PERGAMON MATERIALS SERIES SERIES EDITOR: R.W. CAHN

THERMALLY ACTIVATED MECHANISMS IN CRYSTAL PLASTICITY

by
D. CAILLARD and J.L. MARTIN

Pergamon

PERGAMON MATERIALS SERIES

Thermally Activated Mechanisms in Crystal Plasticity

by

D. Caillard

CEMES/CNRS-BP4347, F 31055 Toulouse Cedex

2003

PERGAMON An Imprint of Elsevier

Amsterdam – Boston – London – New York – Oxford – Paris San Diego – San Francisco – Singapore – Sydney – Tokyo ELSEVIER Ltd The Boulevard, Langford Lane Kidlington, Oxford OX5 1GB, UK

© 2003 Elsevier Ltd. All rights reserved.

This work is protected under copyright by Elsevier, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all the other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier via their homepage (http://www.elsevier.com) by selecting 'Customer support' and then 'Permissions'. Alternatively you can send an e-mail to: permissions@elsevier.com, or fax to: (+44) 1865-853333.

In the USA, users may clear permissions and make payments though the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (+44) 207 631 5555; fax: (+44) 207 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier is required for external resale or distribution of such materials.

Permission of the Publisher is required for all the other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, reducing or otherwise, without prior written permission of the Publisher. Address permission requests to: Elsevier Global Rights Department, at the fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2003

Library of Congress Cataloging-in-Publication Data

Caillard, Daniel.

Thermally activated mechanisms in crystal plasticity/by Daniel Caillard, Jean-Luc Martin.

p. cm. - (Pergamon materials series; 8)

Includes bibliographical references and index.

ISBN 0-08-042703-0

1. Materials at high temperatures. 2. Crystals-Plastics properties. I. Martin, Jean-Luc, 1938-II. Title. III. Series.

TA417.7H55C35 2003 620,1'1296-dc21

British Library Cataloging in Publication Data

2003053563

Caillard, Daniel

Thermally activated mechanisms in crystal plasticity. -

(Pergamon materials series; 8)

- 1. Dislocations in crystals 2. Crystals Thermal properties
- 3. Crystals Plastic properties
- I. Title II. Martin, Jean-Luc

548.8'42

ISBN: 0 08 042703 0

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).
 Printed in The Netherlands.

Series Preface

My editorial objective in this Series is to present to the scientific public a collection of texts that satisfies one of two criteria: the systematic presentation of a specialised but important topic within materials science or engineering that has not previously (or recently) been the subject of full-length treatment and is in rapid development: or the systematic account of a broad theme in materials science or engineering. The books are not, in general, designed as undergraduate texts, but rather are intended for use at graduate level and by established research workers. However, teaching methods are in such rapid evolution that some of the books may well find use at an earlier stage in university education.

I have long editorial experience both in covering the whole of a huge field – physical metallurgy or materials science and technology – and in arranging for specialised subsidiary topics to be presented in monographs. My intention is to apply the lessons learned in 40 years of editing to the objectives stated above. Authors (and in some instances, as here, editors) have been invited for their up-to-date expertise and also for their ability to see their subject in a wider perspective.

I am grateful to Elsevier Science Ltd., who own the Pergamon imprint, and equally to my authors and editors, for their confidence, and to Mr David Sleeman, Publishing Editor, Elsevier Science Ltd for his efforts on behalf of the Series.

Herewith, I am pleased to present to the public the eighth title in this Series, on a topic of great current concern.

ROBERT W. CAHN, FRS (Cambridge University, UK)

Preface

The authors decided to start this joint venture, during the International Conference on the Strength of Materials (ICSMA11), in Prague, in August 1997. The idea was to gather experimental results and their physical interpretation about various dislocation mobility mechanisms. These were part of their respective lines of research, performed more or less independently through the years.

Later on, they were lucky enough to meet Professor R. W. Cahn, FRS, who became enthusiastic about the idea and very patiently encouraged them to realize their project.

