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Preface

Let E be a function space with a norm || - || and let G be a finite dimensional subspace of
E. Then it is one of the principal themes in approximation theory to study the following
problems: For each f € E,

find f € G such that Eg(f) = ||f — f|| = inf,ec [|f — gl
and

estimate Eg(f).

G is called an approximating space and f is said to be a best approximation to f from G.
If G is chosen in the manner so that Eg(f) is as small as possible and so that functions in
G are easy to handle, then G is a good approximating space.

For example, in C|[a, b] (=the space of all real-valued continuous functions on [a, b]) with
the supremum norm, spaces of polynomials with degree at most n and spaces of continuous
and piecewise linear functions with fixed knots are suitable for good approximating spaces.
Cebysev (or Haar) spaces and weak Cebysev spaces are generalizations of these two spaces
and play a central part when considering the above problems. In fact, properties, char-
acterizations and generalizations of Cebysev and weak Cebysev spaces have been deeply
studied during this century. Now, the theory of these spaces has matured.

In this book, as approximating spaces, we shall introduce Haar-like spaces, which are
Haar and weak Cebysev spaces under special conditions. And we shall study topics of
subclasses of Haar-like spaces rather than general properties of Haar-like spaces, that is,
classes of Cebysev or weak Cebysev spaces, spaces of vector-valued monotone increasing or
convex functions and spaces of step functions.

Contents are mostly new results and rewritings of the following papers, 13, 14, 15, 16,
17 (Chapter 2), 7, 8, 9(Chapter 3), 17, 18 (Chapter 4), 4, 5 (Chapter 5), 2 (Appendix
1), where each number is its reference number. In Chapter 1, Haar-like spaces are de-
fined and several examples of Haar-like spaces are given. In Chapter 2 and 3, for Cebysev
and Cebyéev-like spaces, we are concerned with characterizations, derivative spaces, sepa-
rated representations, adjoined functions and best L!-approximations. In Chapter 4, in a
space of vector-valued functions of bounded variation, we consider best approximations by
monotone increasing or convex functions. In Chapter 5, approximation by step functions

is studied. In connection with Chapter 5, Dirichlet tilings and a certain property of the

Vil



finite decomposition of a set are stated in Appendix 1 and 2, respectively. The readers can
see further summary in the Introduction to each chapter.

I would like to express my heartfelt gratitude to emeritus Prof. Kiyoshi Iseki at Naruto
Education University and Prof. Shir6 Ogawa at Kwansei Gakuin University who taught
me topological vector spaces and approximation theory and who have given me constant
encouragement with high degree. I am indebted to Katsumi Tanaka, Takakazu Yamamoto
and Hiroaki Katsutani for their help in preparing this manuscript, to Donna L. DeWick
for checking the style of this manuscript and to the editors and staff of Springer-Verlag for

their able cooperation.

Finally I am also grateful for the constant heartwarming encouragement from my parents,

Torao Kitahara and Yasue Kitahara.

Kazuaki Kitahara
Saga, Japan
January, 1994
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Chapter 1 Preliminaries

1.1 Introduction

Before stating the purpose of this chapter, we shall introduce a concrete problem
in approximation theory. Let Cf[a,b] be the space of all real-valued functions on a
compact real interval [a,b]. Cl[a,b] is endowed with the supremum norm | - ||,i.e.,
Il = sup,epap |f(2)| for all f € Cla,b]. For a finite dimensional subspace G of
C|[a,b], we consider the following problem: For a given f € Ca,b],

find f € G such that ||f — f|| = infyec ||f — gll,
in other words,

find the best approximations f to f from G.

G is a space of approximating functions. It is well known that spaces spanned by
the following systems {u;}"; in C[a,b] are of good use to treat this problem. One
is a generalization of systems of spline functions and the other is a generalization of

systems of polynomials.

(1) {w:}~, is a system such that, for any n distinct points (a <)z; < ... < z,(< b),
our(z1) -+ un(z1)
det : : >0,
ouy(z,) -+ un(zn)
where o0 =1 or —1.
(2) {ui}~, is a system such that, for any n distinct points (a <)z; < ... < z,(< b),
u(z1) o0 ua(z1)
det : : # 0.

ul(zn) e un(zn)

Systems of (1) are called weak Tchebycheff, weak Cebysev or WT-systems and
those of (2) are called Haar, Tchebycheff, Cebysev or T-systems.(Unified terms are
not used for these systems.) One useful property of WT and T-systems is its marked
characterization of best approximations from these spaces. When spaces spanned
by WT and T-systems are approximating spaces, best approximations in the above

problem are chracterized as follows.

