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PREFACE

The premise on which this text is based is that the vast majority of chemical
phenomena may be qualitatively understood by the judicious use of simple
orbital interaction diagrams. The material borrows heavily from the pioneering
work of Fukui [1], [2], Woodward and Hoffmann [3], Klopman [4], Salem
[5], Hoffmann [6], and many others whose work will be acknowledged
throughout. Parts of the text are modeled most closely on the excellent book
by Fleming: Frontier Orbitals and Organic Chemical Reactions [7], from
which a number of illustrative examples are extracted. If there is uniqueness
to the present approach, it lies in the introduction of the o and 8 of Simple
Hiickel Molecular Orbital theory as reference energy and energy scale on which
to draw the interaction diagrams, mixing ¢ and ¢* orbitals and nonbonded
orbitals with the usual 7 orbitals of SHMO theory on the same energy scale.
This approach is difficult to justify theoretically but it provides a platform on
which students can construct their interaction diagrams and is very useful in
practice. Numerous illustrations from the recent literature are provided.

The book is intended for students of organic chemistry at the senior under-
graduate and postgraduate levels. All reactions of organic compounds are
treated within the framework of generalized Lewis acid-Lewis base theory,
their reactivity being governed by the characteristics of the frontier orbitals of
the two reactants. All compounds have occupied molecular obitals and so can
donate electrons, i.e., act as bases in the Lewis sense. All compounds have
empty molecular orbitals and so can accept electrons, i.e., act as acids in the
Lewis sense. The ‘‘basicity’’ of a compound depends on its ability to donate
the electron pair. This depends on the energy of the electrons, the distribution
of the electrons (shape of the MO) and also on the ability of the substrate to
receive the electrons (on the shape and energy of its empty orbital). The bas-
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Xiv PREFACE

icity of a compound toward different substrates will be different, hence a dis-
tinction between Lowry-Bronsted basicity and nucleophilicity. A parallel def-
inition applies for the ‘‘acidity’’ of the compound. The structures of compounds
are determined by the energetics of the occupied orbitals. Fine distinctions,
such as conformational preferences, can be made on the basis of minimization
of repulsive interactions and/or maximization of attractive interactions between
the frontier localized group orbitals of a compound. All aspects are examined
from the point of view of orbital interaction diagrams from which gross fea-
tures of reactivity and structure flow naturally. The approach is qualitatively
different from, and simpler than, a number of alternative approaches, such as
the VBCM (valence bond configuration mixing) model [8], and OCAMS (or-
bital correlation analysis using maximum symmetry) approach [9], [10].

The organization of the text follows a logical pedagogical sequence. The
first chapter is not primarily about ‘‘orbitals’” at all, but introduces (or recalls)
to the student elements of symmetry and stereochemical relationships among
molecules and among groups within a molecule. Many of the reactions of or-
ganic chemistry follow stereochemically well-defined paths, dictated, it will
be argued, by the interactions of the frontier orbitals. The conceptual leap to
orbitals as objects anchored to the molecular framework, which have well de-
fined spacial relationships to each other is easier to make as a consequence.
Whether or not orbitals interact can often be decided on grounds of symmetry.
The chapter concludes with the examination of the symmetry properties of a
few orbitals which are familiar to the student.

The second chapter introduces the student to *‘orbitals’’ proper, and offers
a simplified rationalization for why Orbital Interaction theory may be expected
to work. It does so by means of a detailed derivation of Hartree-Fock theory
making only the simplifying concession that all wavefunctions are real. Some
connection is made to the results of ab initio quantum chemical calculations.
A brief description of how to carry out these calculations using the GAUSS-
IAN system of codes is provided in Appendix A. Postgraduate students can
benefit from carrying out a project based on such calculations on a system
related to their own research interests. A few exercises are provided to direct
the student. For the purpose of undergraduate instruction, this chapter may be
skipped and the essential arguments and conclusions provided to the students
in a single lecture as an introduction to Chapter 3.

