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Preface

In teaching an elementary course in stochastic processes it was noticed that
many seemingly deep results in point processes are readily accessible by the
device of representing them in terms of random gap lengths between points.
The possibility of representing point processes in terms of sequences of
random variables rather than probability measures makes them mathemati-
cally simpler than general stochastic processes. Point processes can be studied
using only the tools of elementary probability, that is the joint distributions of
finitely many random variables. Given the wide applicability of point process
models and the difficulty of access by the measure-theoretic route, it was
determined that the simpler representation is of sufficient expository im-
portance to deserve emphasis. The present book is the result: it is specialized
and short and therefore is called a monograph. In its development the material
has been taught to several classes with pleasing results. Students have
apparently understood theorems which by other methods appear difficult and
deep. A few of the results, particularly on reliability, safety assessment and
clustering, are original applied research.

An alternative title for this monograph might be ‘Point processes: What they
are and what they are good for.” The specialization to point processes is of
course of restriction, but one cannot learn all of probability at once and point
processes are more general and of more common applicability than would at
first appear; the specialization is perhaps justified by the ease with which an
extensive theory can be treated at an elementary level.

The monograph is written for those who have already mastered the material
of a first rigorous course in probability® and for some reason wish to expand
their knowledge of point process models. They may wish to better understand
or appreciate the theory or perhaps to acquire skill in constructing probabil-
istic models. An elementary treatment of an extensive and applicable theory
should be of special interest to those concerned with applications. The
material is particularly useful for reliability, safety analysis, life distributions
and clustering. The inclusion of problems makes the monograph suitable as a

@ See Notes on the literature at the end of Appendix 1.
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text for a specialized course or topics seminar for beginning graduate or
advanced undergraduate students. Most of the problems merely check
whether the text material was understood; but a few problems, those marked
by an asterisk, extend the text and are moderately difficult. Familiarity with
calculus concepts such as limit, supremum, continuity, derivative, integral, and
Taylor’s theorem is assumed. A few elementary differential equations are
solved. The reader will need to be motivated and at home with mathematical
reasoning as the arguments are elementary but not always easy.

A more ambitious task would be to treat not only models but their statistical
analysis. That would at least double the size of the monograph and the time
required for reading and writing it. Most of what we have to say fits
comfortably under the title point process models but occasionally it has
seemed desirable to comment on statistical issues. To understand this
material, which is noted in the text and is not essential for the main theme, a
beginning background in statistics is needed.

The intent of this monograph is to provide models for the placement of
points on a time axis according to some chance mechanism. Chapter 1 is a
preview of some of the theory and applications to be discussed. Section 2.1
attempts to place point processes in their probabilistic context. Appendix 1
provides general probability background which a potential reader may not
have encountered. Chapter 2 sets forth the main issues and problems which
arise when points are probabilistically placed on a time axis. Chapter 3
discusses homogeneous Poisson processes which are fundamental for under-
standing all point processes. The topic of Chapter 4 is how to quantify safety;
point processes are found to be useful in this task. An extensive exposition of
general Poisson processes, not available elsewhere, appears in Chapter 6. Brief
discussions of renewal and superimposed processes, which are nicely exposited
elsewhere, are presented for completeness in Chapters 5 and 7 respectively.
Chapter 8 treats the important class of Markov point processes. Chapter 9is a
discussion, by example, of the concept of clustering of points; it is an
application of Markov processes. Chapters 10 and 11 discuss topics having to
do with length of life as in actuarial science. Appendix 2 treats point process
concepts judged too technical to include in the text proper.

Some comments about notation and conventions will be helpful. We prefer
to use capital Latin letters to denote random variables and the corresponding
lower case to denote values which the random variables may assume. EX
denotes the expectation of the random variable X. Where possible, parameters
and parametric functions are denoted by Greek letters. The conclusion of a
proof is signified by the symbol #. Some further conventions are gathered
together in Tables 1 and 2; the reader may refer back to these rather than a
hunting for the appropriate place in the text.

