ELECTRONICS
WORLD

+ WIRELESS WORLD

Howard Hutchings

173
/)

Interfacing with C

Howard Hutchings

Butterworth-Heinemann Ltd
Linacre House, Jordan Hill, Oxford OX2 8DP

&A member of the Reed Elsevier plc group

OXFORD LONDON BOSTON
MUNICH NEW DELHI SINGAPORE SYDNEY
TOKYO TORONTO WELLINGTON

First published 1995
© Electronics World + Wireless World 1995

All rights reserved. No part of this publication

may be reproduced in any material form (including
photocopying or storing in any medium by electronic
means and whether or not transiently or incidentally

to some other use of this publication) without the

written permission of the copyright holder except

in accordance with the provisions of the Copyright,
Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd,

90 Tottenham Court Road, London, England W1P 9HE.
Applications for the copyright holder’s written permission
to reproduce any part of this publication should be addressed
to the publishers

British Library Cataloguing in Publication Data
Hutchings, Howard

Interfacing with C

1. Title

004.62

ISBN 0 7506 2228 8

Library of Congress Cataloguing in Publication Data
Hutchings, Howard.

Interfacing with C / Howard Hutchings.

p. cm.

Includes bibliographical references and index.

ISBN 0 7506 2228 8 (pb)

1. C (Computer program language) I. Title.
QA76.73.C15H88 1995
005.7" 1262—dc20 94-44832

CIP

Typeset by Vision Typesetting, Manchester
Printed and bound in Great Britain by
Biddles Ltd, Guildford and King’s Lynn

Preface

This book is about interfacing a personal computer using C, currently the
language of choice for many real-time applications. Anyone who is interested in
ports, transducer interfacing, analogue-to-digital conversion, convolution, digital
filters, Fourier transforms, Kalman filtering or digital-to-analogue conversion
will benefit from reading the book or selectively dipping into its pages. My
intention is to provide a practical introduction to real-time programming with a
generous collection of tried and tested programs. In most cases, the principles
precede the applications in an attempt to provide genuine understanding and
encourage further development.

Rather than design and build interface circuits, I chose to use the Blue Chip
Technology data acquisition and control cards, which are port mapped and may
be driven by any language — simplifying the task of interfacing. I recommend
readers to buy good quality purpose-built hardware for this application; there
are numerous manufacturers. Remember, the I/O card is where your computer
and the vendor’s board meet the outside world. Features to look for usually
include a multi-channel A-to-D converter with one or more D-to-A converters
and probably a collection of ports.

The pace of the book is gentle and intended to be user-friendly, the text
encouraging you to run the programs and experiment with C. This form of
motivation works; engineering students gain much from hands-on experience
and are able to climb steep learning curves with the minimum amount of
assistance. Inevitably, some of the programs become rather lengthy and,
wherever possible, the fundamental construction is presented separately, an
accompanying set of source code being available on disk. Most programs exist to
be rewritten and if, after working through the examples, you cannot do better, I’ll

- bedisappointed. Mathematics is always a problem, but engineering mathematics
. is usually just a shorthand for the physics; successful signal processing using a PC
will only come after genuine understanding of the reality behind the abstraction.

Throughout, the emphasis is on applications, all the programs in this book
having been tried and tested on a Compaq 386, compiled using Microsoft C
version 5.1. No single book can possibly raise all the questions or supply all the

. answers; at best, it should provoke further thought and indicate suggested study
* paths. For this reason, I have scattered references liberally throughout the text to

; assist the serious reader.

viii Preface

Above all, interfacing and programming with C is fun. C allows you to write
efficient and readable code which gets very close to the target machine. Try your
hand at the examples and enjoy making your computer solve the problems
without picking up a soldering iron.

This book could never have been completed without the cooperation of many
people. I am particularly indebted to the technical staff at Humberside University,
who built many of the practical circuits, and to those students whose curiosity
forced me to write with clarity so that I might explain what was possible. It’s
always a pleasure to thank the editorial staff at Electronics World + Wireless
World, who accepted my eleventh hour fixes with tolerance and good humour.
Finally my special thanks go to my wife, Margaret — a constant source of
encouragement, who accepted with equanimity the separation brought about by
this project.

Howard Hutchings

Listings in this book are available on disk from the editorial offices of Electronics World + Wireless
World, Tel. 0181 652 3614.

