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Preface

Machine learning is a rapidly maturing field that aims to provide practical meth-
ods for data discovery, categorization and modelling. The Sheffield Machine
Learning Workshop, which was held 7-10 September 2004, brought together
some of the leading international researchers in the field for a series of talks and
posters that represented new developments in machine learning and numerical
methods.

The workshop was sponsored by the Engineering and Physical Sciences Re-
search Council (EPSRC) and the London Mathematical Society (LMS) through
the MathFIT program, whose aim is the encouragement of new interdisciplinary
research. Additional funding was provided by the PASCAL European Framework
6 Network of Excellence and the University of Sheffield. It was the commitment
of these funding bodies that enabled the workshop to have a strong program of
invited speakers, and the organizers wish to thank these funding bodies for their
financial support. The particular focus for interactions at the workshop was Ad-
vanced Research Methods in Machine Learning and Statistical Signal Processing.

These proceedings contain work that was presented at the workshop, and
ideas that were developed through, or inspired by, attendance at the workshop.
The proceedings reflect this mixture and illustrate the diversity of applications
and theoretical work in machine learning.

We would like to thank the presenters and attendees at the workshop for
the excellent quality of presentation and discussion during the oral and poster
sessions. We are also grateful to Gillian Callaghan for her support in the organi-
zation of the workshop, and finally we wish to thank the anonymous reviewers
for their help in compiling the proceedings.

July 2005 Joab Winkler
Neil Lawrence
Mahesan Niranjan
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Object Recognition via Local Patch Labelling

Christopher M. Bishop! and Ilkay Ulusoy?

1 Microsoft Research,
7 J J Thompson Avenue,
Cambridge, UK
http://research.microsoft.com/~cmbishop
2 METU, Computer Vision and Intelligent Systems Research Lab.,
06531 Ankara, Turkey
http://www.eee.metu.edu.tr/~ilkay

Abstract. In recent years the problem of object recognition has received consid-
erable attention from both the machine learning and computer vision communi-
ties. The key challenge of this problem is to be able to recognize any member
of a category of objects in spite of wide variations in visual appearance due to
variations in the form and colour of the object, occlusions, geometrical transfor-
mations (such as scaling and rotation), changes in illumination, and potentially
non-rigid deformations of the object itself. In this paper we focus on the detec-
tion of objects within images by combining information from a large number of
small regions, or ‘patches’, of the image. Since detailed hand-segmentation and
labelling of images is very labour intensive, we make use of ‘weakly labelled’
data in which the training images are labelled only according to the presence or
absence of each category of object. A major challenge presented by this problem
is that the foreground object is accompanied by widely varying background clut-
ter, and the system must learn to distinguish the foreground from the background
without the aid of labelled data. In this paper we first show that patches which are
highly relevant for the object discrimination problem can be selected automati-
cally from a large dictionary of candidate patches during learning, and that this
leads to improved classification compared to direct use of the full dictionary. We
then explore alternative techniques which are able to provide labels for the indi-
vidual patches, as well as for the image as a whole, so that each patch is identified
as belonging to one of the object categories or to the background class. This pro-
vides a rough indication of the location of the object or objects within the image.
Again these individual patch labels must be learned on the basis only of overall
image class labels. We develop two such approaches, one discriminative and one
generative, and compare their performance both in terms of patch labelling and
image labelling. Our results show that good classification performance can be
obtained on challenging data sets using only weak training labels, and they also
highlight some of the relative merits of discriminative and generative approaches.

1 Introduction

The problem of object recognition has emerged as a ‘grand challenge’ for computer vi-
sion, with the longer term aim of being able to achieve near human levels of recognition
for tens of thousands of object categories under a wide variety of conditions. Many of

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 1-21, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 C.M. Bishop and I. Ulusoy

the current approaches to this problem rely on the use of local features obtained from
small patches of the image. The motivation for this is that the variability of small patches
is much less than that of whole images and so there are much better prospects for gen-
eralization, in other words for recognizing that a patch from a test image is similar to
patches in the training images. However, the patches must be sufficiently variable, and
therefore sufficiently large, to be able to discriminate between the different object cat-
egories and also between objects and background clutter. A good way to balance these
two conflicting requirements is to determine the object categories present in an image
by fusing together partial ambiguous information from multiple patches. Probability
theory provides a powerful framework for combining such uncertain information in a
principled manner, and will form the basis for our research (the specific local features
that we use in this paper are described in Section 2.) Also, the locations of those patches
which provide strong evidence for an object also give an indication of the location and
spatial extent of that object.