Theorem 1.1.1. Let {u;}", be a WT-system in Cla,b] and let G be the space

i=1

spanned by {u;}",. For a given f € Cla,b], if there exist an f € G and n+1 points
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(@ <) 21 <+ < Tapa(< B) such that |If = fl| = o(=1)(f(2:) = f(2:) (6 =1 or
—1),i=1,...,n+1, then f is a best approzimation to f from G. Furthermore, each

f € Cla,b] has a best approzimation from G satisfying this condition.

Theorem 1.1.2. Let {u;}", be a T-system in C|a, b] and let G be the space spanned
by {u;},. Each f € Cla,b] has a unique best approzimation from G satisfying the

condition stated in Theorem 1.1.1.

These systems play an important role not only in characterizations of best approx-

imations, but also in interpolation methods, moment spaces, totally positive kernels

and so on.
Some generalizations of WT and T-systems have already been defined and inves-

tigated. (e.g. Ault, Deutsch, Morris and Olson[1], Garkavi[4] e.t.c.) In this chapter,
we will define other types of generalized WT and T-systems. Furthermore, we mainly

study these systems in the following chapters.

1.2 Definitions

We begin by giving definitions of Haar-like conditions.

Definition 1. Let E be a real vector space and let E* be the algebraic dual space
of E,i.e., the space of all real-valued linear functionals on E. For a given positive
integer n, let {a;}7, be n linearly independent elements in £ and let F be a subset

r——
of (E*)* (= E* x--- x E¥).
(1) If, for any element (z1,...,r,) € F, the n-th order determinant

. z1(a1) ... z1(an)
1 ... Qn L . :
D(zl zﬂ).—det o |#e

zp(ar) ... zn(an)
then it is said that {a;}", satisfies H condition with F or is an H-system with
F(abbreviated Hr-system). The space [ai,...,a,] spanned by elements of an Hz-

system {a;}2, is called an Hr-space.
(2) I, for any element (z1,...,z,) € F,
D(tml a")>0, (resp. > 0)

Zy ... ITp
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where 0 = 1 or —1, then it is said that {a;}", satisfies T condition (resp. WT
condition) with F or is a Tr-system (resp. WTr-system). And, we call the space
spanned by a Tr-system (resp. WTx-system) a Tx-space (resp. WTx-space).

(3) Let Fr = {(21,.--,2k) | (z1,...,%,) € F} for each k, 1 < k < n. If {a;}},
is a system such that, for each k, 1 < k < n, {a;}5, is an Hx,-system (resp. T¥x,,
WTg, -system), then it is called a complete Hz-system (resp. complete Tr, complete
WTx-system).

(4) For our convenience, when we take these three conditions in (1), (2) and (3)
together, we call them Haar-like conditions. Analogously, we use the terms Haar-like

systems and Haar-like spaces.
Now we add two approximating spaces in a normed space.

Definition 2. Let E be a normed space with a norm || - || and let M be a subset
of E.

(1) For agiven z € E, if there exists an zo € M such that ||z—z¢|| = infyem ||z—y]|,
then zg is called a best approzimation to x from M or simply a best approzimation to
z. The set of all best approximations to z from M is denoted by Pps(z).

(2) For a subspace G of E, let Ug = {z|z € E, Ps(z) is singleton }. If Us = E, G
is called a C-space, and if F — Ug is a set of the first category in E, then G is said to
be an AC-space.

Remark 1. (1) {a;}, is a Tr-system if and only if it is a WTx and Hz-system.
But every WT'x or Hr-system is not always a T'r-system.

(2) As for completeness of Haar-like systems, we can define a more specialized
system such as order complete or Descartes systems (see Niirnberger([8; p.15]). But
these systems are not addressed in this book.

(3) Let {a;}™, be a system of E and let F be a subset of (E*)". For any (z1,...,Zxs)
€ Fandeachk,1 <k <n, xfk) is a linear functional on E such that xfk)(aj) = z,(a;)
if1 <i,5 <k, x&k)(a,-) =1lifi=j5>k, :c,(-k)(a,-) = 0 otherwise. If, for each {a;}7,, we
put F' = {(zgk),‘..,zﬁf‘)) | (z1,...,2,) € F, 1 < k < n}, then {a;}", is a complete
Hz-system if and only if it is an Hxi-system.