I have received much help in writing this monograph. The insistence of
Harry Ascher convinced me that something was very wrong about the way
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Table 1 Notational conventions

Concept Notation
points on the time axis Lt u,
universal indexing set, the set

of all times considered T,[0,1]
set consisting of the single point ¢ {t}
number of arrivals on (0, t] N(t)
number of arrivals on the set A NA
hazard rate of a lifelength r(t)
intensity function of a process At)
arrival rate of a process u(t)
EN(t) M(t)
a function which, if divided by x,

approaches zero as x goes to zero o(x)
a function which, if divided by x, remains

bounded as x goes to zero O(x)
the Poisson density function plk; o)

that certain reliability problems were being formulated. Bruce McDonald
believed that I could help straighten things out. It was Ram Uppuluri who
introduced me to the Reactor Safety Study and the field of risk analysis. Earlier
versions of this material were used in a topics course at the University of
Missouri; student comments and suggestions are much appreciated. In
particular, I wish to thank Hamid Fallahi and Mohamed Habibullah for their
help. Several anonymous reviewers have managed to say nice things about
my manuscript, while at the same time prompting me to think more carefully
about certain points. D. V. Hinkley, A. E. Raftery, Mark Dozzi and Bruce
Thompson have been particularly helpful and generous with their time. Tina
Carmack and Judy Dooley have stuck with me through version after version
of typed manuscript.

Table 2 Random variables

Name Notation Distribution function
arrival time Y; Gi(y)
gap length or gap X; H(x)=P(X;<Xx)
forward waiting time W, K, (w)=P[N(t,t + w]>1]
conditional forward

waiting time W, L(w)=P[N(t,t + w] = 1|N{t} > 1]
lifelength Z; F(z)
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1
Introduction

1. ARRIVALS IN TIME

The motivation for this monograph is to provide models for the placement of
points (often called arrivals) on the time axis according to some chance
mechanism. Familiar examples are the arrivals of radioactive particles at a
Geiger counter, the successive collisions of a given particle with other particles
in the kinetic theory of an ideal gas, the arrivals of ships to be unloaded at a
dock, and the arrivals of telephone calls at a switchboard. The independent
variable need not be time but may be some other nonnegative quantity such as
age, length or area. An example of the latter type would be the finding of red
corpuscles on the surface of a microscope slide. But, we adopt a language and
notation reflecting the common situation which is that the independent
variable is time.

Chapter 2 sets forth the main issues and problems which arise when points
are placed according to a probabilistic mechanism on the time axis.

Chapters 3 and 6 discuss Poisson processes. A Poisson process places points
on the time axis so that the number of points on any interval is Poisson
distributed and events, concerning the points, defined on nonoverlapping
intervals are probabilistically independent. A point process is homogeneous if
the probabilistic mechanism of placing points on a portion of the time axis is
the same as the placement mechanism for any translation of that portion.
Homogeneous processes often serve as models of physical processes which
have been in operation sufficiently long to be in ‘equilibrium.’

Chapter 3 treats processes which are both homogeneous and Poisson; these
processes are central to the subject of point processes for two reasons. First, the
homogeneous Poisson processes serve as models for the placement of points
on the time axis ‘at random.” ‘At random’ has several meanings. Choosing a
sample of three from ten people at random means that every subset of size
three has the same probability, and therefore () !, of constituting the
sample. Choosing a point X at random in the interval (0, 1) means according to
the uniform distribution P(X <x)=x, 0 < x < 1. This meaning does not
extend directly to the interval (0, c0). However we show, in section 3.4, that in
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several indirect senses this concept of ‘at random’ does extend to the entire
positive real line and in fact yields the homogeneous Poisson processes.

A second reason for the central position of the homogeneous Poisson
processes is that they may be characterized in terms of their properties in
several ways, and the other main classes of point processes are obtained by
omitting or altering one or another of these properties. Thus the homogeneous
Poisson processes are special cases of the other classes. For instance, if the
homogeneity property is dropped, the general class of Poisson processes is
obtained. Chapter 6 contains the discussion of general Poisson processes.

Chapter 5 treats renewal processes for which, in a sense, each time a point
occurs it is as though we were starting over from the beginning. Chapter 7,
entitled Superimposed processes, treats properties of a summary process
obtained from several point processes operating simultaneously.

Chapter 8 treats Markov point processes for which the probabilistic
mechanism which produces future points depends on the number of prior
points but is otherwise unaffected by the past. Chapter 9 is a discussion, by
example, of the concept of clustering; it is an application of the previously
discussed Markov processes. Clustering has to do with whether points in space
or time are more or less regularly spaced than points distributed according to
the homogeneous Poisson processes.

Chapters 10 and 11 treat topics having to do with length of life as in
actuarial science. Chapter 10, The order statistics process, is an example of a
Markov process as discussed in Chapter 8.