The correct description of dislocation mobility mechanisms and related activation parameters, requires:

- (i) The selection of the relevant experimental facts. This is sometimes a difficult task, given the abundance of available informations at different scales and levels of resolution.
- (ii) A proper derivation of the related theory.

The reader will find a blend of data and related interpretations; we hope that the physics of the processes is not hidden by the equations.

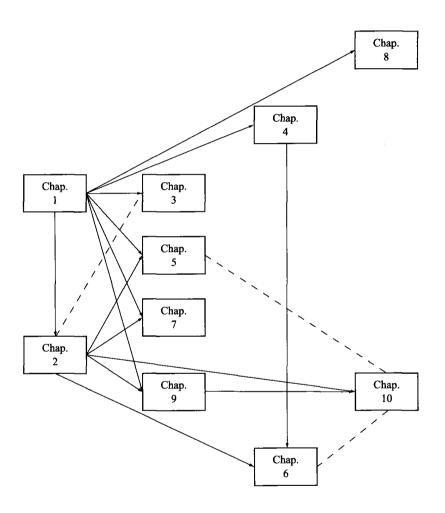
It is a pleasure to acknowledge the helpful comments we have received from several colleagues and friends. At an early stage of the writing, Prof. F.R.N. Nabarro suggested several important points to include. All through the years repeated contacts and discussions with a variety of individuals have tremendously helped to refine our views on different subjects. In EPF-Lausanne, JLM would like to thank particularly F. Nabarro, G. Saada, and M. Kleman, who came several times as visiting scientists, F. Lévy, for his good advices, J. Bonneville for his long and active collaboration on several of the topics presented here, T. Kruml for numerous discussions and a long list of former postdocs, particularly M. Mills, K. Hemker, M. Cieslar and former PhD students among whom are M. Morris, P. Anongba, N. Baluc, P. Spätig, B. Viguier, B. Lo Piccolo (Matterstock), and C. Dupas (Charbonnier), whose articles are duly referenced. Many thanks are also due to Ms S. Lovato who has typed most of the manuscript in addition to her heavy daily tasks, and to M. O. Bettler and L. Heinen for their very careful handling of all the figures.

In CNRS Toulouse, DC is indebted to his colleagues and friends from the laboratory and from abroad, A. Couret, G. Molenat, M. Legros, F. Mompiou, G. Vanderschaeve, N. Clément, V. Paidar and E. Conforto for their contributions to several of the experiments and theoretical developments presented.

Grateful acknowledgement is made to Professor G. Margaritondo, Dean of the Faculty of Basic Sciences at EPFL, for providing favorable conditions for this venture, to the Swiss

viii Preface

National Science Foundation, for the financial support of most of the research performed in Lausanne.


Last but not least, the authors are greatly indebted to Prof. J. Friedel who, several years ago, showed them the way.

DANIEL CAILLARD, JEAN-LUC MARTIN

December 2002

Reader's Guide

Organization of the material: the arrows indicate a recommended reading order.

Contents

Serie	es Prefac	ce		v
Prefa	ace			vii
Read	ler's Gu	ide		ix
CHA	PTER	1		
INTI	RODUC	TION		
1.1.	Scope	and Outli	ne	3
1.2.	Therm	al Activat	tion Theory: A Summary	5
Refe	rences			8
	PTER 2			
EXP	ERIME	NTAL CH	HARACTERIZATION OF DISLOCATION MECHANISM	ИS
2.1.	Transi	ent Mecha	anical Tests	13
	2.1.1		ate Jump Experiments	14
	2.1.2		elaxation Tests	15
	2.1.3			20
	2.1.4		tation of Repeated Stress Relaxation Tests	21
		2.1.4.1	General Considerations	22
		2.1.4.2	Activation Volume and Microstructural Parameters	23
	2.1.5	Interpret	tation of Repeated Creep Tests	26
	2.1.6	Experim	nental Assessments	28
		2.1.6.1	Transition Between Monotonic and Transient Tests	28
		2.1.6.2	Examples of Repeated Creep Tests	31
		2.1.6.3	Results of Stress Relaxation Series	31
		2.1.6.4	Results of Creep Series and Comparison with Stress	
			Relaxations	35
	2.1.7	Stress R	eduction Experiments	38
	2.1.8	Conclus	ions About Transient Mechanical Tests	39
2.2.	Deform	nation Ex	periments in the Electron Microscope	40
	2.2.1	Some K	ey Technical Points	41
	2.2.2	Quantita	ative Information Provided by In Situ Experiments	42
	2.2.3	Reliabili	ity of In Situ Experiments in TEM	43
2.3.	In Situ	Synchrot	tron X-ray Topography	45
2.4.	Obser	vation of S	Slip Traces at the Specimen Surface	48
2.5.	Conclu	usion Abo	out the Characterization of Dislocation Mechanisms	51
Refe	rences			51