(4) The definition of AC-spaces is introduced by Steckin[12].

(5) Best approximations in general normed spaces are studied in detail in Singer[11].

From Definition 1, the following statement immediately follows.



Proposition 1.2.1. Let E be a real normed space and let E' be the topological dual
space of E,i.e., the space of all real-valued continuous linear functionals on E. Let F
be a connected subset of (E')", where E' is endowed with the weak topology o(E', E).

Then if {a;}-, is an Hx-system in E, it is a Tr-system.

1.3 Examples of Haar-like Spaces

We give some function spaces and examples of Haar-like subspaces, which are stud-

ied in the following chapters.

1. Let E be a real normed space and let E’ be the topological dual space of E.
S+ denotes the closed unit ball in E’ and the set of extreme points of Sg is denoted
by extSg:. An n-dimensional subspace M of E is called an interpolating subspace if,
for any n linearly independent functionals z,...,z, in eztSg and any n real scalars
C1,...,Cn, there is a unique element ¢ € M such that z;(a) = ¢; for i = 1,...,n.
Ault, Deutsch, Morris and Olson[1] gave the definition of interpolating subspaces and
studied best approximations from interpolating subspaces in detail.

As a subset F of (E')*, setting F = {(z,...,%,)| ¢1,...,Z, are linearly indepen-
dent functionals in extSg/} , we can consider that every interpolating subspace is an

Hr-space.
Interpolating spaces are closely related with C-spaces.

Proposition 1.3.1.(Ault, Deutsch, Morris and Olson[1; Theorem 2.2]) Let M be
a finite dimensional subspace of a real normed space. If M is an interpolating space,

then it is a C-space.

2. For a set X, F(X) denotes the space of all real-valued functions on X. We easily
see that each point z in X is a linear functional on F(X) such that z(f) = f(z) for
all f € F(X). Let {A;}, be an n-decomposition of X i.e., A;N A; = 0 for ¢ # j and
UL, Ai = X, and let x4,(z), ¢ = 1,...n, be the characteristic function of A.-{ Then
[XAys---»X4,) is an n-dimensional subspace of F(X) which consists of step functions
on X.

If we consider a subset of (E*)*, F = {(z1,...,z,)|zi € Aiyi=1,...,n}, {xa,}

can be regarded as a T'’r-system.



Problems of approximation by step functions will be studied in Chapter 5.

3. Let T be a partially ordered set with an order <. As a subset of (F(T)*)",
setting P = {(z1,-..,2) | T1 < -+ < Zp, 2 €T, i = 1,...,n} (¢ < y means that
z <y and z # y.), we can consider Hp, Tp and WTp-systems. When T is a linearly
ordered set, Zielke[14] studied many properties of Hp, Tp and W Tp-systems in F(T)
(Zielke[14] uses other terminologies for these systems) which consist of discontinuous

functions.
From Lemma 1.2 and Lemma 4.1 in Zielke[14], we have

Proposition 1.3.2. Let T' be a linearly ordered set containing at least n + 1 points
and {u;}7, be a system in F(T).

(1) {wi}~, is an Hp-system if and only if any u € [uy,...,u,] —{0} has at most
n — 1 zeros.

(2) {w}r, is a WTp-system if and only if no u € [uy,...,u,] has an alternation
of length n + 1,i.e., there do not ezxist n + 1 points z; < -+ < Tpy1 in T such that

(—1)'u(z;) is positive fori =1,...,n+ 1 or negative fori =1,...,n+ 1.

A necessary and sufficient condition of Tp-systems immediately follows from the
conditions in (1) and (2) in Proposition 1.3.2. Clearly, Tchebycheff systems (resp.
weak Tchebycheff systems) in 1.1 are identical with T’p-systems (resp. WTp-systems).

4. For a Hausdorff topological space X, C(X) denotes the space of all real-valued
continuous functions on X and Cp(X) denotes the subspace of C(X) which consists
of functions f such that {z € X | |f(z)| > €} is compact for each € > 0.

In this book, we mainly treat X as a subset of the real line R. In particular, when
X is a nondegenerate compact interval [a,b], we use the notation C|a, b] instead of
C([a,d]). And as another function space on [a, b], we denote the space of all real-valued
Lebesgue integrable functions on [a, 8] by L![a, b].