Contents

Preface

o S 9 N Ut A W ON ==

e
Lo

12
13

An introduction to C
Loops and data conversion
Data acquisition using C
Essential mathematics
Convolution

Digital filters

Fourier transforms
Correlation

Kalman filters

Data conversion

Investigating the spectral and time-domain performance of
z-transforms using computer-managed instruction

Introducing audio signal processing using C

Standard programming structures

Appendix 1

Appendix 2: Listings of programs described in Chapter 11

Appendix 3: Listings of programs described in Chapter 12

Glossary

Index

vii

19
35
51
63
80
111
134
158
177

203
221
236
258
261
272

278
281

1 An introduction to C

C is a medium-level programming language developed by Dennis Ritchie of Bell
Laboratories and implemented there on a PDP-11 in 1972. Historically, C was
preceded by B, a language written by Ken Thompson in 1970 for the first UNIX
system run on the PDP-7. B, in turn evolved from the Basic Cambridge
Programming Language BCPL, developed by Martin Richards at Cambridge in
1967 as a systems programming language.

The C Programming Language (1978), by Kernighan and Ritchie is the
definitive text. Although it is not adopted as an international standard, it is
generally accepted as standard C. This original and enigmatic text is not an
introductory programming manual; it assumes familiarity with basic program-
ming concepts such as variables, assignment statements, loops and functions —
and is probably best read once you have mastered C. The increasing popularity of
the language has encouraged numerous less esoteric works, many attempting to
simplify the original Kernighan and Ritchie text. Each of these introductions has
its relative merits; no doubt you will make your own choice and find what suits
you best. I have included a short bibliography of texts which I found particularly
useful.

Properties and background

The versatility of C allows it to be run on personal 8-bit computers or the Cray-1,
one of the worlds fastest computers. Designed to make programs fast and
compact, this portable assembly language was used to program the remarkable
computer-animated sequences in Return of the Jedi and Star Trek II. In many
cases programs written in assembly language for ‘efficiency’ have been outper-
formed by comparable programs written in C. Despite being a medium-level
language it still embodies advanced structural programming features normally
associated with high-level languages such as Pascal. C is a concise language and
small can be beautiful when programming. It has a particularly rich set of
operators, ideal for configuring programmable input-output devices and flag
testing.

The purpose of this book is to teach those aspects of the C language you will
require to interface effectively. Our strategy is to teach C program constructions
as we go along, presenting the information in ‘byte’ sized packets in an attempt to

2 An introduction to C

make it more attractive and digestible. We have tried to organize the programs in
a progression of complexity, so that each program presents a new feature of C or
an alternative program construction. Where possible the construction is illustrated
with a flowchart and the program liberally littered with comments to aid
comprehension.

All the program examples presented have been tried and tested on an IBM PC
clone using a Microsoft C compiler version 5.1. The emphasis is on effective
interfacing rather than elegant programming. Where possible I have included
alternative program constructions in an attempt to demonstrate the flexibility of
this remarkable language. The text encourages you to run the programs and
experiment with C. Inevitably some of the programs become lengthy, which tends
to discourage even experienced programmers! To maintain interest the funda-
mental construction is presented separately. Most programs exist to be rewritten;
and if after working through the examples you cannot do better, I'll be
disappointed.

Rather than design and build our own interface circuits we chose to use the
Blue Chip Technology data acquisition and control cards. These plug-in cards
are port mapped and may be driven by any language, simplifying the task of
interfacing — allowing us to concentrate more effort and attention on the
programming aspect of the problem.

Fundamental interfacing

The primitive concept of sending bit patterns to the outside world can produce
remarkably sophisticated electronic projects with the minimum of hardware,
principally because much of the problem is solved using creative software.
Imagine an Exocet missile skimming low over the waves as it homes in on its
target. On board, the computer receives data from the missile’s transducers
through the input port. The data is processed in real time and the result used to
control the trajectory in anticipation of a successful strike. Despite the complexity
of the task the fundamental problem can be reduced to that of reading ones and
zeros from a peripheral connected to an input port — processing the data and
finally writing the manipulated data to the outside world through an output port.