xii Contents

CHA	PTER 3		
INTE	ERACTI	ONS BETWEEN DISLOCATIONS AND SMALL-SIZE OBSTACLES	
3.1.	Therma	ally Activated Glide Across Fixed Small-size Obstacles	57
	3.1.1	The Rectangular Force-Distance Profile	59
	3.1.2	The Parabolic Force-Distance Profile	61
	3.1.3	The Cottrell-Bilby Potential (Cottrell and Bilby, 1949)	62
3.2.	Disloca	ations Interacting with Mobile Solute Atoms	63
	3.2.1	Long-Range Elastic Interactions	63
	3.2.2	Static Ageing, Dynamic Strain Ageing and	
		the Portevin-Lechâtelier Effect	65
	3.2.3	Diffusion-Controlled Glide	68
3.3.	Compa	rison with Experiments	72
	3.3.1	The Forest Mechanism	72
	3.3.2	Dislocations-Solute Atoms Interactions	73
		3.3.2.1 Domain 2: Thermally Activated Motion Across	
		Fixed Obstacles	76
		3.3.2.2 Domain 3: Stress Instabilities and PLC Effect	80
		3.3.2.3 Domain 4: Glide Controlled by Solute-Diffusion	80
Refe	rences		81
	PTER 4		
		L FORCES IN METALS	
		ation Core Structures and Peierls Potentials	85
4.2.		air Mechanism	88
	4.2.1	Principles	89
	4.2.2		89
	4.2.3	Energy of an Isolated Kink	92
		4.2.3.1 Dorn and Rajnak Calculation (Smooth Potentials)	92
		4.2.3.2 Line Tension Approximation	93
		4.2.3.3 Abrupt Potential	94
	4.2.4	Energy of a Critical Bulge (High Stress Approximation)	95
		4.2.4.1 Dorn and Rajnak Calculation (1964)	95
		4.2.4.2 Line Tension Approximation	96
		4.2.4.3 Abrupt Potential	100
	4.2.5	Energy of a Critical Kink-Pair (Low Stress Approximation:	
		Coulomb Elastic Interaction)	101
	4.2.6	Transition Between High Stress and Low Stress Regimes	102
	4.2.7	Properties of Dislocations Gliding by the Kink-Pair Mechanism	109

