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PREFACE

Assembler language is the fundamental ““low-level”’ language of the IBM 360 and
370 computers. As such, it is directly translatable into machine language; thus, one
Assembler instruction typically generates one machine code instruction. “High-
level’”” languages like COBOL and PL/I are easier to learn. Why then an emphasis on
learning Assembler language? An understanding of Assembler language can help the
programmer in a number of ways:

— A knowledge of Assembler can facilitate learning of any other language, includ-
ing “‘high-level” languages and other assembly languages. And with a back-
ground in Assembler, the user can more clearly understand what the computer is
doing.

— A knowledge of Assembler can help the programmer become more efficient.
High-level languages like COBOL and PL/I can be deceptive, and appear to
execute in some mysterious fashion. A programmer familiar with Assembler can
code high-level languages with an understanding of what machine code they
generate, and what is the more efficient technique. For example, why in COBOL
does the use of COMPUTATIONAL, COMPUTATIONAL-3, and SYNC have con-
siderable effect on the program’s efficiency? What is the significance in PL/I of
Decimal Fixed, Aligned, and Defined? With knowledge of Assembler, a pro-
grammer can examine the generated code to determine more efficient ways to
write certain routines.

— Although most high-level languages provide extensive debugging aids, there are
times when the programmer needs to delve into the generated machine code or
examine storage dumps.

— Programs written in Assembler may be considerably more efficient in storage
space and execute-time, a useful consideration if such programs are run fre-
quently.

— Some advanced areas, such as technical support and telecommunications, re-
quire an extensive knowledge of Assembler.

Although the material in this text has been used successfully as an introduction
to programming, most educational institutes would not teach Assembler as an intro-
ductory language. Generally, the concepts of logic and programming style are easier
to learn when there is less need for concern with rigorous rules and field sizes. The
text does not, however, assume that the reader has had much, if any, programming
experience. The approach of the text is to introduce simple processing using card
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input and printer output, first with character data only, and then with simple decimal
arithmetic, all by Chapter 4. In this way, packed (decimal) data and editing are
introduced early, and the user is soon writing quite realistic programs.

The book should provide both a practical guide for the Assembler student and
also may act subsequently as a useful reference. These two objectives are accom-
plished by:

1. A step-by-step progression of material, from simple processing through to com-
plex. There are many practical examples of complete and partial programs to
illustrate concepts as they are introduced.

2. Chapters organized by logical topics, such as character data, packed, binary,
input/output. The user can concentrate on mastering one programming area at a
time, and most related material is contained in its own chapter.

The complexities of base/displacement addressing and file definition are de-
layed through use of several simple macros, similar to those used in many colleges.
The text drops these macros by Chapters 6 and 7, where the technical material is
covered in detail. Appendix E provides a listing of the macros for those who want to
catalogue them on their own system.

The two major IBM operating systems are DOS and OS. The text covers the
differences between them, giving examples for both.

It is possible to proceed through the text by several routes. Chapters O through 3
are fundamental, and the normal steps would be to continue sequentially with dec-
imal arithmetic in Chapters 4 and 5. It is recommended next to cover the important
material in Chapter 6 on base/displacement addressing and the instruction format,
and then the elements of input/output in Chapter 7. By this point the user should be
capable of coding some quite advanced programs. Chapter 8 on Programming
Strategy could be covered in part or total, perhaps the sooner the better to get the user
into subroutine logic. Following Chapter 8, the chapters need not all be covered
sequentially. The following diagram indicates related chapters in boxes that may be
taken in any sequence following Chapters 6 and 7:

6,7

6] [Bio.%,17] [213) [4] (5] [16)

Chapters 9, 10, and 11 develop related material on processing binary data. Chapter
12 on Magnetic Tape introduces basic material required for an understanding of Disk
Storage in Chapter 13. To complete Chapter 14 (Macro Writing) would require some
familiarity with the material in Chapter 9. Anyone interested in linking separately
assembled programs could attempt Chapter 15 directly after Chapter 7, perhaps
referencing Chapter 9 for some basic binary operations. Chapter 16 on Operating
Systems is presented for general useful information, although not entirely related to
Assembler programming as such.
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Among the users of earlier versions of this text, many have worked ahead of the
course, experimenting with binary operations, macro writing, and subprogram link-
age. Such motivation is certainly commendable and should be encouraged.

The IBM manuals concerned with the material in this text require a bookshelf
about five feet wide. Readers should not expect, therefore, that this or any other
single book will provide all there is to know about the Assembler language and
related topics. Eventually the IBM manuals have to be referenced for current detailed
information. The following IBM manuals or their equivalent are especially recom-
mended:

IBM FORM TITLE
GA22-7000 IBM System/370 Principles of Operation. (370 system organization,
machine instructions, input/output.)

GC33-4010 OS/VS-DOS/VS-VM/370 Assembler Language. (Assembler statements
and macros.)

GC33-5373 DOS/VS Supervisor and Input/Output Macros.
GC28-6646 OS Supervisor Services and Macro Instructions.
GC26-3746 OS Data Management Services Guide.
GC26-3794 OS Data Management Macro Instructions.

Other useful manuals include those on Job Control, disk file organization, tape
labels, disk labels, and the operating system.

Peter Abel
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