As is stated in 1.1, properties of Hp, Tp and W Tp-systems in C|[a, b] (Other termi-
nologies are used for these systems) have been profoundly studied. We cail observe
many good properties of these systems in books and journals related to approximation
theory.(e.g. Cheney[2], Davis[3], Karlin and Studden[5], Lorentz[7], Watson[13] etc.)

Now we introduce other types of systems in Cla,b] or L'[a,b]. Let S be the set of
all nondegenerate subintervals of [a,b]. For I,J € S, if the interior points of I equal
those of J, we write I = J, and if I N J has no interior points and z < y for all z € I

5



and y € J, then it is denoted by I < J for this relation. By this, (S, <) is a partially
ordered set, and < means = or <. For each I € S, we define a linear functional u;
on Cl[a,b] or L'[a,b] such that u;(f) = /;f(:c)dz for all f € C[a,b] or L'[a,b] and let
T={(up,..-our,) | €S,i=1,...,n, ; < --- < I,}. Then we can consider Hr,
T, and WTt-systems in Cla, b] or L'[a, b].

The readers can easily obtain the following proposition from the above definition.

Proposition 1.3.3. Let {u;}, be a system in Cla,b] or L'[a,b]. {u;}}, is an
Hz-system if and only if it is a Tr-system.

Shi[10] proposes a variation of L approximation which maintains almost all of the
Chebyshev theory and considers best approximations by Hz-systems (= QT-systems
in Shi[10]). Basic properties of Hz-systems in C[a,b] are studied in Kitahara[6].
Further properties of Hr and WTr-systems will be investigated in Chapter 2 and 3.

5. Let C""![a,b] (n > 1) be the subspace of C[a,b] which consists of n — 1 times
continuously differentiable functions and let {u;}", be a system in C"~![a,b]. For

any x = (z1,...,2,) Witha < 27 < ... < z, < b, we define the following linear

functionals zX on C"![a, b]:
2X(f) = f*)(z;) for feC"a,b], i=1,...,n,

where k; = max {j | j is a nonnegative integer and z; = --- = z;_;},i=1,...,n. If

{u;}™, satisfies the condition that

ouy ... U
D 0
( 2y v g ) ”
for all z = (z1,...,2,) witha < z; < ... < z, < b, then {w;}, is called an
extended Tchebycheff system of order n or simply an extended Tchebycheff system

(see p.6 in Karlin and Studden[5] and p.4 in Niirnberger[8]). Setting P = {(2%,...,
2X) | a <z <... <z, < b}, every extended Tchebycheff system is identical with

p
a Tj-system. In particular, if x = (¢,...,t), t € [a,8], D ( m;l u: ) denotes
2 s 2

Wronskian determinants W(uy,...,u,)(¢) of {u;}; at t € [a, b].

8. We give an example of generalized convex functions in F[a,b] by using WTp-
condition. Let & = {u;}; be a system in F[a,b] consisting of linearly independent

functions. If f is a function in F[a,b] such that {u;}*, U{f} is a WTp-system, then

6



f is called a U-convex function. When U = {1,z,2?,...,2""1}, U-convex functions
are called n-convex functions.(see Roberts and Varberg[9], Zwick[15])

Analogously, we can consider vector-valued U-convex functions. Let U = {u;}},
be a system in F[a, b] consisting of linearly independent real-valued functions, and let
E be an ordered real vector space. If f is an E-valued function on [a, b] such that, for

any (Zi1,...,%nt1) € P, the n + 1-th order determinant

w(z1) - u(Ta4r)

det : : >0,
un(zl) 'U.,,(I,H.])

fz) -+ f(zns)
then we call f an E-valued U-convex function. In this book, we do not study properties
of vector-valued U-convex functions, but we will treat approximation by vector-valued

1-convex or 2-convex functions in Chapter 4.

Remark 2. (1) Let U be an extended complete Tchebycheff system. Karlin and
Studden studied properties of the set (= cone) of all real-valued U-convex functions
in depth(see Karlin and Studden[5; Chapter XI]).

(2) Any system in a real vector space can be an Hr-system or WTx-system for
some subset F C (E*)". Hence, it is important to consider Haar-like systems under
ideal subsets of (£*)™.