			Contents	xiii
4.3.	Therm	ally Activa	ated Core Transformations	111
	4.3.1	Transform	mations into a Higher Energy Core Structure	111
	4.3.2		mation into a Lower Energy Core Structure	112
	4.3.3	Sessile-0	Glissile Transformations in Series (Locking-Unlocking	
		Mechanis	sm)	113
	4.3.4	Transitio	n Between the Locking-Unlocking and the Kink-Pair	
		Mechanis	sm	115
	4.3.5	Propertie	s of Dislocations Gliding by the Locking-Unlocking	
		Mechanis	sm	121
4.4.	Conclu	isions		121
Refe	rences			122
	PTER :			
		ION CROS		
5.1.		ling Cross-	-	127
	5.1.1		ary Mechanisms	127
		5.1.1.1	` ,	128
		5.1.1.2	The Washburn Model (1965)	129
		5.1.1.3	The Schoeck, Seeger, Wolf model	130
	5 1 0	5.1.1.4	The Friedel-Escaig Cross-slip Mechanism	130
	5.1.2		ion Energy	131
	5.1.3.		Description of Cross-slip (1968)	134
		5.1.3.1	The Activation Energy for Cross-slip	134
		5.1.3.2	The Activation Volume	139
			Orientation Effects	140
			Refinements in the Activation Energy Estimation	141
5.2.	-		sessments of Escaig's Modelling	142
	5.2.1		neville-Escaig Technique	143
	5.2.2	-	ental Observations of Cross-slip	143
		5.2.2.1	TEM Observations	143
		5.2.2.2	Optical Slip Trace Observations	144
		5.2.2.3	Peculiar Features of the Deformation Curves	144
	5.2.3		vation Parameters	148
	5.2.4	_	ental Study of Orientation Effects	150
5.3.			ling of Dislocation Cross-slip	151
5.4.			Conclusions	153
	5.4.1		Closer to the Truth?	153
	5.4.2	Cross-slij	p and Stage III in FCC Metals	154
Refe	rences			155

xiv Contents

CHAPTER 6

EXP	ERIME	NTAL ST	UDIES OF PEIERLS-NABARRO-TYPE FRICTION	
FOR	CES IN	METALS	S AND ALLOYS	
6.1.	Prisma	tic Slip in	HCP Metals	159
	6.1.1	Prismati	c Slip in Titanium	159
	6.1.2	Prismati	c Slip in Zirconium	167
	6.1.3	Prismati	c Slip in Magnesium	170
	6.1.4	Prismation	c Slip in Beryllium	173
	6.1.5	Conclusi	ions on Prismatic Slip in HCP Metals	182
6.2.	Glide o	on Non-Cl	lose-Packed Planes in FCC Metals	183
	6.2.1	{110} S	lip	183
	6.2.2	{100} S	lip in Aluminium	185
		6.2.2.1	Creep Test Results	187
		6.2.2.2	Results of Constant Strain-Rate Tests	189
		6.2.2.3	Features of Dislocations in (001)	192
	6.2.3	Origin o	f Non-Octahedral Glide in Aluminium	194
	6.2.4	Glide on	Non-Close-Packed Planes in Copper	196
		6.2.4.1	Stress-Strain curves	196
		6.2.4.2	Microstructural Features	196
		6.2.4.3	Critical Stress for Non-Octahedral Glide	197
	6.2.5	Modellir	ng of Non-Octahedral Glide in FCC Metals	199
		6.2.5.1	Possible Mechanisms	199
		6.2.5.2	{001} Glide in Aluminium and the Kink-Pair Mechanism	199
		6.2.5.3	Modelling {110} Glide in Aluminium	202
		6.2.5.4	Non-Octahedral Glide in Copper	203
		6.2.5.5	Comparison of FCC Metals	204
	6.2.6	The Rele	evance of Slip on Non-Close-Packed Planes in	
		Close-Pa	acked Metals	205
		6.2.6.1	Optimum Conditions for Unconventional Slip in	
			Aluminium	205
		6.2.6.2	Non-Conventional Glide as a Rate Controlling Process	206
6.3.	Low-T	emperatur	re Plasticity of BCC Metals	209
	6.3.1	Mechani	cal Properties	209
		6.3.1.1	Iron and Iron Alloys	209
		6.3.1.2		212
		6.3.1.3	Other BCC Metals	213
	6.3.2	Microstr	uctural Observations	214
	6.3.3	Interpret		216
	6.3.4	Conclusi	ons on the Low-Temperature Plasticity of BCC Metals	220