Orbital Interaction theory proper is introduced in Chapter 3. The indepen-
dent electron (Hiickel) approximation is invoked and the effective one-electron
Schrddinger equation is solved for the two-orbital case. The solutions provide
the basis for the orbital interaction diagram. The effect of overlap and energy
separation on the energies and polarizations of the resulting molecular orbitals
are explicitly demonstrated. The consequences of 0-4 electrons are examined
and applications are hinted at. Group orbitals are provided as building blocks
from which the student may begin to assemble more complex orbital systems.

Chapter 4 provides a brief interlude in the theoretical derivations by ex-
amining a specific application of the two-orbital interaction diagrams to the
description of ¢ bonds and their reactions.
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In Chapter 5, conventional Simple Hiickel Molecular Orbital (SHMO) the-
ory is introduced. The Hiickel ‘‘a’’ is suggested as a reference energy, and
use of ‘‘|3|’* as a unit of energy is advocated. Parameters for heteroatoms and
hybridized orbitals are given. Finally, the interactive computer program,
SHMO, a copy of which is provided with this book, is described in Appendix
B.

Chapters 6-11 describe applications or orbital interaction theory to various
chemical systems in order to show how familiar concepts such as acid and base
strengths, nucleo- and electrophilicity, stabilization and destabilization, ther-
modynamic stability, and chemical reactivity may be understood.

Pericyclic reactions are described in Chapter 12 as a special case of frontier
orbital interactions, i.e., following Fukui [1]. However, the stereochemical
nomenclature, suprafacial and antarafacial, and the very useful general com-
ponent analysis of Woodward and Hoffmann [3] are also introduced here.

Chapter 13 deals with orbital correlation diagrams following Woodward and
Hoffmann [3]. State wave functions and properties of electronic states are de-
duced from the orbital picture, and rules for state correlation diagrams are
reviewed, as a prelude to an introduction to the field of photochemistry in
Chapter 14.

In Chapter 14, the state correlation diagram approach of the previous chap-
ter is applied to a brief discussion of photochemistry in the manner of Dauben,
Salem and Turro [11]. A more comprehensive approach to this subject may be
found in the text by Michl and Bonacic-Koutecky [12], Turro [13], or Gilbert
and Baggott [14].

Sample problems and quizzes, grouped by chapter, are presented in Appen-
dix C. Many are based on examples from the recent literature and references
are provided. Detailed answers are worked out for a few. These serve as further
examples to the reader of the application of the principles of orbital interaction
theory.

ARrvi Rauk

Calgary, Alberta, Canada
December, 1993
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CHAPTER 1

SYMMETRY AND STEREOCHEMISTRY

PURPOSE

Symmetry is a concept that we all make use of in an unconscious fashion. We
notice it every time we look in our bathroom mirror. We ourselves are (ap-
proximately) bilaterally symmetric. A reflected right hand looks like a left
hand, a reflected right ear like a left ear, but the mirror image of the face as a
whole, or of the toothbrush does not look different from the original. The hand,
a chiral object, is distinguishable from its mirror image; the toothbrush is not.
The toothbrush is achiral, and possesses a mirror plane of symmetry which
bisects it. It would not surprise us if we were to inspect the two sides of the
toothbrush and find them identical in many respects. It may surprise us to note
that the two sides are distinguishable when held in the hand, i.e., in a chiral
environment (the fingers hold one side and the thumb the other). However, the
achiral toothbrush fits equally comfortably into either the right or the left hand.
Chiral objects do not. They interact differently with other chiral objects and
often the different interactions are known by separate words. When you hold
someone’s right hand in your right hand, you are shaking hands; when it is the
other person’s left hand in your right, you are holding hands. Similar properties
and interactions exist in the case of molecules as well.