We strive for an account which is mathematically general but, where the
generalization is clear, we like to use the suggestive and intuitive language of
one application or another. Favorite applications will be to reliability and to
the related area of safety assessment. Applications to reliability appear
throughout the monograph but our discussion of safety assessment is
concentrated primarily in Chapter 4 but then again in sections 3 and 4 of
Chapter 11.

1.2 RELIABILITY

Loosely, reliability is the study of whether and when things will work. The
statistical theory of reliability owes its initial success to its origin in attempting
to make rockets work sufficiently well to carry out projects of the space
program. A common reliability approach is to synthesize a complex engineer-
ing system into more elementary systems (called components) and to
attempt to take advantage of the structure of the system in order to build
mathematical models to predict whether a system will perform its required
function or perhaps explain why it did or did not perform its function.
Much reliability theory (e.g. Mann, Schafer and Singpurwalla, 1974;
Barlow and Proschan, 1975) deals strictly with nonrepairable systems and is
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essentially the study of lifetime distributions particularly in terms of the hazard
rate or force of mortality.

Enlarging on this, let Z denote lifelength, that is, the length of time until a
particular functioning object fails to function properly. Once the object fails, it
stays in that state; we are considering it to be nonrepairable. Except for the
intuitive background, we may think of lifelength as meaning simply a
nonnegative random variable. Practical examples are the lifelength of a
lightbulb, or of a person, or the storage life of a shelved drug. For continuous
lifelength we write

P(Zst)=F(t)=J“f(x)dx

0
The exponential distribution

0, t<0
l—e ™™ >0

F(t)={

has proved useful as a model for lifelength (see Epstein and Sobel (1954)), but
it has a ‘no aging property’ which is peculiar in this context. If the random
variable Z is exponential, then

P[Z>t+h|Z>t]=P[Z>h]

forall t >0, h > 0. That is, in a probability sense, residual life is independent of
age.

Obviously, many objects age, i.e., become more prone to failure, as they
become older. Some actually strengthen as they get older, e.g. some electronic
circuits and mechanical devices during early life.

The concept of hazard rate is useful to describe variation over time of the
tendency of an object to fail. The hazard rate, force of mortality or failure rate
of the lifelength Z, or the distribution F, is defined to be

Pi<Z<t+Alt<Z)

r(t)= il_l;l’(l) A
=1lim Pt <Z <t+A)/[AP(t<Z)]
A—0
' t+A
= ilil}) f(x)dx/[AF(1)] = f(t)/F(z)

where F(t) = P(Z > t). Hazard rate is useful and has a meaningful interpreta-
tion: r(t)A represents approximately the probability that an object of age t
will fail in the interval [¢,t + A). If r(¢) does not decrease, then F or Z is said to
be increasing hazard rate. A decreasing hazard rate is similarly defined.

A common situation is that of ‘bathtub-shaped’ hazard rate (Fig. 1.1);
initially the hazard rate decreases from a relatively high value due to
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Fig. 1.1 Bathtub-shaped hazard rate.

manufacturing defects or infant mortality to a relatively stable middle life
value and then slowly increases with the onset of old age or wearout. This
behavior can be observed in any human actuarial life table.

A recurring theme of this monograph is the uses and abuses of the hazard
rate concept. Many of the abuses are due to the unfortunate name ‘failure rate.’
The difficulty is that copies of a piece of equipment being simultaneously tested
do not fail at rate r(t). Stated in more detalil, if n independent lifelengths with
common distribution F and density f are sampled and if Y,,..., Y, denote the
ordered failure times (the order statistics of section A1.4) then they constitute a
process of failures evolving in time, the so-called order statistics process to be
discussed in more detail in Chapter 10. There it is shown that the rate of
expected failure of the order statistics process is not r(t) nor nr(t) but nf (t), a fact
which has brought many a practicing reliability analyst to grief. The name
‘hazard rate’ is not as easily misinterpreted. It is also shown in Chapter 10 that
the conditional intensity of the Markov process of deaths in an actuarial
cohort is r(t) times the random number of individuals at risk at time ¢. This is
perhaps the most meaningful sense in which r(t) may be called a failure or
death rate.

We call F(t)= P(Z >1) the survival function. For hardware, F(t) is often
called the reliability since it is the probability that the equipment will perform
its function adequately for a mission time t. For continuous distributions
F(t)=1—F().