Contents	X

	The Imrences	portance of Friction Forces in Metals and Alloys	220 221
	PTER 7		
		LS-NABARRO MECHANISM IN COVALENT CRYSTALS	
		tion Core Structures and Peierls-Nabarro Friction Forces	227
7.2.		ation Velocities	229
	7.2.1	High Kink Mobility (Metal-Like Model of Suzuki et al., 1995)	229
	7.2.2	Low Kink Mobility: Case of Undissociated Dislocations	230
		7.2.2.1 Point-Obstacle Model of Celli et al. (1963)	232
		7.2.2.2 Kink Diffusion Model of Hirth and Lothe (1982)	233
	7.2.3	Low Kink Mobility: Case of Dissociated Dislocations	241
7.3.	Experi	mental Results on Dislocation Velocities	247
	7.3.1	Mobility as a Function of Character	248
		7.3.1.1 Elemental Semiconductors (Si)	248
		7.3.1.2 Compound Semiconductors	252
	7.3.2	Velocity as a Function of Stress	256
	7.3.3	Velocity as a Function of Temperature	259
	7.3.4	Regimes of Dislocation Movements	264
	7.3.5	Velocity Enhancement Under Irradiation	268
	7.3.6	Experiments at Very High Stresses	272
7.4.	Conclu	sions	275
Refer	rences		276
СНА	PTER 8		
DISL	OCATI	ON CLIMB	
8.1.	Introdu	ction: Basic Mechanisms	281
	8.1.1	Definition of Climb	281
	8.1.2	Mechanical Forces for Pure Climb	282
	8.1.3	Diffusion of Point Defects	282
	8.1.4	Jog-Point Defect Interactions	283
		8.1.4.1 Jog-Vacancy Interactions	284
		8.1.4.2 Jog-Interstitial Interactions	287
		8.1.4.3 Summary	288
8.2.	Vacano	ry Emission Climb Mechanism	288
	8.2.1	High Jog Density	289
		8.2.1.1 Climbing Dislocations with a Small Average Curvature	289
		8.2.1.2 Growth or Shrinking of Small Prismatic Dislocation Loops	292
	8.2.2	Low Jog Density	293
		8.2.2.1 No Pipe Diffusion	293

xvi Contents

		8.2.2.2	The Role of Pipe Diffusion	295
		8.2.2.3	Jog-Pair Nucleations	298
		8.2.2.4	Stress Dependence of the Climb Velocity	300
	8.2.3	Conclus	ion on the Vacancy-Emission Climb Mechanism	301
8.3.	Vacan	cy or Inter	rstitial-Absorption Climb Mechanism	302
	8.3.1	High Jo	g Density (e.g. Curved Dislocations)	303
	8.3.2	Low Jog	Density (e.g. Polygonal Dislocations)	304
	8.3.3	Growth	and Shrinking of Prismatic Loops During Annealing	305
8.4.	Experi	mental St	udies of Climb Processes	307
	8.4.1	Pure Cli	mb-Plasticity	307
		8.4.1.1	Climb in HCP Magnesium and Beryllium	307
		8.4.1.2	Climb in Intermetallic Alloys	309
		8.4.1.3	Climb in Quasicrystals	310
	8.4.2	Growth	and Shrinking of Loops During Annealing	311
		8.4.2.1	Shrinking of Vacancy Loops in Thin Foils	312
		8.4.2.2	Competitive Loop Growth in Bulk Materials	313
		8.4.2.3	Growth of Loops Under High Defect Supersaturations	314
		8.4.2.4	Conclusions on the Loop-Annealing Experiments	315
	8.4.3	Irradiatio	on-Induced Creep	316
8.5.	Conclu	ısion		318
Refe	rences			318
СНА	PTER 9)		
			TIPLICATION, EXHAUSTION AND	
		RDENING		
9.1.	Disloca	ation Mul	tiplication	323
	9.1.1		of Sources	323
	9.1.2	Observe	d Dislocation Sources	326
		9.1.2.1	Glide Sources with One Pinning Point	326
		9.1.2.2	•	327
		9.1.2.3	Open Loop Multiplication	328
	9.1.3	Multiplie	cation Processes in Covalent Materials	331
		9.1.3.1	General Features	332
		9.1.3.2	Three Dimensional Mesoscopic Simulations of	
			Dislocation Multiplication	336
		9.1.3.3	Testing the Proper Multiplication Laws	339
		9.1.3.4	Conclusions About Dislocation Multiplication in	
			Covalent Crystals	342
9.2.	Mobile	Dislocati	ion Exhaustion	343
	9.2.1	Cell For	mation	343