Here’s the catch: how do you find the available I/O space; format the control
word; control the I/O card; process the data? Unfortunately, unless you are an
experienced assembly language programmer these objectives represent formidable
assignments. Instead of aiming for ‘the best possible design’, we will be content
with the ‘best design possible’ and use C to get very close to the target machine.

Programmable input—output devices

Communication between the real world and a personal computer is through the
ports of the peripheral interface adapter (PIA) or versatile interface adapter
(VIA). These relatively complex and specialized chips can be programmed to

An introduction to C 3

behave as input—output devices and effectively buffer the data bus from the
controlled peripheral, thereby protecting the system. Employing memory mapped
input—output ensures that the CPU ‘sees’ the ports simply as a collection of
addresses, indistinguishable from any address in memory. Provided the
‘input-output device is configured carefully, data transfer can be made almost
routine. In effect the operation of these devices are analogous to constructing
electronic circuits without ever using a soldering iron, simply because the
necessary connections are made by placing the required bit patterns in the
appropriate control registers.

Unfortunately each microprocessor manufacturer appears to have adopted a
particular programmable input-output device to suit their own system. As with
microprocessor instruction sets, familiarity with a particular device tends to
make the user patriotic and reluctant to change. Despite the unique features of
many of these devices, certain characteristics remain common, making the
transition from the comparatively primitive programmable peripheral interface
PPI such as the Intel 8255 to the complex and complicated MOS Technologies
6522 VIA relatively painless.

To explain the adopted interfacing protocols with any clarity it was necessary
to be chip specific. Unfortunately this dates the text, although the fundamental
concepts will remain current for some time to come.

8255 programmable peripheral interface

The Intel 8255 programmable peripheral interface PPI in Figure 1.1 is a fairly
simple parallel port chip. This rather venerable design was one of the earliest
interface adapters on the market, originally intended for use in the 8008 and
8080A systems, but now enjoying a resurgence of popularity on account of the
ease with which it interfaces to the IBM PC bus, which is effectively the bus for the
8088 processor operated in the ‘maximum mode’. Large-scale integration ensures
that parallel input-output operation can be concentrated into a single 40-pin
package. Making the chip software configurable offers the flexibility of deferred
design — the values placed in the control register determine which groups of lines
are inputs and outputs.

Communication between the microcomputer and the real world is through the
24 input—output lines. These are divided into two groups of eight lines, data ports
A and B, together with two groups of four lines — forming port C. Port C can
either be a data port or a control port depending on the mode selected.

In mode 0 ports A and B operate as two 8-bit ports, whilst port C is operated as
two 4-bit ports. This mode supports simple data transfers without hand-
shaking.

In mode 1 ports A and B may be configured as either input or output. They
cannot be defined individually on a line by line basis as with the ports of certain
other programmable I/O devices. Six bits of port C are set aside for handshaking
and interrupt control.

4 An introduction to C

8255 Block diagram

s
Power —>+5V Group A 0
supplies GND Group A | 1/

Rt ery . v 0] Swrmnsmne] pmm— p?g)A K—pa, PAg
Group A
/0
pedd K==t PontC :,'),;,(:17';@4
Bidirectional upper (4)
data bus Data ¥
00— bus K V)
buffer 8 Bit internal T
data bus 170
Port C rast S PC.PCo
lower (4) b
RD—>9 |
i g il Group B e 1/0
write wsormra] st
o control Control Pc(nat)B PB,PBg
Ass— "] |logic
Reset — l L g
es ——J
(a)
Pin configuration Pin names
pazdt \/ aoperas D;—Do [Data bus(Bi-directional)
Pa2[]2 39[1PA5 =
pa1 03 3shPae ?fset Reset input
PAO[]4 37[OPAT Ccs Chip select
RDO5 36 JWR == s
tse 35[Reset dhck Raodisowt
GNDO 7 340D WR Write input
A1 Eg g: 331 AO,A1 | Port address
AO 2 -
pc7di10 31 303 PA7-PAO | Port A(bl')
pee]1t, ;8255 .30 s PB7-PBO | Port B(bit)
pcs12 29[0Ds -
pcal13 28[10g PC7-PCO | Port C(bit)
pcod14 27D, Vee +5 Volts
PCc1015 26 Vee
pc216 25[1PB7 GND 0 Volts
PC3017 24[1PB6
PBO[]18 23[0PBS (c)
PB1]19 22[1PB4
(b) PB2020 211PB3

Figure 1.1 (a) Intel 8255 programmable port used as a programming model in the early stages of this
series. (b) Pin configuration. (c) Pin names

An introduction to C 5

Mode 2 uses the eight lines of port A for bi-directional data transfer.
Handshaking is provided by the five most significant bits of port C.