In common with a number of previous approaches, we do not attempt to model
the spatial relationship between patches. Although such spatial information is certainly
very relevant to the object recognition problem, and its inclusion would be expected to
improved recognition performance for many object categories, its role is complemen-
tary to that of the texture-like evidence provided by local patches. Here we show that
local information alone can already give good discriminatory results.

A key issue in object recognition is the need for predictions to be invariant to a
wide variety of transformations of the input image due to translations and rotations of
the object in 3D space, changes in viewing direction and distance, variations in the
intensity and nature of the illumination, and non-rigid transformations of the object.
Although the informative features used in [13] are shown to be superior to generic
features when used with a simple classification method, they are not invariant to scale
and orientation. By contrast, generic interest point operators such as saliency [6], DoG
[7] and Harris-Laplace [9] detectors are repeatable in the sense that they are invariant to
location, scale and orientation, and some are also affine invariant [7,9] to some extent.
For the purposes of this paper we shall consider the use of invariant features obtained
from local regions of the image centered on interest points.

Fergus et al. [5] learn jointly the appearances and relative locations of a small set
of parts whose potential locations are determined by a saliency detector [6]. Since their
algorithm is very complex, the number of parts has to be kept small and the type of
detector they used is appropriate for this purpose. Csurka et al. [3] used Harris-Laplace
interest point operators [9] with SIFT features [7] for the purpose of multi class object
category recognition. Features are clustered using K-Means and each feature is labelled
according to the closest cluster centre. Histograms of feature labels are then used as
class-conditional densities. Since such interest point operators detect many points from
the background as well as from the object itself, the features are used collectively to
determine the object category, and no information on object localization is obtained. In
[4], informative features were selected based on information criteria such as likelihood
ratio and mutual information in which DoG and Harris-Laplace interest point detectors
with SIFT descriptors were compared. However, in this supervised approach, hundreds
of images were hand segmented in order to train support vector machine and Gaussian
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mixture models (GMMs) for foreground/background classification. The two detectors
gave similar results although DoG produces more features from the background. Fi-
nally, Xie and Perez [14] extended the GMM based approach of [4] to a semi-supervised
case inspired from [5]. A multi-modal GMM was trained to model foreground and
background features where some uncluttered images of foreground were used for the
purpose of initialization.

In this paper we develop several new approaches to object recognition based on fea-
tures extracted from local patches centered on interest points. We begin, in Section 3,
by extending the model of [3] which constructs a large dictionary of candidate fea-
ture ‘prototypes’. By using the technique of automatic relevance determination, our
approach can learn which of these prototypes are particularly salient for the problem of
discriminating object classes and can thereby give appropriately less emphasis to those
which carry little discriminatory information (such as those associated with background
clutter). This leads to a significant improvement in classification performance.

While this approach allows the system to focus on the foreground objects, it does
not directly lead to a labelling of the individual patches. We therefore develop new
probabilistic approaches to object recognition based on local patches in which the sys-
tem learns not only to classify the overall image, but also to assign labels to patches
themselves. In particular, we develop two complementary approaches one of which is
discriminative (Section 4) and one of which is generative (Section 5).

To understand the distinction between discriminative and generative, consider a sce-
nario in which an image described by a vector X (which might comprise raw pixel in-
tensities, or some set of features extracted from the image) is to be assigned to one of K
classes k = 1,..., K. From basic decision theory [2] we know that the most complete
characterization of the solution is expressed in terms of the set of posterior probabilities
p(k|X). Once we know these probabilities it is straightforward to assign the image X
to a particular class to minimize the expected loss (for instance, if we wish to minimize
the number of misclassifications we assign X to the class having the largest posterior
probability).

In a discriminative approach we introduce a parametric model for the posterior prob-
abilities, and infer the values of the parameters from a set of labelled training data. This
may be done by making point estimates of the parameters using maximum likelihood,
or by computing distributions over the parameters in a Bayesian setting (for example
by using variational inference).

