HSSE

ILEH
LHNBUHEE
PETEH HBEL




PROGRAMMING
ASSEMBLER
LANGUAGE

Peter Abel

British Columbia Institute of Technology

=)

RESTON PUBLISHING COMPANY, INC.
Reston, Virginia
A Prentice-Hall Company



Library of Congress Cataloging in Publication Data

Abel, Peter
Programming assembler language.

Includes index.

1. Assembler language (Computer program language)
2. IBM 360 (Computer)—Programming. 3. IBM 370
(Computer)—Programming. 1. Title.

QA76.73.A8A23 001.6'424 79-255
ISBN 0-8359-5658-X

© 1979 by

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book may be
reproduced in any way, or by any means,
without permission in writing from the
publisher.

10 9 8 7 6 5 4 3 2

Printed in the United States of America.



PROGRAMMING
ASSEMBLER
LANGUAGE




PREFACE

Assembler language is the fundamental ““low-level”’ language of the IBM 360 and
370 computers. As such, it is directly translatable into machine language; thus, one
Assembler instruction typically generates one machine code instruction. “High-
level’”” languages like COBOL and PL/I are easier to learn. Why then an emphasis on
learning Assembler language? An understanding of Assembler language can help the
programmer in a number of ways:

— A knowledge of Assembler can facilitate learning of any other language, includ-
ing “‘high-level” languages and other assembly languages. And with a back-
ground in Assembler, the user can more clearly understand what the computer is
doing.

— A knowledge of Assembler can help the programmer become more efficient.
High-level languages like COBOL and PL/I can be deceptive, and appear to
execute in some mysterious fashion. A programmer familiar with Assembler can
code high-level languages with an understanding of what machine code they
generate, and what is the more efficient technique. For example, why in COBOL
does the use of COMPUTATIONAL, COMPUTATIONAL-3, and SYNC have con-
siderable effect on the program’s efficiency? What is the significance in PL/I of
Decimal Fixed, Aligned, and Defined? With knowledge of Assembler, a pro-
grammer can examine the generated code to determine more efficient ways to
write certain routines.

— Although most high-level languages provide extensive debugging aids, there are
times when the programmer needs to delve into the generated machine code or
examine storage dumps.

— Programs written in Assembler may be considerably more efficient in storage
space and execute-time, a useful consideration if such programs are run fre-
quently.

— Some advanced areas, such as technical support and telecommunications, re-
quire an extensive knowledge of Assembler.

Although the material in this text has been used successfully as an introduction
to programming, most educational institutes would not teach Assembler as an intro-
ductory language. Generally, the concepts of logic and programming style are easier
to learn when there is less need for concern with rigorous rules and field sizes. The
text does not, however, assume that the reader has had much, if any, programming
experience. The approach of the text is to introduce simple processing using card

Xi



xii

PREFACE

input and printer output, first with character data only, and then with simple decimal
arithmetic, all by Chapter 4. In this way, packed (decimal) data and editing are
introduced early, and the user is soon writing quite realistic programs.

The book should provide both a practical guide for the Assembler student and
also may act subsequently as a useful reference. These two objectives are accom-
plished by:

1. A step-by-step progression of material, from simple processing through to com-
plex. There are many practical examples of complete and partial programs to
illustrate concepts as they are introduced.

2. Chapters organized by logical topics, such as character data, packed, binary,
input/output. The user can concentrate on mastering one programming area at a
time, and most related material is contained in its own chapter.

The complexities of base/displacement addressing and file definition are de-
layed through use of several simple macros, similar to those used in many colleges.
The text drops these macros by Chapters 6 and 7, where the technical material is
covered in detail. Appendix E provides a listing of the macros for those who want to
catalogue them on their own system.

The two major IBM operating systems are DOS and OS. The text covers the
differences between them, giving examples for both.

It is possible to proceed through the text by several routes. Chapters O through 3
are fundamental, and the normal steps would be to continue sequentially with dec-
imal arithmetic in Chapters 4 and 5. It is recommended next to cover the important
material in Chapter 6 on base/displacement addressing and the instruction format,
and then the elements of input/output in Chapter 7. By this point the user should be
capable of coding some quite advanced programs. Chapter 8 on Programming
Strategy could be covered in part or total, perhaps the sooner the better to get the user
into subroutine logic. Following Chapter 8, the chapters need not all be covered
sequentially. The following diagram indicates related chapters in boxes that may be
taken in any sequence following Chapters 6 and 7:

6,7

6] [Bio.%,17] [213) [4] (5] [16)