Programming the 8255

The programming model of the 8255 consists of four 8-bit registers, ports A, B
and C and a control register. Depending upon where you locate the device in the
available I/O space, the register model appears as four contiguous addresses as
shown in Figure 1.2.

The operation of the I/O ports is controlled by the format of the 8-bit word
written to the control register, located at address (Base + 3). The control word
format is shown in Figure 1.3. Simple input-output operations, without
handshaking, require the control word to be configured in mode 0. Table 1.1
represents the mode 0 — port definition chart; which should be an effective
source of reference when consulting the example programs.

The Blue Chip data acquisition system, used here for the purpose of
description, provides 48 I/O lines by port mapping two 8255s on the same plug-in
card. The ports are terminated in a single 50 way connector at the rear of the IBM
PC. Bus contention is avoided by making the base address selectable in the range
300H to 3FFH, the prototyping region.

IBM PC bus

As shown in Figure 1.4 the PC-XT bus is an 8-bit data bus implemented in a
62-pin edge connector. Many of the bus signals are used for direct memory access
and interrupt handling and may be ignored at first reading.

The address bus lines AO-A19 can address up to 1 Mbyte of address space.
Although the 8088 processor can use all 16 lines AO-A15 to access 64 Kbyte of
I/O space, only 10 lines AO-A9 are actually decoded restricting the number of
available ports to 1024. Many of the available I/O locations have been adopted
by IBM for their own purposes, these assigned locations being shown in Table
1.2. Despite the crowded nature of the I/O space there are several ports available,
particularly in the prototype region 300H-31FH. However, certain peripheral

Figure 1.2 8255 programming model

6 An introduction to C

Group B L

Port C (lower)
1 =Inpuf
QO =Output

Port B
1 =Input !
0 =Output i

Mode selection
0=Mode O
1 =Mode 1

Port C (upper) |
1 =Input ¢
O =Qutput .

Port A

1 = Input .
0= Output- e
Mode selection |
00=Mode O

01=Mode 1
1X=Mode 2

Mode set flag |
| 1=Active '

Figure 1.3 Control word bit function for 8255

board manufacturers have monopolized some of these addresses for their own
products, which means you must look elsewhere for 1/O space. Clearly one
simple solution is to use unoccupied assigned I/O locations.

Accessing specific memory locations with Basic and C

Before you can interface successfully with C, it is first necessary to access data
from specific memory addresses. Rather than ruthlessly present the required C
constructions, we prefer to reiterate the familiar Basic commands and program
structures for the purpose of comparison.

GW-Basic run on the IBM PC supports both memory-mapped 1/O using Peek

An introduction to C 7

Table 1.1 Mode 0 port definition chart. In this mode, simple input and output operations
for each of the three ports are provided. No ‘handshaking’ is required; data is simply
written to or read from a specified port

Control word bits Group A Group B
Port C Port €
No. D, D, D; D, D; D, D, D, Port A (upper) PortB (lower)
Bl 0 0 0 0 0 0 0 Output Output “Output ° Output
Bl 0 0 0O 0 0 0 1 Output Output Output Input
Sl 0 0 0 0 0+ 1 0 Output :Output Input Output
e 0 0 0 0 0 1 1 Output *Output “Input Input
Bl 0 0 0 1 0r0::0 Output+ Input Output Output
s 0 0 0 1 0 0.1 Output Input Output Input
s 0 0 0 1 00 1% 0 Output Input Input Output
Bt 0 0 0 1 01" 1 Output ' Input Input Input
B 0 0 1 0 00 0! Input Output Output Output
B 0 0 1 0 ‘000" 1 :Input Output Output Input
B 0 0 1 0 0.1i:0 Input Output Input Output
B 0 0 1 0 0701 1 Input Output Input Input
B 0 0 1 1 0:'Q 0::Input Input Output Output
B0 0 1 1 040 1% Input Input Output Input
B 0 0 1 T~Q9i13 0" Input Input Input Output
B 0 0 1 1 0N hostchvdnput Input Input Input

and Poke, together with port-mapped I/O using the Inp and Out commands. C
provides a similar construction, the former requiring the use of pointers — which
are tricky until you get used to them. However, pointers cannot be used to access
I/O devices in computer systems such as the IBM PC which have a separate
address space for I/O devices. IBM has allocated addresses in the range 768 to
799 (denary) specifically for I/O prototyping. See Table 1.2.