In this chapter we will familiarize ourselves with basic concepts in molec-
ular symmetry [15]. The presence or absence of symmetry has consequences
on the appearance of spectra, the relative reactivity of groups, and many other
aspects of chemistry, including the way we will make use of orbitals and their
interactions. We will see that the orbitals that make up the primary description
of the electronic structure of molecules or groups within a molecule have a
definite relationship to the three-dimensional structure of the molecule as de-
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2 SYMMETRY AND STEREQCHEMISTRY

fined by the positions of the nuclei. The orientations of the nuclear framework
will determine the orientations of the orbitals. The relationships between struc-
tural units (groups) of a molecule to each other can often be classified in terms
of the symmetry that the molecule as a whole possesses. We will begin by
introducing the basic terminology of molecular symmetry. Finally we will ap-
ply simple symmetry classification: to local group orbitals to decide whether
or not interaction is allowed in the construction of molecular orbitals, to mo-
lecular orbitals in order to determine the stereochemical course of electrocyclic
reactions and to help determine the principal interactions in bimolecular reac-
tions, and to electronic states, in order to construct state correlation diagrams.

We begin by introducing molecular point groups according to the Schoen-
flies notation and assigning molecular and group symmetry following Jaffe and
Orchin [16] where greater detail may be found.

DEFINITION OF A GROUP

Agroup, G={.,.,.,.8,.,..} is a set of elements related by an
operation which we will call group multiply for convenience, and has the fol-
lowing properties:

1. The product of any two elements is in the set, i.e., the set is closed under
group multiplication.

2. The associative law holds, e.g., g;(g;g) = (88 8«

. There is a unit element, e, such that eg; = g;e = g,.

4. There is an inverse, g, to each element, such that ( g,fl)g,- = g:(g™h
= e. An element may be its own inverse.

w

MOLECULAR POINT GROUPS
A molecular point group is a set of symmetry elements. Each symmetry ele-
ment describes an operation which when carried out on the molecular skeleton,
leaves the molecular skeleton unchanged. Elements of point groups may rep-
resent any of the following operations:

1. Rotations about axes through the origin.

C, = rotation through 27 /n radians (in solids, n = 1, 2, 3, 4, and 6).
2. Reflections in a plane containing the origin (center of mass)

o = reflection in a plane

3. Improper rotations—a rotation about an axis through the origin followed
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by a reflection in a plane containing the origin and perpendicular to the
axis of rotation.

S, = rotation through 27 /n radians followed by o,.

SCHOENFLIES NOTATION

E
Co

Oh
UV
aq

Sn
i

identity

= rotation about an axis through 2« /n radians. The principal axis is

the axis of highest n.

reflection in a horizontal plane, i.e., the plane through the origin per-

pendicular to the axis of highest n.

= reflection in a vertical plane, i.e., the plane containing the axis of
highest n.

= reflection in a diagonal plane, i.e., the plane containing the axis of
highest n and bisecting the angle between the two-fold axes perpen-
dicular to the principal axis. This is a special case of g,

= improper rotation through 2# /n, i.e., C, followed by a;.

= §, = inversion through the center of mass, i.e., r = —r.

INTERRELATIONS OF SYMMETRY ELEMENTS

1.

(@) The intersection of two reflection planes must be a symmetry axis.
If the angle, ¢, between the planes is 7 /n, the axis is n-fold.

. (b) If a reflection plane contains an n-fold axis, there must be n-1 other

reflection planes at angles of x /n.

. (@) Two 2-fold axes separated by an angle 7 /n require a perpendicular

n-fold axis.
(b) A 2-fold axis and an n-fold axis perpendicular to it require n-1 ad-
ditional 2-fold axes separated by angles of 7 /n.
An even-fold axis, a reflection plane perpendicular to it, and an inversion
center are interdependent. Any two of these implies the existence of the
third.

TYPE CLASSIFICATION

The following classification by types is due to Jaffe and Orchin [16]. Repre-
sentative examples are given below for a number of types. The reader is chal-
lenged to find the rest.

Type 1. No rotation axis; point groups C,, C,, C..

(@ C;, = {E}. This group has no symmetry elements. It is the point
group of asymmetric compounds.