(3) We shall use the terminologies introduced here throughout this book.

1.4 Problem

1. Let M be a finite dimensional subspace of a real normed space (E, ||-||). If M is
an Hz-space, where F is a subset of (E’)" in example 1 in 1.3, then M is a C-space.

Similarly is there any subset G of (E’)" such that an Hg-space is an AC-space ?



Chapter 2 Characterizations of Approximating
Spaces of C|a,b] or Cy(Q)

2.1 Introduction

Let Q be a locally compact subset of R and let Co(Q) and C|a,b] be the function
spaces defined in 1.3. Cy(Q) and C'a, b] are endowed with the supremum norm ||-|| i.e.,
IfIl = sup,eq(zefasy) ()] for each f € Co(Q)(C[a,b]). Let P and I be the subsets
of (Co(Q)*)" or (Cla, b]*)" defined in 1.3.

In this chapter, we introduce known characterizations of approximating spaces of
Co(Q) or Cla,b] and show other types of characterizations of these spaces.

In 2.2, basic properties of Hp, WTp, C and AC-spaces in Cy(Q)) are observed. In
2.3, we review characterizations of Tp(= Hp), WTp and Hr(= Tr)-spaces of C|a,b].
These are stated in terms of sets defined by best approximations. In general, all results
in this section can not hold in Cy(Q). In 2.4, material similar to 2.3 is introduced and
some of the results in 2.3 are extended to Cy(Q).

In 2.5 and 2.6, we consider different types of characterizations from those in 2.3
and 2.4. In 2.5, we show a characterization of Hp(= Tp)-spaces of C(R) in terms
of appropriate decompositions of R?. In 2.6, using the nonexistence theorem of best
approximations from a closed subspace, we give a chracterization of a space spanned
by an infinite complete Tp(= Hp)-system. Finally, some problems related to these

topics are stated in 2.7.

2.2 Approximating Spaces of Cy(Q)

Let @ be a locally compact subset of R and let Cy(Q) be the Banach space defined
in 2.1.

Let us recall that, for an n-dimensional subspace G of Cy(Q), if Ug = Co(Q), G is
said to be a C-space and if Co(Q) — Ug is a set of the first category in CO(Q),{hen G

is called an AC-space.
By Theorem 3.2 in Ault, Deutsch, Morris and Olson[1], we state

Proposition 2.2.1. Let G be an n-dimensional subspace in Co(Q). The following

statements are equivalent:



(1) G is an Hp-space.

(2) For any n distinct points x,...,Z, in Q and any real numbers cy, ..., c,, there
erists an f € G such that f(z;) =¢;,1=1,...,n.

(3) G is a C-space.

(4) G is an interpolating subspace.

The equivalence of (1) and (2) follows from a straightfoward application of the
definition of Hp-spaces. The equivalence of (1),(3) and (4) follows from Theorem 3.2
in Ault, Deutsch, Morris and Olson [1].

As a special case of Proposition 1.3.2, we state

Proposition 2.2.2. Let G be an n-dimensional subspace in Co(Q). The following
statements are equivalent.

(1) G is a WTp-space.

(2) No f € G has an alternation of length n + 1.

For every subset A of @, we associate the number N,(A) equal to the number of
points of A, if this number does not exceed n, and equal to n otherwise.

If G is a finite dimensional AC-space, then we have

Proposition 2.2.3. Let Q be a locally compact subset of R which contains at least
n points and let G be an n-dimensional subspace of Co(Q). The following statements
are equivalent:

(1) G is an AC-space.

(2) On each open subset O C @, at most n — N,(O) linearly independent functions
in G can vanish identically.

(3) There ezists a dense subset P’ of P such that G is an Hp:-space.

Proof.

(1) & (2) Since Co(Q) is separable, the equivalence of (1) and (2) follows from the
same proof of Theorem 1 in Garkavi[7].

(2) — (3) Suppose that f;,---, f, is a basis for G. It is sufficient to shoi a dense

subset P’ of P such that, for each (:cl,...,x,,)e’p',D( fL s fy ) £0.
zl . I

n
Let z,...,z, be any n distinct points in @ with z; < -+ < z,, and let O;, ¢ =
1,...,n, be any open neighbourhood of z; such that O; N O; = 0 for 7 # j. Without

loss of generality, we may assume that each O;, 7 = 1,...,n, is a one point set or an