Chapters 9, 10, and 11 develop related material on processing binary data. Chapter
12 on Magnetic Tape introduces basic material required for an understanding of Disk
Storage in Chapter 13. To complete Chapter 14 (Macro Writing) would require some
familiarity with the material in Chapter 9. Anyone interested in linking separately
assembled programs could attempt Chapter 15 directly after Chapter 7, perhaps
referencing Chapter 9 for some basic binary operations. Chapter 16 on Operating
Systems is presented for general useful information, although not entirely related to
Assembler programming as such.



xiii

PREFACE

Among the users of earlier versions of this text, many have worked ahead of the
course, experimenting with binary operations, macro writing, and subprogram link-
age. Such motivation is certainly commendable and should be encouraged.

The IBM manuals concerned with the material in this text require a bookshelf
about five feet wide. Readers should not expect, therefore, that this or any other
single book will provide all there is to know about the Assembler language and
related topics. Eventually the IBM manuals have to be referenced for current detailed
information. The following IBM manuals or their equivalent are especially recom-
mended:

IBM FORM TITLE
GA22-7000 IBM System/370 Principles of Operation. (370 system organization,
machine instructions, input/output.)

GC33-4010 OS/VS-DOS/VS-VM/370 Assembler Language. (Assembler statements
and macros.)

GC33-5373 DOS/VS Supervisor and Input/Output Macros.
GC28-6646 OS Supervisor Services and Macro Instructions.
GC26-3746 OS Data Management Services Guide.
GC26-3794 OS Data Management Macro Instructions.

Other useful manuals include those on Job Control, disk file organization, tape
labels, disk labels, and the operating system.

Peter Abel






ACKNOWLEDGMENT

The author is grateful for the assistance from all those who contributed typing,
reviews, and suggestions, and to IBM for permission to reproduce some of their
copyrighted materials. The following materials are printed with permission, and with
modifications from publications copyrighted in 1966, 1970, 1972, 1973, and 1974
by International Business Machines Corporation as IBM form numbers GA22-7000,
GX20-1850 and GC20-1649: Figures 2-2, 13-2, 16-3, Appendix A, and Appendix C.

b 4%



CONTENTS

PREFACE Xi
ACKNOWLEDGMENT XV

PART |

INTRODUCTION TO THE COMPUTER
AND THE ASSEMBLER

BASIC COMPUTER CONCEPTS 3

Introduction, 3

The Computer System, 4

Input/Output Devices, 6

Binary Number System, 8

Bits and Bytes, 9

S/360 and S$/370 Organization, 10
Operating Systems and the Supervisor, 13
Hexadecimal Representation, 14
Problems, 15

THE ASSEMBLER 17

Languages, 17

The Assembler, 18

The Assembler Coding Sheet, 21
Assembler Instruction Statements, 24
The Assembler Card, 26

Coding Conventions, 26

The Assembled Program Listing, 29
Assembler Diagnostic Messages, 30
Problems, 32

PROGRAM EXECUTION 34

Program Execution Statements, 34
Condition Code, 38



vi CONTENTS

PART 1l
3

Input Data, 40
Flowchart Logic, 44
Job Control, 47
Problems, 47

BASIC ASSEMBLER CODING
PROGRAMMING FOR CHARACTER DATA

Declaratives, 51

Character Instructions, 58
Storage-to-Storage Format, 58

Move Characters—MVC, 58
Compare Logical Character—CLC, 62
Storage Immediate Format, 65
Literals, 66

Equate Symbol—EQU, 68

Sample Program—Read and Print Customer Records, 69
Debugging Tips, 73

Problems, 73

DECIMAL DATA AND ARITHMETIC |

Hexadecimal Constants, 76

Move Numeric (MVN) and Move Zones (MVZ), 77
Zoned Decimal Data, 78

Packed Decimal Data, 80

Facked Operations, 82

Formatting the Print Area, 90

Sample Program—Budget Statement, 91
Debugging Tips, 96

Problems, 98

DECIMAL ARITHMETIC I

Editing—ED, 101

Multiply Packed—MP, 106

Move With Offset—MVO, 108

Divide Packed—DP, 110

Sample Program—Inventory Update, 113
ORG—Set Location Counter, 119
PDUMP—Partial Dump of Main Storage, 121
Debugging Tips, 123

Problems, 123

51

76

101



vii CONTENTS

6

PART Il
9

BASE REGISTERS AND INSTRUCTION
FORMAT

The General Purpose Registers, 126
Base Register Addressing, 127
Instruction Format, 130