C compilers for machines with this type of I/O system usually include library
functions, which allow direct access to the port-mapped I/O space. For example,
the Microsoft C compiler version 5.1 provides the functions inp() and outp() defined
in the header file conio.h. By incorporating the additional compiler directive
#include <conio.h> these functions can be made part of the program as it is
compiled.

Accessing data from specific memory locations is central to the task of
interfacing, no matter which language is employed. For this reason we feel it is
appropriate to include extracts from the GW-Basic and Microsoft C programmers
manuals, for the purpose of comparison.

Believing that one picture is worth a thousand words we intentionally include
the lighthearted Figure 1.5 as a reminder of how to access port-mapped data
using GW-Basic and Microsoft C. These illustrative programs do not include any
initialization protocols.

8 An introduction to C

Figure 1.4 IBM PC bus structure

Reading the contents of /O space using pointers

My initial objective was to demonstrate how to write a C program to read and
display the contents of the I/O address space shown in Table 1.2. Two options
were available: either I pedantically advertise the necessary C constructions
before presenting the program; or I present the program and encourage you to
run it and then demonstrate the appropriate constructions. I chose the latter
approach in the belief that evidence of a successful program will provide a sense of
direction and encourage you to read the subsequent text more critically. Beware,
Listing 1.1 is not an elementary program, it contains many advanced features.
Examine the fine detail after reading Chapter 1 — then improve upon it!

Run Listing 1.1 after first linking and compiling. The program responds by
asking you to input the denary base address from the keyboard. Consult Table
1.2 for suitable values of 1/O addresses. The result will be the contents of 16
contiguous addresses starting with the Base, displayed on the monitor. Now

An introduction to C 9

Table 1.2 Address space for IBM 1/O devices

Hex address range Use

000-00F DMA chip 8237A-5

020-021 Interrupt 8259A

040-043 Timer 8253-5

060-063 PPI 8255A-5

080-083 DMA page registers

0AX NMI mask register

0CX Reserved

0EX Reserved

200-20F Game control

210-217 Expansion unit

220-24F Reserved

278-27F Reserved

2F0-2F7 Reserved

2F8-2FF Asynchronous communications (secondary)
300-31F Prototype card

320-32F Fixed disk

378-37F Printer

380-38C* SDLC communications

380-389* Binary synchronous communications (secondary)
3A0-3A9 Binary synchronous communications (primary)
3B0-3BF IBM monochrome display/printer
3C0-3CF Reserved

3D0-3DF Colour/graphics

3E0-3E7 Reserved

3F0-3F7 Disk

3F8-3FF Asynchronous communications (primary)

*Since addresses overlap, you cannot use both communications options at once.

enter a new Base address and watch the program repeat the procedure.
Unoccupied 1/O locations may be identified by the contents being set to zero.

C program development

The C language is compiled. Program statements, i.e. the source code, are not
executed directly as with interpreted languages. Instead they are written to a file
called the source program, using a text editor or word processor. The source
program is then processed by the C compiler. The output from the compiler is the
machine code equivalent of the source program: the object program. Incorporat-
ing certain external modules using the link program results in an executable
program. The flowchart for the compilation/link process is shown in Figure 1.7.

It is rewarding to examine the general structure of all C programs before
becoming involved in the fine detail of interfacing.