Note that

d _
t)=—/[—InF(t 1.1
r() =5 [~ In F()] (1.1)
Solving this differential equation we find that the survival function is

F(t)=exp [ — f‘ r(x) dx:| (1.2)
0
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Differentiating, the density is

t
f@)=r(t)exp [— f r(x) dx:| (1.3)
(0]

Some distributions which have been important in life studies are: (i) the
exponential with constant hazard rate; (ii) the Weibull, with r(f) = pat*™ 1,
p,o>0; and (iii) the Gompertz with r(t) = Bexp(Ct), B, C > 0. Makeham’s
formula, r(t) = A + Bexp(Ct), A, B, C > 0, has been important in the theory of
life insurance (see Jordan (1975)). But reliability is not just actuarial science
recast in an engineering setting; in some cases force of mortality may not even
be to the point.

For our purpose it is convenient to draw a distinction between repairable
and nonrepairable system reliability. We have been discussing nonrepairable
reliability. Familiar repairable systems are automobiles and computers. The
distinction between repairable and nonrepairable is not as clear as it first
appears. The distinction often amounts to a decision whether to treat a product
as throwaway or repairable goods. Many products, from bottles to automo-
biles, may be reprocessed or repaired and put back into service; although it
may be uneconomical, unsafe or generally unwise to do so.

Most of us have lived in a society of throwaway consumer goods where
items are simply manufactured, used, and discarded when they fail. But for
several reasons the throwaway strategy will no longer suffice. First, things
(such as space vehicles) are becoming so complex that the throwaway strategy
might never produce a single working item. Second, as in the example of a
nuclear power plant or jet airliner, the first failure may be too much. Finally, it
is being realized that design for repair may be an economical policy after all.

When we move from throwaway to repairable industrial products, the
statistical reliability considerations become more complex. For the throw-
away product, reliability can be defined as the probability that the product will
adequately perform its desired function for a prescribed length of time. In this
way we are primarily interested in the probability distribution of time to first
(and only) failure. But for repairable items we become interested in the rate at
which failures are expected to occur. Actually, the entire probabilistic process
by which failures occur will be of interest. Often the successive failures of a
repairable system can be modeled as a point process.

1.3 SAFETY ASSESSMENT

A second favorite application is to safety assessment. With increased
population density, environmental awareness and technological intensity, the
desire and the need to quantify safety is great. There is a special need to assess
the impact of technological innovation on societal safety through alteration of
the environment. There are several approaches to the quantification of safety,
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some of them quite old and now well established. A few suggestive references
are Jordan (1975), Freudenthal (1975), Gumbel (1958) and Rowe (1977). The
most extensive safety study to date is the Nuclear Regulatory Commission
Reactor Safety Study (1975). For this reason much of our discussion will be in
terms of the safety of nuclear power plants. But this is just the best developed
and understood example of a general problem.

A theory of safety assessment would outline general methods and proce-
dures to quantify the safety of an activity. The activity might be existing or
contemplated; it could be industrial, governmental, or military. There will of
course be many problems of detail (which only a subject matter specialist
could solve) in fitting the theory to specific applications; some activities will
certainly fall outside the contemplated theory, perhaps motivating competing
theories. But many activities have common features and their safety could be
assessed by variations of a common theory. Safety assessment has a
substantial probabilistic and statistical component.

1.4 RANDOM STRESS AND STRENGTH*

Structural problems in engineering are often formulated in terms of stress and
strength. Systems are designed so that component strength exceeds antici-
pated stress. Freudenthal (1975) has suggested that probability should play a
greater role in this design task. As an illustration of the possibilities, consider
the following safety problem.

If the propellant of a shoulder-fired rocket is still burning when the rocket
leaves the tube, then the operator will be burned. Given the firing data of
Table 1.1, is the rocket safe to use?

One formulation is as follows. Let B and T denote burning and tube time
and D =T — B. The probability of an accident is p = P(D <0). We might
structure questions concerning the safety of the rocket in terms of p. We might,
for example, require p <.005. If B and T are bivariate normal then D will be
normal with unknown mean u and variance 2. Now

p=P[(D — p)/o < — p/o] = ®(— p/o)

where @ is the standard normal distribution function. The requirement
p <.005 is equivalent to u/o > 2.58.