By contrast, in a generative approach we model the Joint distribution p(k, X) of
images and labels. This can be done, for instance, by learning the class prior probabil-
ities p(k) and the class-conditional densities p(X|k) separately. The required posterior
probabilities are then obtained using Bayes’ theorem

 p(X[k)p(k)
PX) = S X P0)

where the sum in the denominator is taken over all classes.

Comparative results from the various approaches are presented in Section 6. These
show that the generative approach gives excellent classification performance both for
individual patches and for the complete images, but that careful initialization of the

ey
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training procedure is required. By contrast the discriminative approach, which gives
good results for image labelling but not for patch labelling, is significantly faster in
processing test images. Ideas for future work, including techniques for combining the
benefits of generative and discriminative approaches, are discussed briefly in Section 7.

2 Local Feature Extraction

Our goal in this paper is not to find optimal features and representations for solving a
specific object recognition task, but rather to fix on a particular, widely used, feature set
and use this as the basis to compare alternative learning methodologies. We shall also
fix on a specific data set, chosen for the wide variability of the objects in order to present
a non-trivial classification problem. In particular, we consider the task of detecting and
distinguishing cows and sheep in natural images.

We therefore follow several recent approaches [7,9] and use an interest point de-
tector to focus attention on a small number of local patches in each image. This is fol-
lowed by invariant feature extraction from a neighbourhood around each interest point.
Specifically we use DoG interest point detectors, and at each interest point we extract
a 128 dimensional SIFT feature vector [7] from a patch whose scale is determined
by the DoG detector. Following [1] we concatenate the SIFT features with additional
colour features comprising average and standard deviation of (R, G, B), (L,a,b) and
(r=R/(R+ G+ B), g = G/(R+ G + B)), which gives an overall 144 dimensional
feature vector. The result of applying the DoG operator to a cow image is shown in
Figure 1.

In this paper we use t,, to denote the image label vector for image n with independent
componentstn, € {0,1}inwhichk = 1,... K labels the class. Each class can be present
or absent independently in an image, and we make no distinction between foreground
and background classes within the model itself. X,, denotes the observation for image
n and this comprises as set of .J,, patch vectors {x,,;} where j = 1,..., J,,. Note that
the number J,, of detected interest points will in general vary from image to image.

On a small-scale problem it is reasonable to segment and label the objects present
in the training images. However, for large-scale object recognition involving thousands
of categories this will not be feasible, and so instead it is necessary to employ training
data which is at best ‘weakly labelled’. Here we consider a training set in which each
image is labelled only according to the presence or absence of each category of object
(in our example each image contains either cows or sheep).

3 Patch Saliency Using Automatic Relevance Determination

We begin by considering a simple approach based on [3]. In this method the features
extracted from all of the training images are clustered into C classes using the K-means
algorithm, after which each patch in each image is assigned to the closest prototype.
Each image n is therefore described by a fixed-length histogram feature vector h,, of
length C' in which element h,,. represents the number of patches in image n which
are assigned to cluster ¢, where ¢ € {1,...,C}and n € {1,..., N}. These feature
vectors are then used to construct a classifier which takes an image X, as input, converts
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Fig. 1. Difference of Gaussian interest points with their local regions, in which the squares are
centered at the interest points and the size of the squares indicates the scale of the interest points.
The SIFT descriptors and colour features are obtained from these square patches Note that interest
points fall both on the objects of interest (the cows) and also on the background.

it to a feature vector h,, and then assigns this vector to an object category. Here the
assumption is that each image belongs to one and only one of some number K of
mutually exclusive classes. In [3] the classifier was based either on naive Bayes or on
support vector machines.

Here we use a linear softmax model since this can be readily extended to determine
feature saliency as discussed shortly. Thus the model computes a set of outputs given by

exp(wih,)
yk(hn, W) Zl exp(w;rhn) (2)
where k € {1,..., K}. Here the quantity yx(h,, w) which can be interpreted as the
posterior probability that image vector h,, belongs to class k. The parameter vector
w = {wy} is found by maximum likelihood using iterative re-weighted least squares
[10]. We shall refer to this approach as VQ-S for vector quantized softmax. Results
from this method will be presented in Section 6.