Control Sections, 135

Assigning Base Registers, 136
Loading the Base Register, 137

OS Initialization, 139

Technical Note Re: BCR and BC, 141
Debugging Tips, 142

Problems, 142

INPUT AND OUTPUT

Input/Output Control System, 145
Imperative Macros, 146

The DOS DTF File Definition Macro, 150
The OS DCB File Definition Macro, 153
Locate Mode, 156

Device Independence Under DOS, 158
Abnormal Termination, 160

Debugging Tips, 160

Problems, 161

STRATEGY, STYLE, AND STANDARDS

Programming Objectives, 162
Subroutines and Linkage, 163
Programming Style, 166
Program Documentation, 167
Debugging Tips, 182
Problems, 182

BINARY OPERATIONS
REGISTERS AND BINARY PROGRAMMING

Binary Data Representation, 186

Binary Constants, 187

Conversion of Decimal and Binary Data—CVB and CVD, 191
Loading Registers—L, LH, LR, LM, LA, 192

Store Register Operations—ST, STH, STM, 196

Binary Arithmetic—A, S, AH, SH, AR, SR, 198

Binary Comparison—C, CH, CR, 199

Multiplication—M, MH, MR, 201

126

144

162

185



viii CONTENTS

Register Shift Instructions, 203

Binary Division—D, DR, 205

Conversion of Double-Precision Binary to Decimal Format, 208
Sample Partial Program—Finance Charge Rebates, 210
Debugging Tips, 210

Problems, 212

10 EXPLICIT USE OF BASE REGISTERS 213

Operations Explicitly Using Base Registers, 215
Tables, 218

Direct Table Addressing, 224

Sorting Data in Storage, 226

Binary Search, 227

Sample Program—Calculate Stock Value, 227
Debugging Tips, 234

Problems, 235

11 LOGICAL OPERATIONS AND BIT
MANIPULATION 237

Logical Operations, 237

Boolean Logic, 241

Other Operations, 244

Binary Operations—Summary, 255
Problems, 255

PART IV EXTERNAL STORAGE

12 MAGNETIC TAPE 209

Uses of Magnetic Tape, 260

Magnetic Tape Characteristics, 260

DOS Tape Programming Example—Creating a Tape File, 262
OS Coding for Magnetic Tape, 265

Tape File Organization, 265

IOCS For Magnetic Tape, 270

Variable Length Records, 272

Problems, 276

13 DIRECT ACCESS STORAGE 277

DASD Characteristics, 278

File Organization, 282

DOS Programming Example—Creating a Sequential
Disk File, 282

OS Program Examples, 284



ix CONTENTS

PART V
14

15

16

17

Disk Labels, 284

Indexed Sequential File Organization, 287
Processing DOS Indexed Sequential Files, 290
Processing OS Indexed Sequential Files, 296
Problems, 299

ADVANCED TOPICS

MACRO WRITING

Writing Macros, 304

Conditional Assembly Instructions, 310

Other Instructions, 313

Set Symbols, 314

System Variable Symbols, 319

Global Set Symbols, 320

Extended Example—Table Look-Up Macro, 321
Problems, 322

SUBPROGRAMS AND OVERLAYS

CSECT—Control Section, 323
DSECT—Dummy Section, 324
Subprogram Linkage, 326

Linking Two Control Sections, 329
Passing Parameters, 331

Linking Phases, 333

Overlay Considerations, 338
Problems, 339

OPERATING SYSTEMS

Operating Systems, 340

The Supervisor, 344

The Program Status Word—PSW, 347
Interrupts, 348

Channels, 350

Physical IOCS, 353

Problems, 355

FLOATING-POINT OPERATIONS

Floating-Point Formats, 357
Declaratives, 362

Floating-Point Registers, 363
Floating-Point Instructions, 364
Conversion From Packed to Float, 374

303

323

340

357



X CONTENTS

Conversion From Float to Packed, 374
Problems, 376

APPENDICES

A HEXADECIMAL AND DECIMAL

CONVERSION 377
B PROGRAM INTERRUPTS BY CODE 379
C 360/370 INSTRUCTION SET 382
D DOS AND OS JOB CONTROL 384
E SPECIAL MACROS: INIT, PUTPR, DEFCD,

DEFPR, EOJ 388

INDEX 392



PART I

INTRODUCTION TO
THE COMPUTER AND
THE ASSEMBLER



e, 75252 #EPDFIE V5 ) © www. ertongbook. com