With just 20 isolated pieces of data we will not be very confident about any
particular distributional assumptions. Timing variations in similar engineer-
ing studies are often normally distributed and the present data do not deviate
in any excessive way from that distribution. In order to proceed, we ask what if

“This section is a digression and can be skipped: it does not involve point processes and it employs
elementary statistical ideas outside of the assumed background of this monograph, but it does
illustrate the context of safety assessment.
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Table 1.1 Rocket firing data

Burning time Tube time

Firing (Coded) (Same code)

1 58.671 69.524

2 61.284 69.542

3 60.619 71.256

4 60.699 69.462

5 60.101 70.404

6 58.619 70.602

7 59.426 72.732

8 60.096 70.420

9 61.389 69.528
10 61.249 71.412

the data were normal? The present analysis depends strongly on that
hypothesis.

From Table 1.1, the unbiased estimates of u and o2 are d = ¥}2,d,/10 =
10.273 and s3 =Y !2,(d; — d)*/9 = (1.616)?, yielding 6.36 as an estimate of
u/o. This corresponds to 0.00000 as an estimate for p, the probability of an
accident.

We might wish to test the hypothesis that the rocket is unsafe, yu/o < 2.58.

T = . /10d/s,, has the noncentral t distribution with 9 degrees of freedom and

noncentrality parameter ¢ = \/F),u/a. The hypothesis, unsafe according to
the above criterion, corresponds to ¢ < 8.16; large values of T are unfavorable
to the hypothesis. The observed value of T is 20.1. From tables of the
noncentral ¢ distribution (e.g. Resnikoff and Liebermann, 1957), the observed
significance level is

sup P(T > 20.1|6 < 8.16) = 0.4%,
E

If the rocket were unsafe, p >.005, and we were to repeat the experiment
indicated in Table 1.1 a large number of times then, under our assumptions, we
would obtain sample evidence of safety as strong or stronger than that actually
obtained in no more than 0.4% of the repetitions.

NOTES ON THE LITERATURE

The Weibull distribution was promoted for reliability purposes by Weibull
(1951) as the simplest suitable function of the form (1.4), of Problem 4. The
material on the reliability application in this monograph and indeed much of
the theory is taken from Thompson (1981a).
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PROBLEMS

1.

In describing the rate of decay of radioactive substances, ‘half life’ is
frequently employed. A particle is as likely to decay before its half life as
after. If the lifelength of a particle follows the exponential distribution, give
a formula relating expected life to half life.

. Insection 1.2 it was given that the hazard rate of the Weibull distribution is

r(t) = pat*~ 1, p, « > 0. What then are the distribution and density functions
of the Weibull? What is the half life?

. In the definition of the Weibull distribution, why are the parameters p and «

restricted to be nonnegative?

. Ifachain is only as strong as its weakest link and if the probability of failure

of a link at load x is

I —exp[$(x)] (1.4)

then what is the probability of failure of a chain of n links at load x?

. If, in Problem 4, X denotes the strength of a randomly chosen link, then

how is ¢(x) related to the hazard rate of X?



2
Point processes

2.1 THE PROBABILISTIC CONTEXT

Point processes are of course a special topic in the theory of probability and
we assume familiarity with the material of a first rigorous course in
probability. However, we need to establish notation and terminology and to
place our subject in context.

The theory of probability hypothesizes the primitive concept of a probabil-
isticexperiment. Examples are: (i) noting whether a nonrepairable system does
or does not perform its intended function on demand; (ii) observing the
wanderings of a particle in solution; (iii) recording the number of failures of a
repairable system as a function of time. These experiments are probabilistic, as
opposed to deterministic, because when they are performed we cannot predict
how they will come out. The theory further hypothesizes a collection of
fundamental or indivisible possible outcomes for the experiment. The
individual possible outcomes (denoted by s) are called sample points and the
collection of all of them is called the sample space, S = {s}. For example (i), the
sample space is easy to describe: s, consists of the system performing its
intended function while s, consists of the system not performing its intended
function and S = {s,, s, }. For example (ii), presumably any three-dimensional
continuous path would be a possible outcome. Example (iii) is a point process,
the object of this writing, and we will discuss its sample space in more detail
later in this chapter.

Probability is a set function, P(-), defined for a class of subsets (called events)
of the sample space. The class of subsets for which probability is defined is
closed under countable set operations (union, intersection and complementa-
tion) and probability must satisfy the Kolmogorov axioms:

1. The probabilities of all events are nonnegative.

2. The probability of the sample space is one.

3. If A,, A,,... are pairwise disjoint events (finite or denumerable in number)
then P(A,UA,U...)=P(A,)+ P(A;) + --

“Some of the probability results which we use may exceed this background. Appendix 1 is
provided to alleviate this difficulty. See Notes on the literature at the end of Appendix 1.