An obvious problem with this approach is that the patches which contribute to the
feature vector come from both the foreground object(s) and also from the background.
Changes to the background cause changes in the feature vector even if the foreground
object is the same. Furthermore, some foreground patches might occur on objects from
different classes, and are therefore provide relatively little discriminatory information
compared to other patches which are more closely associated with particular object
categories.

We can address this problem using the Bayesian technique of automatic relevance
determination or ARD [8]. This involves the introduction of a prior distribution over
the parameter vector w in which each input variable h. has a separate hyperparameter
a. corresponding to the inverse variance (or precision) of the prior distribution of the
weights w, associated with that input, so that
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p(w|a) = HN(WCIO o l1). 3

c=1

During learning the hyperparameters are updated by maximizing the marginal likeli-
hood, i.e. the probability of the training labels D given « in which w has been inte-
grated out, given by

p(Dla) = / p(DIw)p(w) dw. @

This is known as the evidence procedure and the values of the hyperparameters
found at convergence express the relative importance of the input variables in deter-
mining the image class label. Specifically, the hyperparameters represent the inverse
variances of the weights, and so a large value of o implies that the corresponding
parameter vector w, has a distribution which is concentrated around zero and so the
associated input variable h. has little effect in determining the output values y;. Such
inputs have low relevance. By contrast a high value of . corresponds to an input k.
whose value plays an important role in determining the class label. The inclusion of
ARD leads to an improvement in classification performance, as discussed in Section 6.
We shall refer to this model as VQ-ARD.

With this approach we can rank the patch clusters according to their relevance. The
logarithm of the inverse of the hyperparameter v is sorted and plotted in Figure 2.

Equivalently this can be plotted as a histogram of o values, as shown in Figure 3.
It is interesting to note that in this problem the hyperparameter values form two groups
in which one group can loosely be considered as relevant and the other as not relevant,
so far as the discrimination task is concerned.

Figure 4 shows the properties of the most relevant cluster and of the least relevant
cluster, as well as that of an intermediate cluster, according to the ARD analysis based
on C = 100 cluster centers. Note that the images have been hand segmented in order to

-4t
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sorted log(1/alpha)

20 40 60 80 100

Fig. 2. The sorted values of the log variance (inverse of the hyperparameter «)
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Fig. 3. The histogram of the log variances

identify the foreground region. This segmentation is used purely for test purposes and
plays no role during training. The top row shows the features belonging to the worst
cluster, i.e. ranked 100, on a sheep image and on a cow image. This feature exists in
both classes and thus provides a little information to make a classification. The middle
row shows the locations of patches assigned to the cluster which is ranked 27, in which
we see that all of the patches belong to the background. Finally, the bottom row of the
figure shows the features belonging to the most relevant cluster, ranked 1, on the same
sheep and cow images. This feature is not observed on the sheep image but there are
several patches assigned to this cluster on the cow image. Thus the detection of this
feature is a good indicator of the presence of a cow.

It is also interesting to explore the behaviour of the two groups of clusters cor-
responding to the two modes in the distribution of hyper-parameter values shown in
Figure 3. Figure 5 shows examples of cow and sheep images in each case showing the
locations of the clusters associated with the two modes.

Although this approach is able to focuss attention on foreground regions, we have
seen that not all foreground patches have high saliency, and so this approach cannot
reliably identify regions occupied by the foreground objects. We therefore turn to the
development of new models in which we explicitly consider the identity of individual
patches and not simply their saliency for overall image classification. In particular the
hard quantization of K-means is abandoned in favour of more probabilistic approaches.
First we discuss a discriminative model and then we turn to a complementary generative
model.

4 The Discriminative Model with Patch Labelling

Since our goal is to determine the class membership of individual patches, we associate
with each patch j in an image n a binary label 7,,;; € {0,1} denoting the class k of
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100 th best feature with feature label 76 100 th best feature with feature label 76

27 th best feature with feature labet 25 27 th best feature with feature label 25

1 th best feature with feature labei 20 1 th best feature with feature label 20

Fig.4. The top row shows example cow and sheep images, with the foreground regions seg-
mented, together with the locations of patches assigned to the least relevant (ranked 100) cluster
center. Similarly the middle row analogous results for a cluster of intermediate relevance (ranked
27) and the bottom row shows the cluster assignments for the most relevant cluster (ranked 1).
The centers of the squares are the locations of the patches from which the features are obtained
and the size of the squares show the scale of the patches.