			Contents	xvii
	9.2.2	Exhausti	on Through Lock Formation in Ni ₃ Al	344
	9.2.3	Impurity	or Solute Pinning (Cottrell Effect)	347
	9.2.4	Exhausti	on with Annihilation	349
9.3.	Work-	Hardening	Versus Work-Softening	352
9.4.	Conclu	sions Abo	out Dislocation Multiplication, Exhaustion and Subsequent	
	Work-l	Hardening		355
9.5.	Disloca	ation Mult	iplication at Surfaces	355
	9.5.1	Dislocati	on Generation at Crack Tips	355
	9.5.2	Dislocati	on Nucleation at a Solid Free Surface	356
	9.5.3	Conclusi	on on Dislocation Multiplication at Free Surfaces	358
Refe	rences		-	358
CHA	APTER 1	10		
MEC	CHANIC	CAL BEHA	AVIOUR OF SOME ORDERED INTERMETALLIC	
CON	IPOUNI	DS		
10.1	Ni ₃ Al a	and L1 ₂ C	ompounds	363
	10.1.1	General (Considerations	363
	10.1.2	Dislocati	on Cores	366
		10.1.2.1	Technical Difficulties Bound to Dislocation Core	
			Characterization in Ni ₃ Al	367
		10.1.2.2	Data About Fault Energies	371
	10.1.3	Cube Gli	de	372
		10.1.3.1	Dislocation Cores	372
		10.1.3.2	Dislocation Mobility	374
	10.1.4	Octahedr	al Glide	376
		10.1.4.1	General Considerations	376
		10.1.4.2	Microscopic Aspect of {111} Glide	377
		10.1.4.3	Complete Versus Incomplete KWL	379
	10.1.5	Understa	nding the Mechanical Properties of Ni ₃ Al compounds	381
		10.1.5.1	Definition of the Yield Stress	381
		10.1.5.2	Temperature Variations of the Yield Stress and	
			Work-hardening Rate	382
		10.1.5.3	Yield Stress Peak Temperature (Single Crystals)	383
		10.1.5.4	Yield Stress Peak Temperature (Polycrystals)	388
		10.1.5.5	Conclusion About the Peak Temperature for the Yield	
			Stress	389
		10.1.5.6	The Temperature of the Work-hardening Peak in	
			Single Crystals	390
		10.1.5.7	The Temperature of the Work-hardening Peak in	
			Polycrystals	394

xviii Contents

10.1.5.8 Conclusions About the Peak in Work-Hardening	397
10.1.6 The Role of Different Fault Energies	399
10.1.7 Strength and Dislocation Density	400
10.1.7.1 Values of Dislocation Densities in Ni ₃ Al	400
10.1.7.2 Dislocation Densities and Mechanical parameters	400
10.2. Stress Anomalies in other Intermetallics	402
10.2.1 Other L1 ₂ Crystals	403
10.2.2 B2 Alloys	406
10.2.2.1 Deformation Mechanisms in β CuZn	40€
10.2.2.2 FeAl Compounds	408
10.2.3 Conclusion on Strength Anomalies in Ordered intermetallics	408
10.3. Creep behaviour of Ni ₃ Al Compounds	409
10.4. Conclusions	411
References	411
CONCLUSION	417
GLOSSARY OF SYMBOLS	419
INDEX	425

Chapter 1

Introduction

1.2.	Thermal Activation Theory: A Summary	5
Refer	rences	Q