistent unit of area is a square
whose side contains /. of the original units of length and it there-
fore contains L? of the original consistent units of area. Thus
the new unit of area has the measure L2 in terms of the original
unit.  We shall express this by saying that the consistent unit
of area has the measure formula L2

Again, let us take a new unit of time containing 7' of the
original units of time. Then the new consistent unit of velocity
is such that £ of the original units of length are described in 7' of
the original units of time. Therefore the new consistent unit of
velocity has the measure L /7" in terms of the original consistent
unit, so the measure formula of the consistent unit of velocity is
LT-1. Similarly, if the new unit of mass has the measure M in
terms of the original unit of mass, the new consistent unit of
momentum will have the measure formula MLT 1.

The foregoing examples lead us to the definition : the measure
Jormula of a unit is the mathematical expression for the measure
of the new consistent unit in terms of the original consistent unit,
the variables being the measures of the new fundamental units in
terms of the original fundamental units. We shall also say that
any physical quantity has the same measure formula as the
consistent unit in terms of which it can be measured. By
convention. the measure formula of a quantity, so defined, is
also called the expression for the physical dimensions of the
quantity.

Since the choice of the fundamental units is to some extent
arbitrary, as pointed out in § 2.3, the physical dimensions of a
quantity are to that extent arbitrary.

Table 2.4,1 gives the measure formulae or physical dimensions
of the quantities commonly appearing in mechanics, where the
fundamental units are chosen to be thdse of mass, length and
time. In the formulae M, L and 7' stand for the measures of the
new units of mass, length and time, respectively, in terms of the
original units.

It is convenient to have a special symbol to denote dimensional
equality and we shall adopt @, that is the letter D turned on

P.9.D.A, B



10 UNITS AND MEASURES §24

its side* ; it is easy to remember that D stands for dimensional
equality. Thus we shall have, for example,
Force oo MLT-*
Work @ ML
Moment of inertia @ Mass < Area.
It may be well to emphasize that O does not indicate either
numerical equality or physical identity, but merely identity as
regards measure formulae.. Thus if we have

MalpTe @ MeIATY

then a =
b=p
and € ==

The symbol A will be consistently used throughout this book

We have pointed out in § 2.2 that the measure of any given
physical quantity is inversely proportional to the magnitude of
the unit in terms of which it is measured. Suppose then that new
fundamental units are taken whose measures are M, L and 7" in
terms of the original units of mass, length and time, 1'e%pect1vel\
The magnitude of the new consistent derived unit is equal to its
measure formula with these values substituted and the new
measure of the given quantity is therefore equal to the original
measure divided by the measure formula. We thus have the rule:

New measure — original measure divided by the measure
formula of the appropriate unit, with the numerical values of
M, I, and 7' substituted, where these are the measures of the
new fundamental units in terms of the old.

1f the fundamental units adopted are other than mass, length
and time the same rule holds, mutatis mutandis.

The foregoing rule expresses the fundamental use ot a measure
formula and we shall illustrate this by a few examples.

ExamerLe 1. lixpress the poundal (the consistent unit of force
when the units of mass. length and tiine are the pound, foot and
second, vespectively) in terms of the dyne (the consistent unit of
force when the units of mass, length and time are the gram,
centimetre and second, respectively).

The data are M = number of grams in one pound

= 4536

L = number of centimetres in one foot
= 30-48

T =1 (unit of time unchanged).

* This symbol was used by the author in = A Review of Dimensional
Analysis 7, Engineering, pp. 533 and 556, June, 1949,