10 An introduction to C

Example 1.1
10 REM PEEKING 1/0

20 P = INP (768):REM READ PORT A

30 PRINT P

Example 1.2
10 REM POKING 1/0

20 OUT 769,50:REM WRITE PORT B

Example 1.3

[ERARNERERRNARRRRRR SRR N AR

* PEEKING I/0O ADDRESSES *
B Ty
#include <stdio.h>
#include <conio.h>

main()

unsigned char p;
p = inp(768);

printf(“%d_n"",p);

}
Example 1.4

Vihobodddobodobiboddbobddbedbbbodd

* POKING WITH C *

#include < stdio.h >

#include <conio.h>
main()

{
outp(769,50)

WRITE TO PORT B

Figure 1.5 Peeking and poking

Listing 1.1
/ :

* READING 1/0 ADDRESSES *
* USING POINTERS *

/
#include <stdio.h>
main()

int *port_x;

unsigned char contents;
int i,j,x;

/*

*port_x IS A POINTER DECLARED AS
AN INTEGER. THE VARIABLE contents
IS AN UNSIGNED CHARACTER. THE
VARIABLES i,j AND x ARE INTEGERS
o
start:printf(“‘Input base address’’);
scanf(*%d"”,&i);

/*

ENTER A DENARY INTEGER i FROM THE
KEYBOARD

*
for(j = i;j <= 16 + i;j+ +)
Lusag

Xz

port_x = (int*)j;

/*

THIS CONSTRUCTION ESTABLISHES THE
ADDRESS OF THE POINTER

5l

contents = *port_x;
/*
WHEN * IS USED AS A PREFIX TO AN
INTEGER VARIABLE NAME WE RECOVER
THE VALUE AT THAT ADDRESS
*/
printf(‘*%d\n"’,contents);
/*
PRINT THE DENARY CONTENTS OF THE
1/0 ADDRESSES ON THE SCREEN

*
}
goto start;

}

The anatomy of the program is made up as follows: #include <stdio.h> is the
compiler directive and header file. This file is provided with each C compiler and
should always be included to guarantee successful compilation. Check the C
compiler manual for the precise syntax for your particular system. Some
compilers require # include’stdio.h” Or # include <h.stdio> . Stdio is a contraction of

An introduction to C 11

W-Basic and Microsoft C programmers manuals.

POKE aaaress, yte L
Writes a byte into a memory location

The arguments agdress and byte are integer
expressions.
The expression adaress represents the address of the
memory location and 4y is the data byte. The byte
‘must be in the range 0 to 255.

The address must be in the range — 32768 to 65535.
~ The adoress is the offset from the current segment,
- which was set by the last DEF SEG statement. For
interpretation of negative values of adoress see
“'VARPTR Function."'

~ The complementary function to POKE is PEEK.

Warning

Use POKE carefully. If it is used incorrectly, it can cause the
system to crash.

o
_ DEF SEG, PEEK, VARPTR
10 POKE &H5A00, &HFF

oy

PEEK(7) i
~ Returns the byte from the indicated memaw\tocation n

N

The returned value is an integer in the range 0 to 255.

 The integer # must be in the range — 32768 to 65535.
The 7 argument is the offset from the current segment,
which was defined by the last DEF SEG statement. For
the interpretation of a negative value of 77, see the
'VARPTR Function.”

~ PEEK is the complementary function of the POKE
statement.

A=PEEK (&H5A00)

In this example, the value at the location with the
hexadecimal address 5A00 is loaded into the variable A.

Figure 1.6

ouT
Statement
Syntax
OUT port, data
Action)
Sends a byte to a machine output port
Remarks
The port is the port number. It must be an integer
expression in the range 0 to 65535.
The dafa argument is the data to be transmitted. It must
be an integer expression in the range 0 to 255.
Example
100 OUT 12345, 255
In 8086 bl this is equi to:
MOV DX 12345
MOV AL, 255
OUT DX, AL
INP
Function
Syntax
INP (port)
Action
Returns the byte read from port. The port must
be an integer in the range 0 to 65535
Remarks
INP is the complementary function to the OUT
statement.
See Also
out
Example

This instruction reads a byte from port 54321
and assigns it to the variable A:

100 A=INP(54321)

In 8086 this is to:
MOV DX, 54321

IN AL, DX

‘standard input-output’. This particular header file provides the necessary
system information to input data from the keyboard and display it on the
monitor. Some programs require additional header files, the names in these
header files containing system-related information that is made part of the
program as it is compiled — ref inp() and outp().

All C programs are functions, usually made up of the principal function main()
together with any nested functions. The example in Listing 1.2 is probably the
most primitive C program imaginable, where the code located inside the braces is
simply a non-executable comment, analogous to the Basic REM statement.
Notice that the non-executable comment is preceded by a slash star /* and
terminated by a star slash */. These comment delimiters ensure that any remark

